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ABSTRACT 

Coal remains a major source of energy in the power generation industry in 

Malaysia. However, coal usage results in serious ecological and environmental 

problems due to greenhouse gas (GHG) emissions. One of the main objectives of the 

coal combustion research is to develop techniques that may help power plant operators 

(PPO) to utilize coal cleanly and efficiently by adopting good coal blending practices. 

Currently, the emission mitigation and boiler cleanliness measures through the coal 

blending process are focusing more on laboratory-scale tests and not utilizing the 

actual plant data and behavior. This study aims to evaluate the effectiveness of the 

developed Coal Combustion Prediction Analysis Tool (CPAT) as a method to facilitate 

the PPO in predicting the impact of the individual or blended coal quality. It provides 

early predictions on the boiler combustion performance related to the coal quality and 

assists the PPO in preparing for the boiler process control optimization. The CPAT 

combustion model is related to the calculations of the boiler performance and 

emissions while the CPAT boiler cleanliness model is to compute the slagging and 

fouling indices. The former model was tested and validated using the actual plant data 

with the results showing that all the models have mean percentage errors of less than 

1%, implying that the combustion model is accurate. The latter model was verified 

with the actual boiler process parameters and actual site observation for the slagging 

behaviour. The results show that it gives accurate indications of the slagging and 

fouling tendencies and helps the PPO to strategize the coal combustion plan. The effect 

of the coal blending ratios to the power plant performance and SOx emission is 

evaluated and the result shows that the CPAT is able to recommend the optimum 

blending ratio for optimum plant performance and SOx emission. Thus, the proposed 

CPAT is able to provide accurate predictions for the SOx emission to ensure SOx 

emissions of below 500 mg/Nm3 and reduce the overall auxiliary power consumption 

by 12 MWh, thereby improving the overall power plant efficiency and establishing the 

optimal operational regime. The optimization of coal blending helps to improve the 

power plant efficiency as well as reduce the GHG emissions for a boiler in a coal fired 

power plant (CFPP) in Malaysia. 
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ABSTRAK 

Arang batu adalah sumber tenaga utama dalam industri penjanaan kuasa di 

Malaysia. Walau bagaimanapun, penggunaan arang batu mengakibatkan masalah 

ekologi dan persekitaran yang serius disebabkan oleh pelepasan gas rumah hijau 

(GHG). Salah satu objektif utama kajian pembakaran arang batu adalah untuk 

mengembangkan teknik yang akan membantu pengusaha loji janakuasa (PPO) 

menggunakan arang batu dengan bersih dan cekap melalui amalan adunan arang batu 

yang baik. Pada masa ini, langkah mengurangkan pelepasan dan menjaga kebersihan 

dandang melalui proses adunan arang batu lebih terfokus kepada pengujian skala 

makmal dan tidak menggunakan data dan operasi loji janakuasa sebenar. Penyelidikan 

ini menilai keberkesanan Alat Analisis Ramalan Pembakaran Arang Batu (CPAT) 

sebagai satu kaedah untuk memudahkan PPO meramal kesan kualiti arang batu 

berbentuk individu atau adunan. Ia memberikan ramalan awal mengenai prestasi 

pembakaran dandang yang berkaitan dengan kualiti arang batu dan membantu PPO 

dalam menyediakan kawalan proses dandang yang optimum. Model pembakaran 

CPAT terdiri daripada pengiraan prestasi dan pelepasan GHG sementara model 

kebersihan dandang CPAT dibina untuk menentukan indeks pembentukan sanga dan 

penyisikan. Model CPAT yang pertama telah diuji dan disahkan menggunakan data 

loji sebenar dengan hasilnya menunjukkan bahawa semua model mempunyai nilai 

peratusan ralat purata di bawah 1%. Ini membuktikan bahawa model pembakaran 

adalah tepat. Model CPAT kedua pula telah disahkan dengan parameter proses 

dandang sebenar dan pemerhatian tapak sebenar bagi pembentukan sanga. Hasilnya 

menunjukkan bahawa model kebersihan dandang memberikan petunjuk yang tepat 

mengenai kecenderungan pembentukan sanga dan penyisikan. Maklumat ini akan 

membantu PPO menyusun strategi pembakaran arang batu. Pengaruh nisbah adunan 

arang batu terhadap prestasi loji janakuasa dan pelepasan SOx dinilai dan hasilnya 

menunjukkan bahawa CPAT boleh digunakan untuk meramal nisbah adunan optimum 

bagi prestasi loji janakuasa dan pelepasan SOx yang optimum. Dengan demikian, 

CPAT yang disarankan dapat meramalkan dengan tepat pelepasan SOx untuk 

memastikan bahawa pelepasan SOx adalah di bawah 500 mg/Nm3 dan mengurangkan 

penggunaan kuasa sokongan keseluruhan sebanyak 12 MWh, serta meningkatkan 

kecekapan loji secara keseluruhan dan mewujudkan langkah operasi yang optimum. 

