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ABSTRACT 

The boundary layer flows of nanofluids, hybrid nanofluids, and blood are 

usually studied in terms of classical partial differential equations instead of fractional 

partial differential equations to avoid complexities in the exact solutions. Fractional 

partial differential equations offer immense unconventional features to the research, 

making them potential mathematical tools for describing the complex behaviour of 

boundary layer flow. Therefore, the main objective of this thesis is to study unsteady 

convection flows of nanofluids, hybrid nanofluids, and magnetohydrodynamic blood 

based on the generalized fractional Brinkman type fluid model. The mixed convection 

boundary layer flows of water-based carbon nanotubes nanofluids and Ferro nanofluid 

with shape effect past a vertical plate are considered. The effects of thermal radiation, 

heat generation with ramped, and isothermal heating are studied. The natural 

convection boundary layer flows of water-based hybrid nanofluids in a channel and 

magnetohydrodynamic blood flow in a cylindrical tube are also examined. The 

dimensional boundary layer flow models are transformed into dimensional forms by 

using appropriate dimensionless variables. Then, the obtained dimensionless models 

are transformed into the fractional form by using Caputo and Caputo-Fabrizio 

fractional derivatives. The exact solutions are obtained by using the Laplace transform 

and joint Henkel and Laplace transform methods. The impacts of the fractional 

parameter, the volume concentration of nanoparticles, Brinkman type fluid parameter, 

magnetic parameter, thermal radiation, heat generation, and thermal Grashof number 

are studied graphically with physical interpretations. The empirical results reveal that 

for a shorter time, the temperature field, velocity field, blood velocity, and magnetic 

particles velocity are decreasing with increasing fractional parameters due to variations 

in temperature and velocity boundary layers. However, this trend revises for a longer 

time. Meanwhile, it is noticed that the temperature field is increasing with the 

increasing volume concentration of nanoparticles and hybrid nanoparticles due to the 

advanced thermal conductivity, but the velocity field behaves oppositely because of 

effective density. Besides this, the velocity field is decreasing with increasing 

Brinkman type fluid parameter due to resistive forces. Finally, in a limiting case, the 

general fractional solutions are reduced to the published classical solutions for the sake 

of correctness and validation. 
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ABSTRAK 

Aliran lapisan sempadan bagi nanobendalir, nanobendalir hibrid, dan darah 

kebiasaannya dikaji dari segi persamaan terbitan separa klasik dan bukannya 

persamaan terbitan separa pecahan bagi mengelakkan kerumitan dalam penyelesaian 

tepat. Persamaan terbitan separa pecahan menawarkan ciri-ciri tidak konvensional 

yang besar terhadap penyelidikan, menjadikannya alat matematik yang berpotensi 

untuk menerangkan tingkah laku aliran lapisan sempadan yang kompleks. Oleh itu, 

objektif utama tesis ini adalah untuk mengkaji aliran perolakan tak mantap 

nanobendalir, nanobendalir hibrid, dan darah hidrodinamik magnet berdasarkan 

kepada model bendalir jenis Brinkman pecahan teritlak. Aliran lapisan sempadan 

perolakan campuran bagi nanobendalir karbon nanotiub dan nanobendalir Ferro 

berasaskan air dengan kesan bentuk mengalir melepasi plat menegak 

dipertimbangkan. Kesan sinaran terma, penjanaan haba dengan tanjakan, dan 

pemanasan isoterma dikaji. Aliran lapisan sempadan perolakan semula jadi 

nanobendalir hibrid berasaskan air dalam saluran dan aliran darah hidrodinamik 

magnet mengalir dalam tiub silinder juga diperiksa. Model aliran lapisan sempadan 

berdimensi diubah ke dalam bentuk tanpa dimensi dengan menggunakan 

pembolehubah tanpa dimensi yang bersesuaian. Seterusnya, model tanpa dimensi yang 

diperoleh telah diubah menjadi bentuk pecahan dengan menggunakan terbitan pecahan 

