COAL COMBUSTION PREDICTION ANALYSIS TOOL FOR ULTRA SUPERCRITICAL THERMAL POWER PLANT

MOHAMMAD ZAHARI SUKIMI BIN MAT ZAID

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Mechanical Engineering)

> School of Mechanical Engineering Faculty of Engineering Universiti Teknologi Malaysia

> > APRIL 2021

DEDICATION

Dedicated to my beloved family especially my wife Nurdiana Abdullah and my father and mother, my brothers and sisters....

ACKNOWLEDGEMENT

Thanks to ALLAH swt, the Most Gracious, Most Merciful and Most Bountiful who has given me the courage and patience to accomplish this research work. Without His help and mercy, this would not have come into reality.

I would like to deeply express my gratitude for the help and support from my thesis supervisor, Prof. Dr. Mazlan Abdul Wahid and co-supervisor, Prof. Dr. Musa Mailah on their fascinating guidance, encouragement and valuable comments throughout the research work. I was fortunate to be one of their graduate students. Their experience and insight gave me great profit for carving my future career.

ABSTRACT

Coal remains a major source of energy in the power generation industry in Malaysia. However, coal usage results in serious ecological and environmental problems due to greenhouse gas (GHG) emissions. One of the main objectives of the coal combustion research is to develop techniques that may help power plant operators (PPO) to utilize coal cleanly and efficiently by adopting good coal blending practices. Currently, the emission mitigation and boiler cleanliness measures through the coal blending process are focusing more on laboratory-scale tests and not utilizing the actual plant data and behavior. This study aims to evaluate the effectiveness of the developed Coal Combustion Prediction Analysis Tool (CPAT) as a method to facilitate the PPO in predicting the impact of the individual or blended coal quality. It provides early predictions on the boiler combustion performance related to the coal quality and assists the PPO in preparing for the boiler process control optimization. The CPAT combustion model is related to the calculations of the boiler performance and emissions while the CPAT boiler cleanliness model is to compute the slagging and fouling indices. The former model was tested and validated using the actual plant data with the results showing that all the models have mean percentage errors of less than 1%, implying that the combustion model is accurate. The latter model was verified with the actual boiler process parameters and actual site observation for the slagging behaviour. The results show that it gives accurate indications of the slagging and fouling tendencies and helps the PPO to strategize the coal combustion plan. The effect of the coal blending ratios to the power plant performance and SO_x emission is evaluated and the result shows that the CPAT is able to recommend the optimum blending ratio for optimum plant performance and SO_x emission. Thus, the proposed CPAT is able to provide accurate predictions for the SOx emission to ensure SO_x emissions of below 500 mg/Nm³ and reduce the overall auxiliary power consumption by 12 MWh, thereby improving the overall power plant efficiency and establishing the optimal operational regime. The optimization of coal blending helps to improve the power plant efficiency as well as reduce the GHG emissions for a boiler in a coal fired power plant (CFPP) in Malaysia.

ABSTRAK

Arang batu adalah sumber tenaga utama dalam industri penjanaan kuasa di Malaysia. Walau bagaimanapun, penggunaan arang batu mengakibatkan masalah ekologi dan persekitaran yang serius disebabkan oleh pelepasan gas rumah hijau (GHG). Salah satu objektif utama kajian pembakaran arang batu adalah untuk mengembangkan teknik yang akan membantu pengusaha loji janakuasa (PPO) menggunakan arang batu dengan bersih dan cekap melalui amalan adunan arang batu yang baik. Pada masa ini, langkah mengurangkan pelepasan dan menjaga kebersihan dandang melalui proses adunan arang batu lebih terfokus kepada pengujian skala makmal dan tidak menggunakan data dan operasi loji janakuasa sebenar. Penyelidikan ini menilai keberkesanan Alat Analisis Ramalan Pembakaran Arang Batu (CPAT) sebagai satu kaedah untuk memudahkan PPO meramal kesan kualiti arang batu berbentuk individu atau adunan. Ia memberikan ramalan awal mengenai prestasi pembakaran dandang yang berkaitan dengan kualiti arang batu dan membantu PPO dalam menyediakan kawalan proses dandang yang optimum. Model pembakaran CPAT terdiri daripada pengiraan prestasi dan pelepasan GHG sementara model kebersihan dandang CPAT dibina untuk menentukan indeks pembentukan sanga dan penyisikan. Model CPAT yang pertama telah diuji dan disahkan menggunakan data loji sebenar dengan hasilnya menunjukkan bahawa semua model mempunyai nilai peratusan ralat purata di bawah 1%. Ini membuktikan bahawa model pembakaran adalah tepat. Model CPAT kedua pula telah disahkan dengan parameter proses dandang sebenar dan pemerhatian tapak sebenar bagi pembentukan sanga. Hasilnya menunjukkan bahawa model kebersihan dandang memberikan petunjuk yang tepat mengenai kecenderungan pembentukan sanga dan penyisikan. Maklumat ini akan membantu PPO menyusun strategi pembakaran arang batu. Pengaruh nisbah adunan arang batu terhadap prestasi loji janakuasa dan pelepasan SO_x dinilai dan hasilnya menunjukkan bahawa CPAT boleh digunakan untuk meramal nisbah adunan optimum bagi prestasi loji janakuasa dan pelepasan SO_x yang optimum. Dengan demikian, CPAT yang disarankan dapat meramalkan dengan tepat pelepasan SO_x untuk memastikan bahawa pelepasan SO_x adalah di bawah 500 mg/Nm³ dan mengurangkan penggunaan kuasa sokongan keseluruhan sebanyak 12 MWh, serta meningkatkan kecekapan loji secara keseluruhan dan mewujudkan langkah operasi yang optimum. Adunan arang batu yang optimum membantu meningkatkan kecekapan loji janakuasa serta mengurangkan pelepasan GHG bagi dandang di dalam loji janakuasa arang batu (CFPP) di Malaysia.

TABLE OF CONTENTS

TITLE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	xvii
LIST OF SYMBOLS	xxi
LIST OF APPENDICES	xxiii

CHAPTER 1	INTRODUCTION	1
1.1	Research Background and Motivation	1
1.2	Problem Statement	3
1.3	Research Objectives	5
1.4	Research Scope	6
1.5	Research Significance and Contributions	6
1.6	Thesis Outline	7
CHAPTER 2	LITERATURE REVIEW	9
2.1	Introduction	9
2.2	Coal Blending Practices: Past and Present	10
2.3	Coal-Fired Power Plant and Emissions Issues	20
2.4	Slagging and Fouling in Coal-Fired Power Plant	26
2.5	Research Gaps	32
CHAPTER 3	RESEARCH METHODOLOGY	35
3.1	Introduction	35