Adunan arang batu yang optimum membantu meningkatkan kecekapan loji janakuasa 

serta mengurangkan pelepasan GHG bagi dandang di dalam loji janakuasa arang batu 

(CFPP) di Malaysia. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background and Motivation 

Coal remains a major source of energy in the power generation industry in 

Malaysia. Based on data from Malaysia’s Energy Commission (EC), the total installed 

generation capacity in 2017 was 22,919 MW from which 53% was from the coal-fired 

power plants (CFPPs), 40% from gas-fired power plants, and the remaining 8% from 

renewable energy and hydropower [1]. According to the Energy Commission’s 5-year 

projection from 2018 to 2022, CFPPs will remain as the main provider of electric 

power in Malaysia. The average growth rate for coal-fired power generation is around 

1.8% per year. Based on this scenario, it is projected that the coal combustion emission 

in the atmosphere will increase proportionally to the growth rate of the CFPPs. 

Although coal will remain relevant in the power generation industry of this country, 

the industry players need to ensure that necessary measures to control the emissions 

are implemented in accordance with the government’s push towards cleaner energy 

production. The solutions may vary from increasing the thermal power plant’s 

efficiency, installation of new technology for emission reduction, and introduction of 

renewable energy. 

Coal combustion brings on serious ecological and environmental problems as 

the main constituents of the emitted flue gases are carbon dioxide (CO2), sulphur 

dioxide (SO2), nitrogen oxide (NOx), carbon monoxide (CO), and particulate matter 

(PM); which are known to be the main pollutants contributing to the global warming 

[2]. Optimum coal combustion is essential in CFPPs because it results in higher 

efficiency and reduces the harmful emissions in the flue gases. One of the main 

objectives in coal combustion research is to develop techniques to help the power plant 

operators (PPO) to utilize coal cleanly and efficiently. The emission of CO2, SOx, NOx, 

CO, and PM from coal combustion is an important factor affecting the operation of 
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power plants. The quantum of these emissions is mainly determined by the coal 

properties, coal preparation such as coal fineness and blending ratio, and also boiler 

design. 

One of the important aspects to consider in designing a CFPP is the coal 

quality. The boiler design will need to accommodate a certain range of coal quality 

parameters. The current trend of deteriorating coal quality has many adverse effects 

on the performance of a CFPP. The main consequence is a decrease in the combustion 

performance that will contribute to the increased slagging and fouling issues in the 

boiler. This will then affect the boiler cleanliness, rendering the boiler less efficient 

and ultimately contributes to higher emissions.  

Another contributing factor to the emissions from coal combustion is the boiler 

cleanliness and coal properties. PPO are able to optimize the boiler combustion and 

boiler cleanliness by managing the slagging and fouling inside the boiler to maximize 

the heat absorption. This is achievable through clean boiler tube surfaces. Slagging 

and fouling indices for every coal type can be used by the PPO as early indicators for 

the overall coal combustion behavior. These indicators can be used by the PPO to 

predict the impact of individual or blended coal quality on the power plant 

performance. It will give an early indication of the boiler combustion performance 

related to the coal quality and surely will assist the PPO in preparing for any additional 

boiler process controls such as the sootblower strategy, mill operation set point, boiler 

excess air control, and burner control through tilting or auxiliary air dampers 

adjustment.  

The power generation industry is the main source of coal combustion emissions 

compared to other industries. Therefore, the development of a prediction tool is crucial 

to the boiler cleanliness and towards quantifying the emissions and establishing a real 

and measurable mitigation plan. Reducing the emissions from the CFPPs is achievable 

by improving the combustion efficiency [2]. The improved efficiency strategy can be 

achieved through either optimizing the power plant operating conditions such as the 

boiler cleanliness or minimizing the losses within the system. Applying these two 

approaches can lead to improved power plant efficiency by maximizing the energy 
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absorbed from each grain of the coal consumed, which results in lower power plant 

emissions.  

By considering these facts, the present study is designed to find the correlations 

for the prediction of the boiler cleanliness, thus improving the overall combustion 

efficiency and emissions. This study is also aimed at determining the optimal operation 

regime including the optimization of coal blending that will help to improve the power 

plant efficiency as well as reducing the coal combustion emissions.  