Caputo dan Caputo-Fabrizio. Penyelesaian tepat diperoleh dengan menggunakan 

kaedah transformasi Laplace dan gabungan Henkel dan transformasi Laplace. Kesan 

parameter pecahan, kepekatan isipadu nanopartikel, parameter bendalir jenis 

Brinkman, parameter magnetik, sinaran terma, penjanaan haba, dan nombor Grashof 

terma dikaji secara grafik berserta dengan interpretasi fizikal. Hasil empirik 

menunjukkan bahawa untuk masa yang lebih singkat, medan suhu, medan halaju, 

halaju darah, dan halaju partikel magnetik semakin menurun dengan peningkatan 

parameter pecahan disebabkan oleh perubahan dalam suhu dan halaju lapisan 

sempadan. Walau bagaimanapun, trend ini berubah untuk masa yang lebih lama. 

Sementara itu, diperhatikan bahawa medan suhu meningkat dengan peningkatan 

kepekatan isipadu nanopartikel dan nanopartikel hibrid disebabkan oleh kekonduksian 

terma termaju, tetapi medan halaju bertindak sebaliknya kerana ketumpatan yang 

berkesan. Selain itu, medan halaju menurun dengan peningkatan parameter bendalir 

jenis Brinkman disebabkan oleh daya tahan. Akhirnya, dalam kes terhad, penyelesaian 

pecahan itlak diturunkan kepada penyelesaian klasik yang telah diterbitkan bagi tujuan 

ketepatan dan pengesahan.   
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1 

CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introductions  

This chapter is intended to provide the research background of nanofluids, 

hybrid nanofluids, and blood based on fractional derivatives in Section 1.2. Problem 

statement and research objectives are specified in Sections 1.3 and 1.4 

correspondingly. Scope of the study is given in Section 1.5 followed by significance 

of the study in Section 1.6. Finally, in Section 1.7, thesis organization is discussed.  

1.2 Research Background 

On 30th September 1695, L’Hopital had written a letter to Leibniz. He asked 

about a particular notation that was used by Leibniz for nth order derivative 

( )( )/n nD Dx f x  that what will be the answer if 1/ 2?n = . Leibniz responded that it is 

a paradox from which one day some useful consequences will be drawn (Leibniz, 

1849). The communication between Leibniz and L’Hopital had given birth to 

fractional calculus. Fractional calculus is a branch of mathematics that generalizes the 

idea of conventional integral and derivatives of integer order to non-integer order 

integral and derivatives. For the last five decades, after the work of Caputo (Caputo, 

1967), this field attained a great consideration of researchers due to its applications in 

real world problems by utilizing the usual initial condition in the application of Laplace 

transform in contrast to the unusual initial condition in case of Riemann–Liouville 

fractional derivative operator. Caputo was the first researcher, who understood the 

application of the Laplace transform to form a fractional derivative operator from the 

convolution product: the convolution of classical derivative of the function with power 

Law kernel which is given by 
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where ( ).  is the gamma function, * represents the convolution product, 
( )

1 1

1 t −
 

is the non-local singular power-law kernel, and ( ), /f y t t   is the classical derivative 

of the function ( ),f y t . The Laplace transform of Eq. (1.2) is given by 

( ) ( ) ( ) ( ), , ,0t f y t q q f y q f y = − .  (1.3) 

where ( ).t


 is the Caputo fractional derivative,   is the fractional order, q  is the 

Laplace transform variable, ( ),f y q is the Laplace transform of ( ),f y t  and ( ),0f y  

is the usual initial condition. It can be clearly seen from Eq. (1.3) that the singularity 

in the power law kernel vanish in the application of Laplace transform. With this great 

first step, after the Riemann–Liouville fractional derivative given by 
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with the following Laplace transform 
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( ) ( ) ( ) ( )1, , ,0t tf y t q q f y q f y  −= − , (1.5) 

where ( )1 ,0t f y−
 is the unusual initial condition. The problem of this unusual initial 

condition without physical meaning and tough to compute was fixed. In additions to 

this, the derivative of a constant is not zero in the case of Riemann–Liouville fractional 

derivative operator see for example  

( )
( )

1 ; 0, 0
1

t

t
t


 



−

=  
 −

.  (1.6) 

In the Caputo fractional derivative, the drawbacks of Riemann–Liouville 

fractional derivative were fixed and was successfully applied in many fields of science 

and technology which include biometric foods, extrusion of polymer fluid, colloidal 

solutions, cooling of metallic plates, exotic lubricants, glass fiber production, and glass 

blowing (Haque et al., 2018).  

