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ABSTRACT

Coherent muon to electron transition (COMET) experiment is an exclusive 

beamline for studying charge lepton flavor violation through investigation of 

neutrinoless muon to electron transition. The present work aims to classify signal 

electron and background from the truth level data generated from GEANT4 simulation 

(MC5 file) using CatBoost algorithm. This data was first simulated in the Integrated 

Comet Experimental Data User Software Toolkit (ICEDUST) framework to extract 

electron and background samples of the main COMET detector, CyDet. Both electron 

and background samples are merged and the detector response towards this sampling 

are calibrated using the previous MC4 file. Subsequently, the muon stopping region, 

bunch width effect, overflow of hits, trigger acceptance and occupancy parameters are 

observed. The data was sanitized by applying energy cut to the energy deposited on 

cylindrical drift chamber (CDC) and Cherenkov trigger hodoscope (CTH). Four local 

features (charge deposited on CDC wire, radial distance of hit from muon stopping 

target (MST), relative time to the trigger signal, and angle of hit from x-axis) and four 

neighbour features (charge deposited on right wire, charge deposited on left wire, time 

relative to the trigger signal on right wire, and time relative to the trigger signal on 

left wire) are calculated. Using these selected features along with CatBoost algorithm, 

94.2% of background hits are removed, whereas 93.7% of hits signal are retained. 

Performance study using confusion matrix and features importance shows that radial 

distance from MST gives the highest contribution in the classification of signal and 

background. Application of machine learning in particle physics is very useful in 

predicting the experimental sensitivities and processing of big data analysis.
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ABSTRAK

Eksperimen peralihan koheren muon ke elektron (COMET) adalah garis alur 

eksklusif untuk mengkaji pencabulan perisa cas lepton melalui penyiasatan peralihan 

nyah-neutrino muon ke elektron. Kajian ini bertujuan untuk mengklasifikasi elektron 

isyarat dan latar belakang daripada data aras kebenaran daripada simulasi GEANT4 

(fail MC5) menggunakan algoritma CatBoost. Data ini disimulasikan terdahulu dalam 

rangka kerja Set Peralatan Perisian Pengguna Data Eksperimen COMET Bersepadu 

(ICEDUST) untuk mengekstrak sampel elektron dan latar belakang daripada pengesan 

utama COMET, CyDet. Kedua-dua sampel elektron dan latar belakang digabungkan 

dan tindak balas pengesan ke atas sampel ini ditentukur menggunakan fail MC4 

sebelumnya. Kemudiannya, parameter kawasan perhentian muon, kesan lebar 

penggugusan, limpahan hits, penerimaan cetusan dan penghunian dicerap. Data ini 

telah dibersihkan dengan menggunakan potongan tenaga terhadap tenaga termendap 

di atas kebuk hanyutan silinder (CDC) dan pencetus hodoskop Cherenkov (CTH). 

Empat ciri-ciri tempatan (cas terkumpul dalam wayar CDC, jarak jejari pukulan 

dari sasaran muon berhenti (MST), masa relatif terhadap isyarat pencetus, dan sudut 

pukulan dari paksi-x) dan empat ciri-ciri jiran (cas terkumpul pada wayar kanan, cas 

terkumpul pada wayar kiri, masa relatif terhadap isyarat pencetus pada wayar kanan, 

masa relatif terhadap isyarat pencetus pada wayar kiri) dikira. Menggunakan ciri-ciri 

terpilih ini seiring dengan algoritma CatBoost, 94.2% pukulan latar belakang dialih 

keluar, manakala 93.7% pukulan isyarat dikekalkan. Kajian prestasi menggunakan 

matriks kekeliruan dan kepentingan ciri menunjukkan bahawa jarak jejarian dari MST 

memberikan sumbangan tertinggi dalam klasifikasiisyarat dan latar belakang. Aplikasi 

pembelajaran mesin dalam zarah fizik sangat berguna dalam meramal sensitiviti 

eksperimen dan pemprosesan analisa data besar.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

The standard model (SM) of physics includes six flavors of quarks, six leptons, 

and four interaction forces. However, the discovery of the Higgs boson at the Large 

Hadron Collider (LHC) and neutrino mass observation demonstrates the clear evidence 

that some modification is necessary for the SM [1]. Further study may unleash the 

answer for unresolved questions in particle physics such as domination of matter in 

the universe, the existence of dark matter, quantum gravity problem and neutrino mass 

[2, 3, 4]. The present Coherent Muon to Electron Transition (COMET) experiment 

aims to study the charged lepton flavor violation by observing the neutrinoless muon 

to electron conversion.