3.2	Resear	rch Methodology	35
3.3	The Co	oal-Fired Power Plant	38
3.4	Coal S	Supply and Delivery	44
3.5	Coal Q	Quality Verification and Coal Analysis	49
3.6	Boiler	Efficiency Heat Loss Calculations	53
3.7	Establ Systen	ishment of the Plant Performance Calculation	63
	3.7.1	Boiler Efficiency Calculation Setup	64
	3.7.2	PI AF Attributes	65
	3.7.3	PI AF Element	66
	3.7.4	PI Point	67
	3.7.5	Archive Data for Trending	67
	3.7.6	Boiler Efficiency Calculation Unit Conversion	69
3.8	Instru	mentation System	70
3.9		ustion Model Establishment through Coal ustion Prediction Analysis Tool (CPAT)	71
	3.9.1	Conversion	75
	3.9.2	Coal Database	75
	3.9.3	Blended Coal	77
	3.9.4	Selected Coal	78
	3.9.5	Detailed Properties	81
	3.9.6	Plant Details	82
	3.9.7	Boiler Cleanliness Calculation	83
	3.9.8	Boiler Performance and Emissions Calculation	85
	3.9.9	Boiler Efficiency Calculation	86
	3.9.10	Stoichiometric Calculation	87
	3.9.11	Analysis of Result	87
3.10	CPAT	Combustion Model Validation Method	89
	3.10.1	Root Mean Square Error (RMSE)	90
	3.10.2	Mean Percentage Error	90
3.11	Slaggi	ng and Fouling Formation	91
	3.11.1	Boiler Cleanliness Model Verification Method	92

3.12			Blending Ratios to Power Plant erification Method	94
CHAPTER 4	RESU	JLT AND	DISCUSSION	95
4.1	Introd	luction		95
4.2			g and Plotting from the Plant lculation System	95
4.3	Comb	oustion Mo	odel Validation	100
	4.3.1	Case Stu	dy 1: 100% Enviro Coal	101
	4.3.2	Case Stu	dy 2: 100% Pipit Coal	105
	4.3.3	Case Stu	dy 3: Blended Pipit-Enviro coal	110
	4.3.4	Case Stu	dy 4: Blended Enviro-Kayan coal	114
4.4	Verifi	cation of t	he Boiler Cleanliness Model	119
	4.4.1	Case Stu	dy 1: 100% Enviro Coal	119
		4.4.1.1	Slagging and Fouling Indication Process Parameters	121
		4.4.1.2	Slagging and Heat Transfer Observations	127
	4.4.2	Case Stu	dy 2: 100% Pipit Coal	129
		4.4.2.1	Parameters of Slagging and Fouling Indication Process	132
		4.4.2.2	Slagging and Heat Transfer Observations	136
	4.4.3	Case Stu	dy 3: Blended Pipit-Enviro coal	139
		4.4.3.1	Slagging and Fouling Indication Process Parameters	141
		4.4.3.2	Slagging and Heat Transfer Observations	146
	4.4.4	Case Stu	dy 4: Blended Enviro-Kayan Coal	148
		4.4.4.1	Slagging and Fouling Indication Process Parameters	151
		4.4.4.2	Slagging and Heat Transfer Observations	155
4.5	Effect	of Coal E	Blending Ratios	157
	4.5.1	Case Stu	dy 1: Blended Enviro and Pipit	160
	4.5.2	Case Stu	dy 2: Blended Enviro and Melawan	161

	4.5.3	Case Study 3: Blended Melawan and Kayan	163
	4.5.4	Evaluation of the blending ratio and plant performance parameters	164
	4.5.5	Evaluation of Blending Ratio and SO _x Emissions	168
4.6	Summ	nary of Contributions	169
CHAPTER 5	CON	CLUSION AND RECOMMENDATIONS	175
CHAPTER 5 5.1	CON Concl		175 175
	Concl		
5.1	Concl	usion	175
5.1	Concl	usion	175

265

LIST OF PUBLICATIONS

2	٢.

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 3.1	Plant technical data	38
Table 3.2	Coal supply plan	45
Table 3.3	Impact of coal quality on power plant	48
Table 3.4	Coal rejection limit	49
Table 3.5	Type of coal analysis	51
Table 3.6	Coal analysis description	52
Table 3.7	Identified parameters of the power plant	64
Table 3.8	Conversion calculation	69
Table 3.9	Specifications of the sensors	71
Table 3.10	Tab description in CPAT	74
Table 3.11	Conversion table	76
Table 3.12	Coal database	77
Table 3.13	Blended coal tab	78
Table 3.14	Selected individual coal	79
Table 3.15	Selected blended coal	80
Table 3.16	Detailed properties	81
Table 3.17	Plant design data	82
Table 3.18	Table of the environmental data	83
Table 3.19	Slagging indices	84
Table 3.20	Slagging aggregate score judgement	85
Table 3.21	Fouling indices	85
Table 3.22	Fouling aggregate score judgement	85
Table 3.23	Stoichiometric calculation setup	87
Table 3.24	Identified parameters for slagging and fouling verification	93
Table 3.25	Identified parameters for blending ratios verification	94

Table 4.1	Identified parameters of the power plant	96
Table 4.2	Error analysis of Case Study 1	101
Table 4.3	Error analysis of Case Study 2	106
Table 4.4	Error analysis of Case Study 3	110
Table 4.5	Error analysis of Case Study 4	115
Table 4.6	Coal quality for Case Study 1:100% Enviro	120
Table 4.7	Slagging indices for 100% Enviro coal	121
Table 4.8	Fouling indices for 100% Enviro coal	121
Table 4.9	Boiler process data for Case Study 1	122
Table 4.10	Coal quality for Case Study 2: 100% Pipit	130
Table 4.11	Slagging indices for 100% Pipit coal	131
Table 4.12	Fouling indices for 100% Pipit coal	131
Table 4.13	Boiler process data for Case Study 2	132
Table 4.14	Coal quality of for Case Study 3: Blended Pipit-Enviro	140
Table 4.15	Slagging indices for the blended Pipit-Enviro coal	141
Table 4.16	Fouling indices for the blended Pipit-Enviro coal	141
Table 4.17	Boiler process data for Case Study 3	142
Table 4.18	Coal quality for Case Study 4: Blended Enviro-Kayan	149
Table 4.19	Slagging indices for the blended Enviro-Kayan coal	150
Table 4.20	Fouling indices for the blended Enviro-Kayan coal	150
Table 4.21	Boiler process data for Case Study 4	151
Table 4.22	Coal quality with different blending ratios	159
Table 4.23	Slagging and fouling tendencies for the blended Enviro- Pipit	160
Table 4.24	Slagging and fouling tendencies for the blended Enviro- Melawan	162
Table 4.25	Slagging and fouling tendencies for the blended Melawan-Kayan	163
Table 4.26	SO _x and CO emission for Case Study 1: 100% Enviro	169
Table 4.27	SO _x and CO emission for Case Study 4: Blended Enviro- Kayan	169