The significance and efficiency of fractional derivatives to engineering 

applications are experimentally proven by many investigators. It was experimentally 

verified by Song and Jiang (1998) that the modified fractional Jeffery model is suitable 

to illustrate the behavior of Sesbania gel and xanthan gum. Jiang and Qi (2012) 

experimentally indicated that heat transfer in biological tissues can be consistently 

analyzed by using fractional wave models. Meral et al. (2010) experimentally 

confirmed that the fractional Voigt model is efficient in the simulation of the wave 

response of soft tissue such as phantoms. Chen et al. (2013) suggested that the data 

obtained from fractional derivative models with variable order showed a considerably 

improved contract with experimental data compare to the traditional model. 

 After the successful application of fractional derivatives in real-world 

problems, the mathematicians also tried to contribute further to this field. In 2015, 

Caputo and Fabrizio realized that the existing fractional operators have some 

limitations which lead to some misleading results particularly in the modeling of real-

world problems. Some senior researchers claimed that the misleading results are due 

to the singularity in the power law kernel. This argument was very valid. so, Caputo-
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Fabrizio fractional derivative (CFFD) operator was introduced which is based on the 

non-singular exponential kernel given by (Caputo and Fabrizio, 2015)  
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where ( )N   is the normalization function and ( ) ( )/1 exp /1N t   − − −  is the 

non-singular exponential kernel. It is worth mentioning here that, integer order 

calculus has a precise physical explanation and is used in the description of numerous 

ideas of classical physics and applied mathematics. For example, the velocity of an 

object is the first derivative of functions, the second derivative of a function 

corresponds to the acceleration of the object, and so on. Fractional calculus is the 

generalization of classical calculus and is anticipated to have a wider meaning. 

Unfortunately, until now, there is no acceptable interpretation of fractional integrals 

and derivatives in the literature (Dalir and Bashour, 2010). 

In the past few decades, fractional derivatives put forward immense novel 

features to the research community thereby extensively utilized in numerous 

applications of science and engineering. In recent decades, fractional derivatives 

became potential mathematical tools to describe real word problems in science and 

engineering. Fractional derivatives, particularly the models that involve fractional 

partial differential equations (PDEs), captured a rising concern in the various field 

which includes heat transfer, biology, physics, chemistry, quantum mechanics, 

diffusive transport, probability, electrical networks and electromagnetic theory, 

viscoelastic materials, rheology and fluid flow problems (Dalir and Bashour, 2010). In 

this thesis, the impact of fractional derivatives on unsteady fluid flows of Brinkman 

type nanofluids, hybrid nanofluids and blood have been analyzed. It is worth 

mentioning here that fluids are isotropic substances that deform continuously under 
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the action of applied shear stress and is a substance that mainly included liquids and 

gases. Fluids can transfer matter, energy, and force from one place to another place, 

so, the study of fluid flow merge with other disciplines of science and technology. 

Fluid dynamics always attracted the interest of researchers right from its development 

in the sciences. From the past few centuries, fluid dynamics assisted in various 

industrial and technological applications as a vital tool. Many engineers, physicists, 

and mathematicians have been fascinated by the reputation and charm of fluid 

dynamics. Fluid dynamics has been blended from a highly developed research area to 

an exceedingly applicable field of broader scope.  

Mainly, fluids are categorized into two major classes; Newtonian and non-

Newtonian fluids distinguished based on their viscosity trend. The class of fluids that 

follow Newton’s Law of viscosity is referred to as Newtonian fluid. However, non-

Newtonian fluids do not obey this Law. Among the class of Newtonian fluid, the one 

which is rarely investigated is the Brinkman type fluid. Brinkman type fluid is a 

viscous fluid introduced by Brinkman in his pioneer work while studying the fluid 

flow due to the exertion of viscous force, on dense swarm particles surface. Using 

Stokes’ formula, it was noticed that the viscous force acting on dense swarm particles 

is significantly greater than that of on a remote particle (Brinkman, 1949a). 