The common allowed process of nuclear muon capture is when a negative muon 

being capture in a target + N(A, Z) ^  e- + N(A, Z  -  1) and formed a muonic atom. 

The muon is bound at certain energy levels before cascades down to its 1 s ground 

state. The normal expected event for muon decays into electron within an average of

2.2 x 10-6 s. However, the neutrino with tendencies to oscillate and unknown symmetry 

of the neutrino causes the rare neutrinoless muon to electron conversion. The coherent 

neutrinoless conversion of muon to electron decay requires an explanation of physics 

beyond SM since it violates the conservation of individual lepton flavors Le and Lp by 

1 unit. However, the total lepton number L = Le + LM + LT of the reaction is conserved.

The signal electron energy, E^e is given by:

Efje mfj B)i Erecoil (1.1)

1



where mp is the mass of the muon, B^ is the binding energy of the 1 s-state muonic 

atom, and Erecoil is the nuclear recoil energy. The E^e is dependent on the material. For 

example, for the COMET experiment that uses Al as muon stopping target, the EMe is 

104.97 MeV. Alternatively, the EMe of lead (Pb) is 94.9 MeV.

The COMET experiment uses two-stage approaches to measure the ^  -  e 

conversion with an unprecedented sensitivity of 10-15 to 10-17 in COMET Phase-I and 

Phase-II, respectively. This ultimate sensitivity goal is a factor of about 104 better than 

the current experimental limit of B(jT  + Au ^  e- + Au) < 7 x 10-13) from SINDRUM-II 

at Paul Scherrer Institute (PSI) [5]. A huge number of muons are required in order to 

achieve this sensitivity. At this moment, the COMET Phase-I is under construction at 

Japan Particle Accelerator Research Complex (J-PARC), Tokai, and the preparation 

of the experiment is intensively in progress [6]. The construction of the COMET 

building is equipped with a 90° bending angle of transport solenoid installed in the 

COMET hall. The central drift chamber (CDC) is the main detector in COMET Phase- 

I is separately constructed and test using cosmic rays at the High Energy Accelerator 

Research Organization (KEK), Tsukuba. The calibration and tracking efficiency of the 

CDC is done using various machine learning to check the reproducibility of the signal 

tracking and data reconstruction.

Various boosting algorithms are widely used in the application of particle 

physics. The gradient boosted decision trees (GBDT) [7] is one of the well-known 

machine learning algorithms that give high-quality models in a huge number of 

machine learning problems involving heterogeneous features, noisy data, and complex 

dependencies [8, 9]. For instance, search engines [10, 11], recommendation systems 

[12], and other applications [13, 14] uses GBDT algorithm to predict users need. 

CatBoost is one of the third-party GBDTs algorithms that implement gradient boosting 

by using oblivious decision trees as base predictors[15]. LHCb experiment uses 

CatBoost algorithm to classify the particle identification (PID) for their detectors. The 

preliminary results from 60 observable features in LHCb systems compare between 

CatBoost, deep neural network (DNN), Flat 4d and baseline (ProbNN) demonstrates 

that CatBoost and DNN models have shown good performance compare to another

2



algorithm. In other work by [16], CatBoost and DNN also outperform the ProbNN 

model for the study of p-vs-K  pair.