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
Figure 2.1	The coal blending process [14]	13
Figure 3.1	Research methodology flowchart	37
Figure 3.2	Various power plant processes	40
Figure 3.3	Plan view of the regenerative air preheater [125]	43
Figure 3.4	Coal verification process	50
Figure 3.5	PI AF setup overview	65
Figure 3.6	Coal properties data setup in PI AF	65
Figure 3.7	PI AF structure for the plant efficiency calculation	66
Figure 3.8	PI point data setup in PI AF	67
Figure 3.9	Data archiving from PI to Microsoft Excel	68
Figure 3.10	Data extraction setup in Microsoft Excel	68
Figure 3.11	Coal combustion predictive tool flowchart	73
Figure 3.12	Summary of the results	89
Figure 3.13	Locations of the ash deposition inside the boiler	92
Figure 4.1	Net load	96
Figure 4.2	Main steam flow	97
Figure 4.3	Final superheaters main steam temperature	98
Figure 4.4	Superheater attemperator spray flow	99
Figure 4.5	Reheater attemperator spray flow	99
Figure 4.6	Total coal flow	100
Figure 4.7	Actual versus predicted coal flows (100% Enviro)	102
Figure 4.8	Actual versus predicted primary air flows (100% Enviro)	102
Figure 4.9	Actual versus predicted MOT (100% Enviro)	103
Figure 4.10	Actual versus predicted MIT (100% Enviro)	104

Figure 4.11	Actual versus predicted boiler efficiency (100% Enviro)	104
Figure 4.12	Actual versus predicted SO _x emissions (100% Enviro)	105
Figure 4.13	Actual versus predicted coal flows (100% Pipit)	106
Figure 4.14	Actual versus predicted primary air flows (100% Pipit)	107
Figure 4.15	Actual versus predicted MOT (100% Pipit)	107
Figure 4.16	Actual vs predicted MIT (100% Pipit)	108
Figure 4.17	Actual versus predicted boiler efficiency (100% Pipit)	109
Figure 4.18	Actual versus predicted SO _x emissions (100% Pipit)	109
Figure 4.19	Actual versus predicted coal flows (blended Pipit- Enviro)	111
Figure 4.20	Actual versus predicted primary air flows (blended Pipit-Enviro)	111
Figure 4.21	Actual versus predicted MOT (blended Pipit-Enviro)	112
Figure 4.22	Actual versus predicted MIT (blended Pipit-Enviro)	113
Figure 4.23	Actual versus predicted boiler efficiency (blended Pipit-Enviro)	113
Figure 4.24	Actual versus predicted SO _x emissions (blended Pipit-Enviro)	114
Figure 4.25	Actual versus predicted coal flows (blended Enviro- Kayan)	115
Figure 4.26	Actual versus predicted primary air flows (blended Enviro-Kayan)	116
Figure 4.27	Actual versus predicted MOT (blended Enviro- Kayan)	116
Figure 4.28	Actual versus predicted MIT (blended Enviro-Kayan)	117
Figure 4.29	Actual versus predicted boiler efficiency (blended Enviro-Kayan)	118
Figure 4.30	Actual versus predicted SO _x emissions (blended Enviro-Kayan)	118
Figure 4.31	Gross and net load (MW) for Case Study 1	122

Total coal flow (t/h) for Case Study 1	123
Superheater attemperator spray flow (kg/s) for Case Study 1	124
Reheater attemperator spray flow (kg/s) for Case Study 1	124
Main steam temperature (°C) for Case Study 1	125
Hot reheat steam temperature (°C) for Case Study 1	125
Furnace, economizer, and APH gas outlet temperatures (°C) for Case Study 1	126
Furnace temperature profile for Case Study 1	127
Slag deposit observation at the furnace and superheater areas for Case Study 1	129
Gross and net loads (MW) for Case Study 2	132
Total coal flow (t/h) for Case Study 2	133
Superheater attemperator spray flow (kg/s) for Case Study 2	134
Reheater attemperator spray flow (t/h) for Case Study 2	134
Main steam temperature (°C) for Case Study 2	135
Hot reheat steam temperature (°C) for Case Study 2	135
Furnace, economizer, and APH flue gas outlet temperatures (°C) for Case Study 2	136
Furnace temperature profile for Case Study 2	137
Slag deposit observation at the furnace and superheater areas for Case Study 2	138
Gross and net loads (MW) for Case Study 3	142
Total coal flow (t/h) for Case Study 3	143
Superheater attemperator spray flow (kg/s) for Case Study 3	144
Reheater attemperator spray flow (kg/s) for Case Study 3	144
Main steam temperature (°C) for Case Study 3	145
Hot reheat steam temperature (°C) for Case Study 3	145
	Superheater attemperator spray flow (kg/s) for Case Study 1 Reheater attemperator spray flow (kg/s) for Case Study 1 Main steam temperature (°C) for Case Study 1 Hot reheat steam temperature (°C) for Case Study 1 Furnace, economizer, and APH gas outlet temperatures (°C) for Case Study 1 Slag deposit observation at the furnace and superheater areas for Case Study 1 Gross and net loads (MW) for Case Study 2 Total coal flow (t/h) for Case Study 2 Superheater attemperator spray flow (kg/s) for Case Study 2 Reheater attemperator spray flow (kg/s) for Case Study 2 Hot reheat steam temperature (°C) for Case Study 2 Furnace, economizer, and APH flue gas outlet temperatures (°C) for Case Study 2 Furnace, economizer, and APH flue gas outlet temperatures (°C) for Case Study 2 Slag deposit observation at the furnace and superheater areas for Case Study 2 Gross and net loads (MW) for Case Study 2 Slag deposit observation at the furnace and superheater areas for Case Study 2 Slag deposit observation at the furnace and superheater areas for Case Study 3 Total coal flow (t/h) for Case Study 3 Superheater attemperator spray flow (kg/s) for Case Study 3 Reheater attemperator spray flow (kg/s) for Case Study 3 Reheater attemperator spray flow (kg/s) for Case Study 3 Main steam temperature (°C) for Case Study 3

Figure 4.55	Furnace, economizer, and APH gas outlet temperatures (°C) for Case Study 3	146
Figure 4.56	Furnace temperature profile for Case Study 3	147
Figure 4.57	Slag deposit observation at the furnace and superheater areas for Case Study 3	148
Figure 4.58	Gross and net load (MW) for Case Study 4	151
Figure 4.59	Total coal flow (t/h) for Case Study 4	152
Figure 4.60	Superheater attemperator spray flow (kg/s) for Case Study 4	153
Figure 4.61	Reheater attemperator spray flow (t/h) for Case Study 4	153
Figure 4.62	Main steam temperature (°C) for Case Study 4	154
Figure 4.63	Hot reheat steam temperature (°C) for Case Study 4	154
Figure 4.64	Furnace, economizer and APH gas outlet temperatures (°C) for Case Study 4	155
Figure 4.65	Furnace temperature profile for Case Study 4	156
Figure 4.66	Slag deposit observation at the furnace and superheater areas for Case Study 4	157
Figure 4.67	Coal flow versus blending ratio	166
Figure 4.68	Primary air flow versus blending ratio	166
Figure 4.69	Boiler efficiency versus blending ratio	167
Figure 4.70	SO _x emission versus blending ratio	168
Figure 4.71	SO _x emission (mg/Nm ³) for 100% Enviro coal	170
Figure 4.72	CO emission (mg/Nm ³) for 100% Enviro coal	171
Figure 4.73	SO_x emission (mg/Nm ³) for the <i>blended Enviro-Kayan</i> coal	171
Figure 4.74	CO emission (mg/Nm ³) for the <i>blended Enviro-Kayan</i> coal	172
Figure 4.75	High ash sootblower regime	173