Additionally, a spherical shaped solid particle was fixed inside the swarm particles and 

the impact of surrounded particles was considered as a porous medium. Based on this 

set up a formula for permeability as a function of porosity was derived. The 

mathematical formula was validated satisfactorily with experimental results. It was 

noticed that the formula was applicable only for a medium having porosity greater than 

0.4. To fix this issue Brinkman (1949b), further polished his previous work and 

developed a formula with experimental validation for all range of values. 

Consequently, Brinkman established a governing equation for the flow of viscous fluid 

through a highly porous medium. The Brinkman equation is considered the extension 

of Darcy’s equation which is typically referred to as Darcy’s Law (Darcy, 1856). 

Rajagopal (2007), soothing the supposition made by (Brinkman, 1949a; Brinkman, 

1949b), and developed a more general governing equation for the viscous fluid flowing 

through highly porous media. Fetecau et al. (2011) obtained the first exact solutions 

via Fourier sine transform for Stokes’ incompressible Brinkman type fluid model. Ali 
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et al. (2012), generated exact solutions for the velocity profile of Brinkman type fluid 

using the Laplace transform method. 

Note that, traditional/regular fluids (pure fluids such as water, alcohol 

glycerine, polyester suspensions) have poor thermophysical properties and cannot 

transfer the required amount of heat in various engineering and industrial sectors. The 

heat transfer from one place to another place is referred to as heat convection which 

can be free, force, or mixed convection. In heat transport systems, convection heat 

transfer became a challenging task for engineers and industrialists. So, there is an 

urgent need to fix this problem. Heat transfer in convection flows of fluids can be 

enhanced by enhancing the thermal conductivity of the flowing fluids. In the past few 

decades, many procedures have been proposed by researchers to enhance the 

performance of convection heat transfer but failed due to scientific drawbacks. 

Investigators also tried to enhance the thermal conductivity of the fluid by dispersing 

micro-sized particles in the base fluid as the thermal conductivity of the solids is higher 

than liquids. Various theoretical and experimental studies were carried out on the 

suspension containing micro-sized solid particles. This research was initially 

conducted by Maxwell about 10 decades ago (Maxwell, 1881). However, this research 

was not commercialized because the suspension with large sized solid particles can 

cause; (i) increasing drop in pressure, (ii) erosion of pipelines, (iii) abrasion of 

surfaces, (iv) clogging micro-channels of devices, and (v) faster settling time due to 

higher density. Furthermore, the suspension causes supplementary resistance and 

possible erosion (Das et al., 2007). 

The new technique in nanotechnology affords a convenient process to form 

crystals from 1-100 nm on average. The suspensions of regular fluids and nano-meters 

size particles of metals, oxides, silica, carbide, and carbon nanotubes (CNT’s) are 

referred to as nanofluids. This term was firstly proposed by Choi and Eastman (Choi 

and Eastman, 1995). In nanofluids, various factors such as volume fractions, size, 

shape, clustering, PH value, and effect of particles materials of nanoparticles are 

responsible for improved thermal conductivity and viscosity. For a very little volume 

fraction of nanoparticles, a significant increase in the thermal conductivity occurs 

referred to as synergistic effect of nanoparticles. Nanofluids have remarkable 
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thermophysical properties as compared to regular fluid and suspension containing 

micro-sized particles. The successful use of nanofluid supports the trend toward 

component minimization to implement the smaller and lighter design of the heat 

exchange system. 