1.2 Problem Statement

The main issue for this high sensitivities detection at COMET is that the truth 

level data from simulation should have very high statistics. The COMET collaboration 

updated their Monte Carlo (MC) simulation file. The gap year to move from MC4 to 

MC5 is 2 years and there are a lot of changes in MC5 especially geometry updates 

and the method of the simulation. The present MC5 file uses combinations of pre-built 

physics processes registered in Geant4 and additional custom physics models based on 

the latest experimental data. The generated file described all relevant physics processes 

and thus produced many other particles mark with their ID number. Furthermore, 

the low energy physics involving neutrons and other hadronic scattering given by the 

QGSP_BERT_HP program is the best accuracy for the COMET experiment to improve 

low-energy electromagnetic interactions [17]. The major source of background in 

COMET Phase-I is muon nuclear capture in aluminium. The AlCap experiment have 

been discussed about the resulting spectra from this process [18]. The charged particle 

emission from nuclear muon capture on aluminium at high energies (E > 40 MeV) 

[19]. This is too high for COMET. Whereas at low energies is only to know for muonic 

silicon [20]. The rate of neutrons is known [21], but the spectrum is undefined. The 

rates and energies of photons, X-ray and gamma ray are known. However, there are 

huge uncertainties on the gamma ray intensities [22]. The proton emission frequency 

and spectrum from AlCap experiment implemented into the custom stopped muon 

physics model. The Geant4 uses a Bertini cascade to model this process and resulting 

roughly 20% of proton emission of all captured muons. Whilst the AlCap predicted a 

much lower rate of proton emission about 3%. Obviously, the spectrum measured by 

Bertini cascade is more energetic than the spectrum measured by AlCap. Hence, MC5 

has higher the total number proton on target (POT) is higher than MC4. This can be 

summarized in the Table 1.1 :

Secondly, the scheduled event for neutrinoless muon to electron conversion 

is quite high since the used muon intensity is about 1011 muons/s that is about 105
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Table 1.1: Summary of MC4o and MC5.

MC4o MC5
Simulating particles
from the Pion
Production Target Simulation is
into the Muon split into two

Simulation Transport or parts a) upstream
Detector Solenoid (Pion Production Target)
sections is and b)
recorded so that downstream (CyDet).
it can be
resampled later.

Resampling Yes No
Phase-I

No YesSampling World
Physic list QGSP_BERT_HP
Total proton 
on target (POT) 500,000,000 990,677,775

POT per 
bunch 16,000,000 8,000,000

order higher than the simulated events. Machine learning encompasses automatic 

computing procedures based on logical or binary operations that learn a task from 

a series of examples through a process of interference and model fitting [25, 26]. In 

this study, supervised machine learning is used on MC5’s electron signal to classify 

the backgrounds and electron signal. The CatBoost is a third-party package of GBDTs 

algorithms like XGBoost and LightGBM that reported up-to-date comparison of state- 

of-art classification algorithms by Zhang et al. [27]. The implementation of oblivious 

decision trees in Catboost makes them effective for feature selection despite other 

restrictions applied in the CatBoost. The factual difference between the oblivious 

decision tree and a regular decision tree is vital to minimize the overall subset of input 

attributes. The previous work of the CDC track reconstruction consists of three main 

stages: a) local filtering, b) shape recognition and c) track filtering. In this research, 

the track reconstruction is only focused on the local filtering by local and neighbouring 

classification tasks. The local filtering is used as many features as possible to build a 

classifier in order to select signal hits.
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1.3 Objectives of Study

The objectives of the research are as follows:

i. To determine estimate trigger acceptance of signal and background and their

occupancy.

ii. To determine local and neighbor features based on local detector information

from ICEDUST simulation.

iii. To evaluate the overall performance of the neutrinoless muon to electron decay

signal with background using CatBoost algorithm.

1.4 Scope of Study

The present work uses the latest MC5 file from the monte Carlo simulation 

exclusive for the COMET experiment available in the IN2P3 cluster. The current 

MC5 file consists of two parts which are MC5A01 for upstream (simulation before 

interaction with the muon stopping target (MST)) and MC5A02 for downstream 

(simulation upon interaction with MST and beyond). Further details related to the 

MC5 file will be discussed in the section 2.3.9. The current study focuses on research 

in the CyDet detector region of COMET Phase-I. Thus MC5A02 file is used for the 

present analysis.