LIST OF ABBREVIATIONS

ADB	-	Air dry basis
Al ₂ O ₃	-	Alumina oxide
AR	-	As received
ASME	-	American Society of Mechanical Engineers
ASTM	-	American Society for Testing and Materials
APH	-	Air preheater
BA	-	Base Acid ratio
BMCR	-	Boiler maximum continuous rate
Ca	-	Calcium
CaO	-	Calcium oxide
CaSO ₄	-	Calcium sulphate
CFD	-	Computational fluid dynamic
CFPP	-	Coal fired power plant
CGA	-	Conventional genetic algorithm
CHNS	-	Carbon, hydrogen, nitrogen, sulphur
Cl	-	Chlorine
СО	-	Carbon monoxide
CO_2	-	Carbon dioxide
COA	-	Certificate of analysis
COD	-	Commercial operation date
CPAT	-	Coal Combustion Prediction Analysis Tool
CSTA	-	Coal Supply and Transportation Agreement
CUJ	-	Coal unloading jetty
DAF	-	Dry ash free
DB	-	Dry basis
DCS	-	Distributed control system
DOE	-	Department of Environmental
EC	-	Energy Commission
FC	-	Fixed carbon
FD	-	Forced draught

FDF	-	Forced draught fan
Fe ₂ O ₃	-	Iron oxide
FEGT	-	Furnace exit gas temperature
FF	-	Fabric filter
Ff	-	Fouling factor
FGD	-	Flue gas desulphurization
FRH	-	Final reheater
GA	-	Genetic algorithm
GCV	-	Gross calorific value
GDP	-	Gross domestic product
GGH	-	Gas-gas heater
GHGs	-	Greenhouse gases
HGI	-	Hardgrove grindability index
HRT	-	Hot reheat temperature
HHV	-	High heating value
HP	-	High pressure
HPT	-	High pressure turbine
HV	-	Heating value
ICR	-	Iron-Calcium ratio
IDF	-	Induced draught fan
IP	-	Intermediate pressure
IPT	-	Intermediate pressure turbine
IPFR	-	Isothermal plug flow reactor
K ₂ O	-	Potassium
kW	-	Kilowatt
LFO	-	Light fuel oil
LHV	-	Low heating value
LP	-	Low pressure
LTRH	-	Low temperature reheater
М	-	Moderate
MCR	-	Maximum continuous rate
MIT	-	Mill inlet temperature
MOT	-	Mill outlet temperature

MSP	-	Main steam pressure
MST	-	Main steam temperature
MW	-	Megawatt
Na ₂ O	-	Sodium oxide
Na ₂ SO ₄	-	Natrium sulphate
NaCl	-	Sodium chloride
NA	-	Not applicable
NEM	-	New economic model
NO	-	Nitrogen monoxide
NO _x	-	Nitrogen oxide
PA	-	Primary air
PAF	-	Primary air fan
PFBC	-	Pressurized fluidized bed combustion
PI	-	Plant Information
PI ACE	-	Plant Information Advance Calculation Engine
PI AF	-	Plant Information Asset Framework
PM	-	Particulate matter
PPA	-	Power purchase agreement
PPO	-	Power plant operators
PTC	-	Performance test code
RBI	-	Reliability based inspection
RCA	-	Root Cause Analysis
RMSE	-	Root mean square error
SAGA	-	Simulated annealing genetic algorithm
SF	-	Slagging factor
SFT	-	Slag forming tendency
SiO ₂	-	Silica dioxide
SOFA	-	Separated over fire air
SO_2	-	Sulphur dioxide
SO _x	-	Sulphur oxide
SP	-	Silica percentage
TM	-	Total moisture
UNFCCC	-	United Nation Framework Convention on Climate Change

- USP Unsworth sootblower performance
- VM Volatile matter
- XRD X-ray diffraction

LIST OF SYMBOLS

0	-	Degree
%	-	Percentage
n	-	Total number of iterations
t	-	Time
x_1	-	Actual value
x_2	-	Simulated value
=	-	Equal
<	-	Less than
>	-	Greater than
\sum	-	Sum
(x1 - x2)	-	Variance of x
wt%	-	Weightage percentage
DVPO ₂	-	Measured O ₂ concentration in the flue gas
EF	-	Efficiency in %
EX	-	Drive efficiency for pulveriers
HHVF	-	Heating value of the fuel
HStLvCr	-	Enthalpy of vapor
HWRe	-	Enthalpy of water
HHVFcv	-	Heating value of the fuel on a constant volume basis
MpAsF	-	Ash in fuel, mass percent
MpCRs	-	Unburned carbon in residue
$M_p C_b$	-	Carbon burned
MpCF	-	Fuel carbon mass percent
MpUbC	-	Unburned carbon per pound of fuel
<i>MF_rWDA</i>	-	Moisture in air
MqDA	-	Dry air per btu
MpCb	-	Carbon burned, mass percent
MpO2F	-	Fuel oxygen, mass percent
MFrThACr	-	Theoretical air
MoDPc	-	Moles of dry products from combustion

MoThACr	-	Moles of theoretical air
MpSF	-	Fuel sulphur, mass percent
MpN2F	-	Fuel nitrogen, mass percent
MqDA	-	Total dry air for combustion
MqWA	-	Moisture in air
MqFgF	-	Wet gas from the fuel
MqWAd	-	Additional moisture in flue gas
MqFg	-	Total wet gas flow
MqWFg	-	Total moisture in gas
MqWF	-	Moisture from fuel
MqWH2f	-	Moisture from combustion of hydrogen
MqDFg	-	Dry gas per btu of fuel based on the excess air
MpH2F	-	Fuel hydrogen, mass percent
MrF	-	Fuel flow rate
Pa	-	Barometric pressure
PpWvA	-	Partial pressure of water vapor in air
PsWvTdb	-	Saturation pressure of water vapor at dry-bulb
QpL	-	Sum total of heat losses in % of fuel heating value
QpB	-	Sum total of heat credits in % of fuel heating value
Qpulvf	-	Measured power consumption of the pulverizers
RHM	-	Relative humidity
T_{250}	-	T ₂₅₀ temperature
Tf3	-	Fuel inlet temperature
XpA	-	Excess air

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Appendix A	Calibration Certificates	197
Appendix B	Analysis Result	210
Appendix C	COA and LAB Analysis Result	214
Appendix D	Calculation and Equations	230
Appendix E	Power Plant System and Its Major Equipment	237

CHAPTER 1

INTRODUCTION

1.1 Research Background and Motivation

Coal remains a major source of energy in the power generation industry in Malaysia. Based on data from Malaysia's Energy Commission (EC), the total installed generation capacity in 2017 was 22,919 MW from which 53% was from the coal-fired power plants (CFPPs), 40% from gas-fired power plants, and the remaining 8% from renewable energy and hydropower [1]. According to the Energy Commission's 5-year projection from 2018 to 2022, CFPPs will remain as the main provider of electric power in Malaysia. The average growth rate for coal-fired power generation is around 1.8% per year. Based on this scenario, it is projected that the coal combustion emission in the atmosphere will increase proportionally to the growth rate of the CFPPs. Although coal will remain relevant in the power generation industry of this country, the industry players need to ensure that necessary measures to control the emissions are implemented in accordance with the government's push towards cleaner energy production. The solutions may vary from increasing the thermal power plant's efficiency, installation of new technology for emission reduction, and introduction of renewable energy.