Nanofluids have been widely studied in the literature due to their industrial 

importance and applications included electronics, energy, heat exchanger, solar water 

heater, advancement in diesel engines, environment, biomedicine, and healthcare 

(Wang and Mujumdar, 2007). The contributions of nanofluids in science and 

technology exponentially increased and reached to next level by introducing hybrid 

nanofluids: the suspensions of two or more dissimilar nanoparticles in a single based 

fluid. The main motive of introducing hybrid nanofluids is to further improve the 

thermophysical properties of nanofluids. Hybrid nanofluids overcome the drawbacks 

of conventional nanofluids suspensions and connect the synergistic effect of 

nanoparticles. The newly branded hybrid nanofluids further advance the heat transfer 

capability of conventional/traditional fluids which leads to engineering and industrial 

applications with high performance and low cost (Bhattad et al., 2018). Hybrid 

nanofluids are highly applicable in industrial and engineering processes with high 

efficiency. Hybrid nanofluids have wide range of applications in many fields which 

include transformer cooling, electric cooling, drug reduction, biomedical, generator 

cooling, refrigeration nuclear system cooling, and coolant in machining (Waini et al., 

2019c). It is important to highlight here that in many high voltage transformers, 

mineral oils were used as insulators and coolants. It was found that pure mineral oil 

cannot handle high voltage. The predicted 40-30-year life of transformers reduced to 

18-17-years working life. Sumathi et al. (2019) experimentally proven that the 

working life of transfer was increased by 7.7 times than transformer oil by using oil 

base Al2O3-TiO2-MoS2 hybrid nanofluid and was increased by 3.7-time than magnetic 

nanofluid.  

Besides this, the study of biological fluids (BF) under the influence of a 

magnetic field is referred to as bio-magnetic fluid dynamics (BFD). This area in fluid 

dynamics attracted numerous researcher (Carlton et al., 2001; Haik et al., 1999; 

Hussain et al., 2018; Liu et al., 2001; Voltairas et al., 2002; Zeeshan et al., 2018) due 
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to the extensive applications proposed by medical science and bio-engineering which 

include the development of magnetic tracers, targeted transport of drugs using 

magnetic particles as drug carriers, development of magnetic devices for cell 

separation, provocation of occlusion of the feeding vessels of cancer tumors, cancer 

tumor treatment causing magnetic hyperthermia and reduction of bleeding during 

surgeries (Tzirtzilakis, 2005). The BF exists in all living organisms and their flow is 

significantly affected by the incidence of the magnetic field. Among various biological 

fluids, the one electrically conducting fluid is blood. The human blood is composed of 

plasma and red blood cells (RBC’s) (Boyd, 1961). The RBCs consist of a high 

concentration of hemoglobin, the oxide of iron while the magnetic characteristics of 

blood are due to the state of oxygenation (Sharma et al., 2015). 

To study bio-magnetic fluids particularly blood, the mathematical model of BF 

developed by Haik et al. (1999) is frequently used in the literature. They suggested 

that Ferro-hydrodynamics (FHD) is like BFD in which the flow of electrically 

conducting fluid is influenced by the magnetization of the fluid in the presence of 

magnetic field with no induce current due to the small Reynold number. Hence, in the 

mathematical model of BF, the magnetization of the fluid is assumed in the 

formulation that corresponds to magnetohydrodynamic (MHD) or magneto-fluid-

dynamics (MFD) (Haik et al., 2002). The MHD or MFD focused on the interface 

among electrically conducting fluids and externally applied magnetic field. The fluid 

under the influence of the applied magnetic field experience electromagnetic so-called 

Lorentz forces which are like drag forces that change the flow behavior.  

In various engineering and industrial devices such as accelerators, pumps, 

microfluidics, and mixer nuclear reactor, MHD is applied to control the boundary layer 

(Al-Habahbeh et al., 2016). The MHD effect help in understanding and forecast and 

significant improvement in the fusion blanket system (Smolentsev et al., 2010). In 

1942, the idea of MHD was presented by Alfven for the first time and received Nobel 

Prize in 1972. MHD has plenty of applications in various field of science and 

technology such as electrochemical processes, chemical catalytic reactors, grain 

storage, beds of fossil fuels such as oil shale and coal, the extraction of geothermal 

energy, salt leaching in soils, solar power collectors, underground disposal of nuclear 
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waste, the spreading of chemical pollutants in saturated soil, high-performance 

insulation for buildings, insulation of nuclear reactors, packed sphere beds, the 

migration of moisture in fibrous insulation and heat exchange between soil and 

atmosphere and sensible heat storage beds (van der Holst and Keppens, 2007).  