The ICEDUST simulation is started with GEANT4 simulation through SimG4 

by giving MC5A02 as input in this simulation. In the SimHitMerger phase, the number 

of POT per bunch is merged to 8 x 106 and the bunch separation between bunches is 

set to 1170 ns based on COMET TDR. Thus the number of muons stopped in the 

Al disk per POT event is calculated and the effect of bunch width of proton beam, 

Bw on stopped muons, CTH and CDC timings. The output of SimHitMerger is feed 

to SimDetectorResponse. At this phase, the hits in the CTH and CDC detectors are 

calibrated like real measurements. The outputs from this simulation are studied such 

as drift time of CDC, the overflow rates in CTH and CDC and their causes, the trigger 

of acceptance signal and background and their occupancies are determined.
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The pre-processing data is significant. The signal and background are 

defined. Afterward, the data extraction is performed to extract data from detector 

response simulation and data sanitization is required to remove irrelevant information. 

The optimization of CTH and CDC samples are optimized according to detector 

information such as energy deposited in the detector and the timing of trigger window. 

The feature selection and calculation are performed. These create the 4 of local features 

and the other 4 of neighbor features.

Since this is supervised machine learning, the background and signal samples 

are prepared by providing local and neighbor features. The samples are split into 

60% of training set and 40% testing set. The CatBoost classifier is used and the 

hyperparameters are optimized such as learning rate, depth of tree, number of trees 

and type of loss function. The classification between electron signals and backgrounds 

is done using supervised machine learning through the CatBoost algorithm. The 

performances of CatBoost and features evaluation are evaluated through classification 

outputs, confusion matrix, ROC and feature importance. From the ROC, the 

optimization the trade-off between background rejection efficiency and signal retention 

efficiency are determined using G-mean. The optimal background rejection efficiency 

and signal retention efficiency are determined.

1.5 Significance of Study

The first physics run of COMET Phase-I is expected in March 2023. Estimation 

by simulation is necessary before the real experiment is carried out to achieve the 

desired single event sensitivity (SES). The success of the COMET experiment will 

open new opportunities to physics beyond SM, where a positive result for this 

measurement would be a Nobel-prize level discovery. While the absence of the CLFV 

signal is also a high-impact result, COMET is improving on the current sensitivity by a 

factor of 10,000 from the SINDRUM-II experiment at PSI, Switzerland. Furthermore, 

the observation from charged lepton flavor violation through this neutrinoless muon 

to electron decay can confirm the neutrino mixing postulates in Kobayashi-Maskawa’s 

prediction. The construction of the COMET facility in J-PARC could become the hub 

of high energy physics for nuclear and particle physics and other related fields.
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Machine-learning approaches for data analysis in particle physics experiment 

has been widely used due to expensive computational cost. However, big data 

analysis is needed to predict particle classification by giving target variables either 

"0"(background) or 'T'(signal) to save more time and train larger datasets. Malaysia 

is currently in the midst of its own Data Analytics (DA) revolution. Through 

governmental policy, it supports both academic research and industrial avenues to 

increase Malaysia’s capacity for DA and High-Performance Computing (HPC).

1.6 Thesis Outline

This research report is organized as following. The background study about 

the MC5 and CatBoost algorithm are proposed for tracking reconstruction of muon 

to electron conversion. The literature review is focusing on COMET Phase-I and its 

current status, the official software for COMET experiment which is called ICEDUST, 

the detail about MC5 productions, introduce the fundamental of machine learning and 

Gradient Boosted Decision Trees algorithm (GBDT), which is CatBoost algorithm, 

and the overview of previous work using MC4o production in order to reconstruct 

the track muon to electron conversion using local and neighbouring features. Next, 

the methodology about ICEDUST simulation from initial proton on target through 

SimG4, followed by merging the event into bunch-like form in the SimHitMerger, and 

the simulation of detector response via SimDetectorResponse to produce mimic like 

experimental data. Then the implementation of CatBoost algorithm for the tracking 

study for classification between signal hits and background hits using local and 

neighbouring features. Furthermore, the results of simulation are discussed about the 

muons stopping target distribution, bunch width effect, detector hits timing, analysis 

of timing, triggering and tracking cuts, and the performance of CatBoost algorithm 

is evaluated for tracking reconstruction of muon to electron conversion for COMET 

Phase-I. The conclusion have been summarize the thesis, restate the contributions of 

this model, limitations and recommendation in order to improve this model.
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