Coal combustion brings on serious ecological and environmental problems as the main constituents of the emitted flue gases are carbon dioxide (CO₂), sulphur dioxide (SO₂), nitrogen oxide (NO_x), carbon monoxide (CO), and particulate matter (PM); which are known to be the main pollutants contributing to the global warming [2]. Optimum coal combustion is essential in CFPPs because it results in higher efficiency and reduces the harmful emissions in the flue gases. One of the main objectives in coal combustion research is to develop techniques to help the power plant operators (PPO) to utilize coal cleanly and efficiently. The emission of CO₂, SO_x, NO_x, CO, and PM from coal combustion is an important factor affecting the operation of power plants. The quantum of these emissions is mainly determined by the coal properties, coal preparation such as coal fineness and blending ratio, and also boiler design.

One of the important aspects to consider in designing a CFPP is the coal quality. The boiler design will need to accommodate a certain range of coal quality parameters. The current trend of deteriorating coal quality has many adverse effects on the performance of a CFPP. The main consequence is a decrease in the combustion performance that will contribute to the increased slagging and fouling issues in the boiler. This will then affect the boiler cleanliness, rendering the boiler less efficient and ultimately contributes to higher emissions.

Another contributing factor to the emissions from coal combustion is the boiler cleanliness and coal properties. PPO are able to optimize the boiler combustion and boiler cleanliness by managing the slagging and fouling inside the boiler to maximize the heat absorption. This is achievable through clean boiler tube surfaces. Slagging and fouling indices for every coal type can be used by the PPO as early indicators for the overall coal combustion behavior. These indicators can be used by the PPO to predict the impact of individual or blended coal quality on the power plant performance. It will give an early indication of the boiler combustion performance related to the coal quality and surely will assist the PPO in preparing for any additional boiler process controls such as the sootblower strategy, mill operation set point, boiler excess air control, and burner control through tilting or auxiliary air dampers adjustment.

The power generation industry is the main source of coal combustion emissions compared to other industries. Therefore, the development of a prediction tool is crucial to the boiler cleanliness and towards quantifying the emissions and establishing a real and measurable mitigation plan. Reducing the emissions from the CFPPs is achievable by improving the combustion efficiency [2]. The improved efficiency strategy can be achieved through either optimizing the power plant operating conditions such as the boiler cleanliness or minimizing the losses within the system. Applying these two approaches can lead to improved power plant efficiency by maximizing the energy absorbed from each grain of the coal consumed, which results in lower power plant emissions.

By considering these facts, the present study is designed to find the correlations for the prediction of the boiler cleanliness, thus improving the overall combustion efficiency and emissions. This study is also aimed at determining the optimal operation regime including the optimization of coal blending that will help to improve the power plant efficiency as well as reducing the coal combustion emissions.

1.2 Problem Statement

In recent years, the quality of coal used in one of the CFPPs located in southern Malaysia has been observed to have greatly deteriorated in terms of its gross calorific value (GCV), total moisture content (TM), and ash content. The CFPP database shows that the GCV level has decreased while the TM and ash content have increased. These degradations have a significant impact on the overall efficiency of the boiler. Plant capacity has been significantly affected by the high moisture content, where a higher primary air volume is needed to ensure that the moisture level is controlled to its specified value. This will further increase the auxiliary power consumption of the plant and reduce the plant efficiency. Furthermore, the utilization of individual coal types with the deteriorated quality can potentially lead to the power plant process upsets such as the main steam temperature (MST) and main steam pressure (MSP) fluctuations.

Environmentally, the high ash and sulphur contents will affect the fabric filter (FF) and flue gas desulphurization (FGD) performance, thus making it difficult for the plant to operate within the specified environmental limits. Changes in the ash parameters such as sodium oxide (Na₂O), potassium oxide (K₂O), iron oxide (Fe₂O₃), calcium oxide (CaO), alumina oxide (Al₂O₃), silica oxide (SiO₃) etc. will also affect the boiler cleanliness, resulting in the boiler operation upset, thereby affecting the emissions. These parameters contribute to the slagging and fouling in the boiler furnace, which in turn directly affects the boiler cleanliness and boiler efficiency. One of the options to tackle this coal quality issue is through the coal blending process.

This option will help to improve the combustion efficiency and heat transfer as well as reduce emissions [3]. Considering these facts, the utilization of individual coal types may not be optimal for the plant operation, as each of the coal parameters has its own impact on the plant process and plant equipment performance.

The capability to handle diverse types of coal quality will greatly improve the situation. This issue needs to be tackled by considering and implementing appropriate solutions such as the plant improvement initiatives for the combustion system. Due to the changing market dynamics and regulations in the power sector, more key players are now sourcing coal from different mines and suppliers with the goal of minimizing the production costs. Such varied sourcing obviously leads to the varying coal qualities and coal types. Since attributes such as GCV, TM, ash content, volatile matter (VM), sulphur content, hardgrove grindability index (HGI), and other ash parameters such as Fe₂O₃, CaO, SiO₂, Al₂O₃, Na₂O, K₂O, etc. have great impact on the combustion process and boiler cleanliness, it is important to monitor and utilize this information adequately in an effort to improve the combustion efficiency.

Even with this scenario, coal will remain relevant to the power industry for many years to come. However, getting good quality coal economically has become a major challenge. One of the options that may help PPO to achieve the objective of getting the correct coal quality for the boiler operation is by coal blending. The optimum blending ratio improves the coal combustion behavior and leads to improvements in the plant efficiency as well as reduction of emissions in the flue gases. Subsequently, PPO faces an uphill challenge to ensure that the desired power output is achieved and, at the same time, to maintain a strict emission standard at all times.

An appropriate coal combustion analysis process remains a challenge for the PPO due to the lack of an effective prediction analysis tool. Several methodologies have been implemented in the power plants to assist the PPO, including the Reliability-Based Inspection (RBI) and Root Cause Analysis (RCA). However, these tools' primary focus is on the after event analysis or post incident investigation. Currently, there are no specific analytical tools for the PPO to predict the power plant process

behavior before commencing the actual operation especially for the coal combustion in ultra-supercritical boilers.