1.2 Problem Statement 

In recent years, the quality of coal used in one of the CFPPs located in southern 

Malaysia has been observed to have greatly deteriorated in terms of its gross calorific 

value (GCV), total moisture content (TM), and ash content. The CFPP database shows 

that the GCV level has decreased while the TM and ash content have increased. These 

degradations have a significant impact on the overall efficiency of the boiler. Plant 

capacity has been significantly affected by the high moisture content, where a higher 

primary air volume is needed to ensure that the moisture level is controlled to its 

specified value. This will further increase the auxiliary power consumption of the plant 

and reduce the plant efficiency. Furthermore, the utilization of individual coal types 

with the deteriorated quality can potentially lead to the power plant process upsets such 

as the main steam temperature (MST) and main steam pressure (MSP) fluctuations. 

Environmentally, the high ash and sulphur contents will affect the fabric filter 

(FF) and flue gas desulphurization (FGD) performance, thus making it difficult for the 

plant to operate within the specified environmental limits. Changes in the ash 

parameters such as sodium oxide (Na2O), potassium oxide (K2O), iron oxide (Fe2O3), 

calcium oxide (CaO), alumina oxide (Al2O3), silica oxide (SiO3) etc. will also affect 

the boiler cleanliness, resulting in the boiler operation upset, thereby affecting the 

emissions. These parameters contribute to the slagging and fouling in the boiler 

furnace, which in turn directly affects the boiler cleanliness and boiler efficiency. One 

of the options to tackle this coal quality issue is through the coal blending process. 
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This option will help to improve the combustion efficiency and heat transfer as well 

as reduce emissions [3]. Considering these facts, the utilization of individual coal types 

may not be optimal for the plant operation, as each of the coal parameters has its own 

impact on the plant process and plant equipment performance. 

The capability to handle diverse types of coal quality will greatly improve the 

situation. This issue needs to be tackled by considering and implementing appropriate 

solutions such as the plant improvement initiatives for the combustion system. Due to 

the changing market dynamics and regulations in the power sector, more key players 

are now sourcing coal from different mines and suppliers with the goal of minimizing 

the production costs. Such varied sourcing obviously leads to the varying coal qualities 

and coal types. Since attributes such as GCV, TM, ash content, volatile matter (VM), 

sulphur content, hardgrove grindability index (HGI), and other ash parameters such as 

Fe2O3, CaO, SiO2, Al2O3, Na2O, K2O, etc. have great impact on the combustion process 

and boiler cleanliness, it is important to monitor and utilize this information adequately 

in an effort to improve the combustion efficiency.  

Even with this scenario, coal will remain relevant to the power industry for 

many years to come. However, getting good quality coal economically has become a 

major challenge. One of the options that may help PPO to achieve the objective of 

getting the correct coal quality for the boiler operation is by coal blending. The 

optimum blending ratio improves the coal combustion behavior and leads to 

improvements in the plant efficiency as well as reduction of emissions in the flue 

gases. Subsequently, PPO faces an uphill challenge to ensure that the desired power 

output is achieved and, at the same time, to maintain a strict emission standard at all 

times. 

An appropriate coal combustion analysis process remains a challenge for the 

PPO due to the lack of an effective prediction analysis tool. Several methodologies 

have been implemented in the power plants to assist the PPO, including the Reliability-

Based Inspection (RBI) and Root Cause Analysis (RCA). However, these tools’ 

primary focus is on the after event analysis or post incident investigation. Currently, 

there are no specific analytical tools for the PPO to predict the power plant process 
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behavior before commencing the actual operation especially for the coal combustion 

in ultra-supercritical boilers. 

Due to the unavailability of a prediction analysis tool for the combustion 

analysis at the power plants, PPO have not been able to determine the correct coal 

quality prior to actual consumption at the boiler. As such, this thesis proposes a coal 

combustion prediction analysis tool to be used by PPO for predicting the boiler 

cleanliness and emissions by determining the optimum coal quality for the boiler 

operation. This tool is a practical technique to predict and quantify the measurable 

mitigation action to improve the plant efficiency, thereby reducing the undesirable 

emissions. Its focus is on the coal blending optimization to predict the coal requirement 

that will result in the best boiler cleanliness in terms of slagging and fouling indices. 

This will in turn result in the increased power plant efficiency and reduced emissions. 

Indirectly, this will lead to a reduction in the overall fuel consumption and lower the 

production of greenhouse gases (GHG).  