1.3 Problem Statement 

In the literature, the analytical studies based on the Brinkman type fluid for the 

boundary layer flows of nanofluids and hybrid nanofluids and blood are rarely reported 

due to the complexity in finding the exact solutions. These difficulties usually occur 

in the exact solutions treatment for the flow of nanofluids over an infinite plate with 

ramped heating, the flow of hybrid nanofluid in a channel, and MHD blood flow in a 

cylinder. Indeed, some studies are published in this direction but only restricted to 

integer-order derivatives. To fill this research gap, the following problems are 

addressed and solved for exact solutions using integral transforms such as the Laplace 

transform and the joint Laplace and Hankel transforms: 

1. Convection MHD flow of water based CNT’S Brinkman type nanofluid with 

ramped heating.  

2. Radiative convection MHD flow of nanofluid with heat generation and 

nanoparticles shape effect 

3. Natural convection channel flow of hybrid nanofluid in the presence of heat 

generation. 

4. Natural convection MHD channel flow of hybrid nanofluid in the presence of 

heat generation 

5. MHD flow of fractional brinkman type blood with magnetic particles in a 

cylindrical tube 
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In this thesis, the Problems mentions in 1-5 are solved for exact solutions using 

integral transforms such as the Laplace transform and the joint Laplace and Hankel 

transforms. Additionally, this thesis is organized to answer the following questions:  

1. How are the fractional Brinkman type fluid models formulated in different flow 

regimes such as flows past an infinite plate, flows in a channel, and blood flow 

in a cylinder? 

2. How the fractional nanofluids and hybrid nanofluids behave in convection flow 

problems?  

3. How do the fractional derivatives affect the velocity and temperature fields? 

4. How do numerous effects such as MHD, thermal radiation, heat generation, 

ramped heating, isothermal heating, different shapes of nanoparticles, volume 

concentrations of nanoparticles and hybrid nanoparticles influence the velocity 

and temperature fields?  

5. How do the exact solutions can be obtained from the fractional models of the 

flows of nanofluids past an infinite plate with ramped heating, the flows of 

hybrid nanofluids in a channel, and blood flow in a cylinder? 

 

1.4 Research Objectives 

This study examines the mixed convection flows of nanofluids past an infinite 

plate with ramped heating, natural convection flows of hybrid nanofluids in a channel 

and MHD blood flow in a cylinder. The exact solutions are obtained via the Laplace 

transform and joint Hankel and Laplace transform methods. The obtained solutions are 

computed and plotted. In a limiting sense, the obtained solutions are reduced to 

classical form and validated with published work. The following are the main 

objectives of this research. 
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1. To formulate the problems of convection flows of nanofluids, hybrid 

nanofluids, and blood in three different geometries such as the flows past an 

infinite plate, flows in a channel, and blood flow in a cylinder. 

2. To generalize the classical model using Caputo-Fabrizio, Caputo fractional 

derivatives. 

3. To obtain and validate in limiting cases the exact solutions for the proposed 

problems. 

4. To investigate the influence of various pertinent flow parameters on velocity, 

temperature, and magnetic blood particles velocity fields physically. 

 

1.5 Scope of the Study 

This research focused on the unsteady, incompressible boundary layer flows of 

Brinkman type nanofluids, hybrid nanofluids, and blood. This research is based on the 

following assumption and limitations. 

1. Unidirectional and one-dimensional boundary layer flows are considered in 

Cartesian and cylindrical coordinate systems. 

2. The incompressible and laminar flows are considered. 

3. In the case of MHD flows, the electrically conducting fluids are considered and 

the induced magnetic field is neglected. 

4. The Brinkman type fluid model together is fractionalized by using the Caputo-

Fabrizio fractional derivative in the first four problems while the last problem 

is fractionalized via the Caputo fractional derivative. 

5. This thesis investigates nanofluids and hybrid nanofluids theoretically and 

mathematically. In this thesis, nanofluids or hybrid nanofluids are not 

physically prepared/characterized. 
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6. In the first four problems, the energy equation is partially coupled with the 

momentum equation by using the Oberbeck-Boussinesq approximation. 