Due to the unavailability of a prediction analysis tool for the combustion analysis at the power plants, PPO have not been able to determine the correct coal quality prior to actual consumption at the boiler. As such, this thesis proposes a coal combustion prediction analysis tool to be used by PPO for predicting the boiler cleanliness and emissions by determining the optimum coal quality for the boiler operation. This tool is a practical technique to predict and quantify the measurable mitigation action to improve the plant efficiency, thereby reducing the undesirable emissions. Its focus is on the coal blending optimization to predict the coal requirement that will result in the best boiler cleanliness in terms of slagging and fouling indices. This will in turn result in the increased power plant efficiency and reduced emissions. Indirectly, this will lead to a reduction in the overall fuel consumption and lower the production of greenhouse gases (GHG).

1.3 Research Objectives

Three research objectives have been identified based on the research background and identified research gaps:

- To establish and validate a combustion model consisting of the boiler performance, milling performance, and SO_x emission through the Coal Combustion Prediction Analysis Tool (CPAT) for optimum plant operation.
- To develop and verify the boiler cleanliness model through slagging and fouling indices as well as the boiler operation parameters for single and blended coals.
- iii. To investigate and evaluate the effect of the coal quality with different blending ratios on the plant performance parameters and SO_x emissions using the CPAT.

1.4 Research Scope

The research scope shall be based on the data acquired from a 1000 MW ultrasupercritical CFPP located in southern Malaysia where the main parameters of interest are the boiler cleanliness related to the slagging and fouling indices, SO_x emissions, and boiler performance parameters. A coal combustion prediction analysis model shall be developed using Microsoft Excel software with the assumption that the ultrasupercritical boiler and other processes are in normal operating conditions. The data acquired shall be based on the average ten-minute intervals from the plant performance calculation system and the Certificate of Analysis (COA) of the coal received at the power plant. The limited coal blending ratios due to the unavailability of a coal blending facility in the power plant will be a potential challenge for the research.

1.5 Research Significance and Contributions

One of the elements in the Malaysian New Economic Model (NEM) is to lead the global green revolution. In December 2009, Malaysia's Prime Minister announced in Copenhagen that Malaysia intends to reduce its GHG emission intensity of the GDP by 45% in 2030 relative to the emission intensity of the GDP in 2005. Malaysia is actively involved in the climate change process as the country needs to meet the obligations as a signatory party to the United Nations Framework Convention on Climate Change (UNFCCC). Malaysia gave a commitment to this initiative by signing the UNFCCC on 9th June 1993 and later, the Kyoto Protocol on 12th March 1999, and Paris Agreement on 16th November 2016.

The focus of this research is to develop a combustion prediction analysis tool (CPAT) consisting of the coal combustion and boiler cleanliness calculation models to improve the overall plant performance, combustion efficiency, and emissions. This research has been implemented at the Tanjung Bin Energy Power Plant, a 1000 MW Ultra-Supercritical Coal-Fired Power Plant located in the Iskandar Malaysia region, Johor. The Iskandar Malaysia region is the first in the nation to adopt the Global Protocol for the Community-Scale Greenhouse Gas Emission Inventories to account

for its GHG emissions. The power plant consists of various complex process equipment such as the boiler, steam turbine, generator, and emission control systems such as the fabric filter (FF) and flue gas desulphurization (FGD) system. The generated electricity by the Tanjung Bin Energy Power Plant is supplied to the national grid and then distributed to the Malaysian peninsula via a 500-kV line.

Thus, the proposed research thesis aims to solve the real-world problems in the ultra-supercritical CFPPs by means of introducing and implementing smart innovations that will result in more efficient and enhanced power plant operations. One of the intended results is the reduction of flue gas emissions by the prediction of boiler cleanliness that will also indirectly improve the plant efficiency. This can be achieved by providing better input to the PPO regarding the combustion characteristics and emissions. This is positively in line with Malaysia's new economic model (NEM) planned for 2011-2020.

1.6 Thesis Outline

This thesis is organised into five chapters. Chapter 1 discusses the introduction of the thesis related to the research background and motivation, problem statements, research objectives, scope, research significance, and contributions. In Chapter 2, the literature review is comprehensively explored by looking at the emissions from coal combustion, coal quality, impact of slagging and fouling on boiler cleanliness, and coal blending practices and implementation in power plants. Based on the review, the identified coal parameters that have a significant impact on the boiler cleanliness and affect the emissions will be discussed in detail in this research.

Navigating further in this thesis, Chapter 3 describes the research methodology that first elaborates the description of a power plant and the coal quality verification process. The plant performance calculation system setup for the purpose of acquiring the plant process data is adequately explained. Next, the Coal Combustion Prediction Analysis Tool (CPAT) setup comprising the combustion and boiler cleanliness models will be explained. Chapter 4 presents the results and discussions of the undertaken

research. In this section, the accuracy of the data will be proven and validated with a set of reference to the proposed coal combustion prediction analysis and actual plant operation data. The chapter then explains the prediction of the slagging and fouling tendencies and their impact on the plant operating parameters. The effect of the coal quality with different blending ratios on the plant performance and SO_x emissions will then be investigated against the actual plant operation data. The results produced by this analysis will validate the CPAT in terms of its reliability and accuracy, thereby making it applicable as a useful tool for the PPO to predict the boiler cleanliness and emissions as well as for improving the boiler efficiency.

Finally, Chapter 5 concludes the research with its findings that reiterate and support the research objectives. This is followed by the suggestions for improvement in future works that include the implementation of an on-line coal combustion optimizer in the power plants that may improve their efficiency.

REFERENCES

- Peninsular Malaysia Electricity Supply Industry Outlook 2017: Malaysia Energy Commission, 2017
- J. S. Shih and H. C. Frey, "Coal Blending Optimization under Uncertainty," European Journal of Operational Research. 83(3): 452-465, 1995.
- C. Moon, Y. Sung, S. Ahn, T. Kim, G. Choi and D. Kim, "Thermochemical and Combustion Behaviors of Coals of Different Ranks and Their Blends for Pulverized-Coal Combustion," Applied Thermal Engineering. 54(1): 111-119, 2013.
- M.A. Field, D.W. Gill, Combustion of Pulverised Coal, Leatherhead: Cheney & Sons Ltd, 1967.
- M. Elliott, Chemistry of Coal Utilization, New York: John Wiley & Sons, 1981.
- D. Van Krevelen, Coal Typology Physic Chemistry Constitution, New York: Elsevier Science, 1993.
- J.R. Qiu, F. Li, Y. Zheng, C.G. Zheng, H.C. Zhou, "The Influences Of Mineral Behavior On Blended Coal Ash Fusion Charcteristics," *Fuel*, vol. 78, pp. 963-969, 1999.
- A. Rushdi, A. Sharma, R. Gupta, "An Experimental Study Of The Effect Of Coal Blending On Ash Deposition," *Fuel*, vol. 83, pp. 495-506, 2004.
- V. Doshi, H.B. Vuthaluru, R. Korbee, J.H.A Kiel, "Development Of A Modeling Approach To Predict Ash Formation During Co-Firing Of Coal And Biomass," *Fuel Processing Technology*, vol. 90, pp. 131-142, 2009.
- Stanislav V. Vassilev, Christina G. Vassileva, Vassil S. Vassilev, "Advantages And Disadvantages Of Composition And Properties Of Biomass In Comparison With Coal: An Overview," *Fuel*, vol. 158, pp. 330-350, 2015.
- X. Liu, M. Chen, Y. Wei, "Assessment On Oxygen Enriched Air Co-Combustion Performance Of Biomass/Bituminuous Coal," *Renewable Energy*, vol. 92, pp. 428-436, 2016.