1.3 Research Objectives 

Three research objectives have been identified based on the research 

background and identified research gaps: 

i. To establish and validate a combustion model consisting of the boiler 

performance, milling performance, and SOx emission through the Coal 

Combustion Prediction Analysis Tool (CPAT) for optimum plant operation. 

ii. To develop and verify the boiler cleanliness model through slagging and 

fouling indices as well as the boiler operation parameters for single and blended 

coals. 

iii. To investigate and evaluate the effect of the coal quality with different blending 

ratios on the plant performance parameters and SOx emissions using the CPAT. 
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1.4 Research Scope 

The research scope shall be based on the data acquired from a 1000 MW ultra-

supercritical CFPP located in southern Malaysia where the main parameters of interest 

are the boiler cleanliness related to the slagging and fouling indices, SOx emissions, 

and boiler performance parameters. A coal combustion prediction analysis model shall 

be developed using Microsoft Excel software with the assumption that the ultra-

supercritical boiler and other processes are in normal operating conditions. The data 

acquired shall be based on the average ten-minute intervals from the plant performance 

calculation system and the Certificate of Analysis (COA) of the coal received at the 

power plant. The limited coal blending ratios due to the unavailability of a coal 

blending facility in the power plant will be a potential challenge for the research.  

1.5 Research Significance and Contributions 

One of the elements in the Malaysian New Economic Model (NEM) is to lead 

the global green revolution. In December 2009, Malaysia’s Prime Minister announced 

in Copenhagen that Malaysia intends to reduce its GHG emission intensity of the GDP 

by 45% in 2030 relative to the emission intensity of the GDP in 2005. Malaysia is 

actively involved in the climate change process as the country needs to meet the 

obligations as a signatory party to the United Nations Framework Convention on 

Climate Change (UNFCCC).  Malaysia gave a commitment to this initiative by signing 

the UNFCCC on 9th June 1993 and later, the Kyoto Protocol on 12th March 1999, and 

Paris Agreement on 16th November 2016.  

The focus of this research is to develop a combustion prediction analysis tool 

(CPAT) consisting of the coal combustion and boiler cleanliness calculation models 

to improve the overall plant performance, combustion efficiency, and emissions. This 

research has been implemented at the Tanjung Bin Energy Power Plant, a 1000 MW 

Ultra-Supercritical Coal-Fired Power Plant located in the Iskandar Malaysia region, 

Johor. The Iskandar Malaysia region is the first in the nation to adopt the Global 

Protocol for the Community-Scale Greenhouse Gas Emission Inventories to account 
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for its GHG emissions. The power plant consists of various complex process 

equipment such as the boiler, steam turbine, generator, and emission control systems 

such as the fabric filter (FF) and flue gas desulphurization (FGD) system. The 

generated electricity by the Tanjung Bin Energy Power Plant is supplied to the national 

grid and then distributed to the Malaysian peninsula via a 500-kV line. 

Thus, the proposed research thesis aims to solve the real-world problems in the 

ultra-supercritical CFPPs by means of introducing and implementing smart 

innovations that will result in more efficient and enhanced power plant operations. One 

of the intended results is the reduction of flue gas emissions by the prediction of boiler 

cleanliness that will also indirectly improve the plant efficiency. This can be achieved 

by providing better input to the PPO regarding the combustion characteristics and 

emissions. This is positively in line with Malaysia’s new economic model (NEM) 

planned for 2011-2020. 

1.6 Thesis Outline 

This thesis is organised into five chapters. Chapter 1 discusses the introduction 

of the thesis related to the research background and motivation, problem statements, 

research objectives, scope, research significance, and contributions. In Chapter 2, the 

literature review is comprehensively explored by looking at the emissions from coal 

combustion, coal quality, impact of slagging and fouling on boiler cleanliness, and 

coal blending practices and implementation in power plants. Based on the review, the 

identified coal parameters that have a significant impact on the boiler cleanliness and 

affect the emissions will be discussed in detail in this research.  

Navigating further in this thesis, Chapter 3 describes the research methodology 

that first elaborates the description of a power plant and the coal quality verification 

process. The plant performance calculation system setup for the purpose of acquiring 

the plant process data is adequately explained. Next, the Coal Combustion Prediction 

Analysis Tool (CPAT) setup comprising the combustion and boiler cleanliness models 

will be explained. Chapter 4 presents the results and discussions of the undertaken 
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research. In this section, the accuracy of the data will be proven and validated with a 

set of reference to the proposed coal combustion prediction analysis and actual plant 

operation data. The chapter then explains the prediction of the slagging and fouling 

tendencies and their impact on the plant operating parameters. The effect of the coal 

quality with different blending ratios on the plant performance and SOx emissions will 

then be investigated against the actual plant operation data. The results produced by 

this analysis will validate the CPAT in terms of its reliability and accuracy, thereby 

making it applicable as a useful tool for the PPO to predict the boiler cleanliness and 

emissions as well as for improving the boiler efficiency.  

Finally, Chapter 5 concludes the research with its findings that reiterate and 

support the research objectives. This is followed by the suggestions for improvement 

in future works that include the implementation of an on-line coal combustion 

optimizer in the power plants that may improve their efficiency. 
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