7. The exact solutions are computed and plotted by using the MATHCAD 

software. 

 

1.6 Significance of the Study 

The significance of the study is listed as follows. 

1. The results obtained from this research will help to enhance the knowledge of 

boundary layer flows in nanofluids, hybrid nanofluids, and blood in different 

flow regimes. 

2. The results obtained from this study will help in understanding trend and 

features of various boundary layer flow of nanofluids, hybrid nanofluids, and 

blood. 

3. The results obtained from this study can be used as a base for complex non-

linear flow problems recurrently taking place in engineering and applied 

sciences. 

4. The concept of generalization/fractionalization of classical models with an 

integer order can be further advanced for highly non-linear non-Newtonian 

nanofluids and hybrid nanofluids to achieve additionally accurate and realistic 

results. 
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1.7 Thesis Organization  

This thesis comprises eight Chapters. Chapter 1 discussed a detailed research 

background go after problem statement, research objective, scope of the study, and 

significance of the study. Chapter 2 provides a detailed literature survey relevant to the 

problems established in research objectives and highlighted in the problem statement. 

Chapter 3 addressed the problem of convection heat transfer of MHD flow of CNTs 

nanofluids past an oscillating infinite vertical plate. In this Chapter, the detailed 

derivation of the continuity equation, momentum equation, and energy equation are 

provided. The constitutive equation of Brinkman type fluid in conjunction with certain 

appropriate assumptions, the governing equations of the problem are developed in 

terms of partial differential equations (PDEs). The velocity field is subjected to 

oscillating boundary conditions whereas, the ramped heating conditions are considered 

for the temperature field. To eliminate units and reduce the number of variables, some 

suitable non-dimensional and non-similarity variables are introduced into the 

governing equations and initial and boundary conditions to make the system 

dimensionless. The dimensionless model is then transformed into time-fractional form 

by using the time-fractional Caputo-Fabrizio fractional derivative. The time-fractional 

model is solved for exact solutions by using the Laplace transform method. The 

obtained solutions for velocity and temperature fields are computed and presented in 

numerous graphs to study the effect of various pertinent flow parameters. Besides this, 

the obtained solutions are reduced to classical form and validated with published work.  

Chapter 4 examined the influence of thermal radiation, heat generation, and 

nanoparticles shape effect in MHD flow of water-based Ferro nanofluid (Fe3O4-H2O) 

past an oscillating infinite vertical plate. In a similar procedure as in Chapter 3, the 

exact solutions are developed for the Caputo-Fabrizio time-fractional Fe3O4-H2O 

nanofluids by using the Laplace transform method and plotted in various graphs with 

a physical explanation. The idea of nanofluids is further advanced in Chapter 5 and 

Chapter 6. More exactly, Chapter 5 discussed the flow of Cu-Al2O3-H2O hybrid 

nanofluid in and channel subject to homogenous boundary conditions and isothermal 

heating. This idea is further extended in Chapter 6 by considering the MHD effect in 

the flow of Ag-TiO2-H2O hybrid nanofluid. Both the problems presented in Chapter 5 
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and Chapter 6 are solved for exact solutions by following the same procedure as in 

Chapter 3 and Chapter 4.  

 

 

Figure 1.1 Operational framework 
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Chapter 7 deals with the two-phase MHD blood flow based on the Caputo time 

fractional Brinkman type fluid model in a horizontal cylinder. In this Chapter, the 

detailed derivation of the continuity equation, momentum equation, and equation of 

motion of the magnetic particle in the blood is presented in the cylindrical coordinates 

system. The joint Hankel and Laplace transform method is employed to find the exact 

solutions for blood and magnetic particle velocities. Classical solutions for blood and 

magnetic particle velocities are recovered. For the sake of correctness, the obtained 

solutions are validated with already published work. Finally, in Chapter 8 the whole 

thesis is summarized, and an adequate conclusion is drawn. Future recommendations 

and suggestions are also included in this chapter. The operational framework and 

solutions methodology is given in Figure 1.1.  
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