- C. Zhou, G. Liu, X. Wang, C. Qi, "Co-Combustion Of Bituminous Coal And Biomass Fuel Blends: Thermochemical Characterization, Potential Utilization And Environmental Advantage," *Bioresource Technology*, vol. 218, pp. 418-427, 2016.
- C. Moon, Y. Sung, S. Ahn, T. Kim, G. Choi, D. Kim, "Effect Of Blending Ratio On Combustion Performance In Blends Of Biomass And Coals Of Different Ranks," *Experimental Thermal And Fluid Science*, vol. 47, pp. 232-240, 2013.
- X.J Guo, C. Ming, J.W Wu, "Coal Blending Optimization Of Coal Preparation Production Process Based On Improved GA," *Procedia Earth And Planetary Science*, vol. 1, pp. 654-660, 2009.
- M.U Degereji, D.B. Ingham, L. Ma, M. Pourkashanian, A. Williams, " Numerical Assessment Of Coal/Blends Slagging Potential In Pulverised Coal Boilers," *Fuel*, vol. 102, pp. 345-353, 2012.
- W. Q. L. J. L.V Tai, "Numerical And Experiment Research For Soft Coal Under Condition Of Blending Lignite," *Energy Procedia*, vol. 17, pp. 1001-1006, 2012.
- David A. Tillman, A. Dobrzanski, J. Wong, "Selecting And Implementing A Fuel Blend For Scrubbed Units At A Pulverised Coal Power Plant," *Fuel Processing Technology*, vol. 141, pp. 235-242, 2016.
- D. Wang, Q. Liang, X. Gong, H. Liu, X. Liu, "Influence Of Coal Blending On Ash Fusion Property And Viscosity," *Fuel*, vol. 189, pp. 15-22, 2017.
- J. Li, M. Zhu, Z. Zhang, K. Zhang, G. Shen, D. Zhang, "Effect Of Coal Blending And Ashing Temperature On Ash Sintering And Fusion Characteristics During Combustion Of Zhundong Lignite," *Fuel*, vol. 195, pp. 131-142, 2017.
- 20. G. Yao and Q. Li, "Improved Coal Combustion Optimization Model Based on Load Balance And Coal Qualities," *Energy*, vol. 132, pp. 204-212, 2017.
- S. Santhosh Raaj, S. Arumugam, M. Muthukrishnan, S. Krishnamoorthy, N. Anantharaman, "Characterization of Coal Blends for Effective Utilization in Thermal Power Plants," *Applied Thermal Engineering*, vol. 102, pp. 9-16, 2016.

- X. Wu, X. Zhang, B. Dai, X. Xu, J. Zhang, L. Zhang, "Ash Deposition Behaviours Upon The Combustion Of Low Rank Coal Blends In A 3 MW Pilot Scale Pulverised Coal Fired Furnace," *Fuel Processing Technology*, vol. 152, pp. 176-182, 2016.
- D. Vamvuka and E. Kakaras, "Ash Properties And Environmental Impact Of Various Biomass And Coal Fuels And Their Blends," *Fuel Processing Technology*, vol. 92, pp. 570-581, 2011.
- B. Jin, L. Wen, L. Chun-Zhu, B. Zong-Qing, L. Bao-Qing, "Influence of Coal Blending On Mineral Transformation At High Temperatures," *Mining Science And Technology*, vol. 19, pp. 300-305, 2009.
- Q. Wang, L. Zhang, A. Sato, Y. Ninomiya, T. Yamashita, "Effects of Coal Blending on The Reduction of PM10 During High Temperature Combustion & Mineral Transformations," *Fuel*, vol. 87, pp. 2997-3005, 2008.
- D. Tillman and D. Duong, "Managing Slagging At Monroe Power Plant Using Online Coal Analysis And Fuel Blending," *Fuel Processing Technology*, vol. 88, pp. 1094-1098, 2007.
- 27. A. Rushdi, A. Sharma, R. Gupta, "An Experimental Study of The Effect of Coal Blending on Ash Deposition," *Fuel*, vol. 83, pp. 495-506, 2004.
- C. Sheng, B. Moghtaderi, R. Gupta, Terry. F. Wall, "A Computational Fuid Dynamics Based Study of the Combustion Characteristics of Coal Blends in Pulverised Coal-Fired Furnace," *Fuel*, vol. 83, pp. 1543-1552, 2004.
- H.B. Vuthaluru, R.J. Brooke, D.K. Zhang, H.M. Yan, "Effects of Moisture and Coal Blending on Hardgrove Grindability Index of West Australian Coal," *Fuel Processing Technology*, vol. 81, pp. 67-76, 2003.
- R. Kurose, M. Ikeda, H. Makino, "Combustion Characteristics of High Ash Coal In A Pulverised Coal Combustion," *Fuel*, vol. 80, pp. 1447-1455, 2001.
- J. Haas, M. Tamura, R. Weber, "Characterisation of Coal Blends For Pulverised Fuel Combustion," *Fuel*, vol. 80, pp. 1317-1323, 2001.
- E. Jak, S. Degterov, P.C. Hayes, A.D. Pelton, "Thermodynamic Modeling Of The System Al2O3-SiO2-CaO-FeO-Fe2O3 To Predict The Flux Requirements For Coal Ash Slags," *Fuel*, vol. 77, pp. 77-84, 1998.

- 33. J.S. Shih and H.C. Frey, "Coal Blending Optimization Under Uncertainty," *European Journal of Operational Research*, vol. 83, pp. 452-465, 1995.
- R. Perez-Jeldres, P. Cornejo, M. Flores, A. Gordon, "A Modeling Approach To Co-Firing Biomass/Coal Blends In Pulverized Coal Utility Boilers: Synergistic Effects And Emissions Profiles," *Energy*, vol. 120, pp. 663-674, 2017.
- 35. D. Li, Q. Lv, Y. Feng, C. Wang, X. Liu, K. Chen, K. Xu, J, Zhong, D. Che "Effects Of Coal Blending And Operating Conditions On Combustion And NOx Emission Characteristics In A Tangentially Fired Utility Boiler," *Energy Procedia*, vol. 105, pp. 4015-4020, 2017.
- S.H. Baek, H.Y. Park, S.H. Ko, "The Effect Of The Coal Blending Method In A Coal Fired Boiler On Carbon In Ash And NO_x Emission," *Fuel*, vol. 128, pp. 62-70, 2014.
- 37. J.K. Kim, H.D. Lee, H.S. Kim,H.Y. Park, S.C. Kim, "Combustion Possibility Of Low Rank Russian Peat As Blended Fuel Of Pulverised Coal Fired Power Plant," *Journal Of Industrial And Engineering Chemistry*, vol. 20, pp. 1752-1760, 2014.
- 38. S.G. Sahu, A. Mukherjee, M. Kumar, A.K Adak, P. Sarkar, S. Biswas, H.P. Tiwari, A. Das, P.K. Banerjee, "Evaluation Of Combustion Behaviour Of Coal Blends For Use In Pulverised Coal Injection," *Applied Thermal Engineering*, vol. 73, pp. 1014-1021, 2014.
- J. Xia, G. Cheng, P. Tan, C. Zhang, "An Online Case-Based Reasoning System For Coal Blends Combustion Optimization Of Thermal Power Plant," *Electrical Power And Energy Systems*, vol. 62, pp. 299-311, 2014.
- 40. S. Ozdogan, "Estimation of CO2 Emission Factors of Coals," *Fuel*, vol. 77, pp. 1605-1609, 1998.
- Y. Hu, S. Naito, N. Kobayashi, M. Hasatani, "CO₂, NO_x and SO₂ Emission From The Combustion Of Coal With High Oxygen Concentration Gases," *Fuel*, vol. 79, pp. 1925-1932, 2000.
- S.E. Hosseini, Mazlan A. Wahid, N. Aghili, "The Scenario of Greenhouse Gases Reduction in Malaysia," *Renewable and Sustainable Energy Reviews*, vol. 28, pp. 400-409, 2013.

- S.E. Hosseini and Mazlan A. Wahid, "The Role of Renewable and Sustainable Energy in the Energy Mix of Malaysia: A Review," *International Journal of Energy Research*, vol. 38, pp. 1769-1792, 2014.
- S. Taku Ide and F.M. Orr Jr, "Comparison of Methods To Estimate The Rate of CO₂ Emissions And Coal Consumption From A Coal Fire Near Durango, CO," *International Journal Of Coal Geology*, vol. 86, pp. 95-107, 2011.
- S.H. Baek, H.Y. Park, S.H Ko, "The Effect Of The Coal Blending Method In A Coal Fired Boiler On Carbon In Ash And NO_x Emission," *Fuel*, vol. 128, pp. 62-70, 2014.
- W. Moron and W. Rybak, "NOx and SO₂ Emission Of Coals, Biomass And Their Blends Under Different Oxy-Fuel Atmospheres," *Atmospheric Environment*, vol. 116, pp. 65-71, 2015.
- G. Chen, X. Ma, M. Lin, X. Peng, Z. Yu, "Pollutant Emission Characteristics And Interaction During Low Temperature Oxidation of Blended Coal," *Journal of the Energy Institute*, vol. 89, pp. 40-47, 2016.
- W. Fan. Z. Lin, J. Kuang, Y. Li, "Impact Of Air Staging Along Furnace Height On NO_x Emissions From Pulverised Coal Combustion," *Fuel Processing Technology*, vol. 91, pp. 625-634, 2010.
- 49. S. Ozdogan, "Estimation Of CO₂ Emission Factors Of Coals," *Fuel*, vol. 77, pp. 1605-1609, 1998.
- J. Cheng, J. Zhou, J. Liu, Z. Zhou, Z. Huang, X. Cao, X. Zhao, K. Cen, "Sulfur Removal At High Temperature During Coal Combustion In Furnaces: A Review," *Progress In Energy And Combustion Science*, vol. 29, pp. 381-405, 2003.
- Y. Hu, S. Naito, N. Kobayashi, M. Hasatani, "CO₂, NO_x and SO₂ Emissions From The Combustion Of Coal WIth High Oxygen Concentration Gases," *Fuel*, vol. 79, pp. 1925-1932, 2000.
- 52. D.A. Tillman, D. Duong, N.S. Harding, Solid Fuel Blending: Principles, Practices and Problems, Oxford, UK: Elsevier Inc., 2012.
- 53. Y. Ninomiya, L. Zhang, A. Sato, Z. Dong, "Influence of Coal Particle Size On Particulate Matter Emission And Its Chemical Species Produced During Coal Combustion," *Fuel Processing Technology*, vol. 85, pp. 1065-1088, 2004.

- F. Rubiera, A. Arenillas, B. Arias, J.J Pis, "Modification of Combustion Behavior And NO_x Emission By Coal Blending," *Fuel Processing Technology*, Vols. 77-78, pp. 111-117, 2002.
- 55. N. Hashimoto, H. Watanabe, R. Kurose, H. Shirai, "Effect Of Different Fuel NO Models On The Prediction Of NO Formation/Reduction Characteristics In A Pulverised Coal Combustion Field," *Energy*, vol. 118, pp. 47-59, 2017.
- L.G. Zheng, H. Zhou, K.F. Cen, C.L. Wang, "A Comparative Study of Optimization Algorithms For Low NO_x Combustion Modification At A Coal-Fired Utility Boiler," *Expert System With Applications*, vol. 36, pp. 2780-2793, 2009.
- T. Le Bris, F. Cadavid, S. Caillat, S. Pietrzyk, J. Blondin, B. Baudoin, "Coal Combustion Modelling Of Large Power Plant, For NO_x Abatement," *Fuel*, vol. 86, pp. 2213-2220, 2007.
- 58. J. Wang, K. Zheng, R. Singh, H. Lou, J. Hao, B. Wang, F. Cheng, "Numerical simulation and cold experimental research of a low-NOx combustion technology for pulverized low-volatile coal," *Applied Thermal Engineering*, vol. 114, pp. 498-510, 2017.
- H. Zhou, L. Zheng and K Cen, "Computational Intelligence Approach For NO_x Emissions Minimization In A Coal-Fired Utility Boiler," *Energy Conversion And Management*, vol. 51, pp. 580-586, 2010.
- A. Arenillas, R.I. Backreedy, J.M. Jones, J.J Pis, M. Porkashanian, F. Rubiera,
 A. Williams, "Modelling Of NO_x Formation In The Combustion of Coal Blends," *Fuel*, vol. 81, pp. 627-636, 2002.
- Z. Wei, X. Li, L. Xu, Y. Cheng, "Comparative Study of Computational Intelligence Approaches For NO_x Reduction of Coal-Fired Boiler," Energy, vol. 55, pp. 683-692, 2013.
- M. Ikeda, H. Makino, H. Morinaga, K. Higashiyama, Y. Kozai, "Emission Characteristics of NOx And Unburned Carbon In Fly Ash During Combustion Of Blends Of Bituminuous / Sub-Bituminuous Coals," *Fuel*, vol. 82, pp. 1851-1857, 2003.

- J. Liu, S. Gao, X. Jiang, J. Shen, H. Zhang, "NO Emission Characteristics Of Superfine Pulverised Coal Combustion In The O2/CO2 Atmosphere," *Energy Conversion And Management*, vol. 77, pp. 349-355, 2014.
- 64. H. Tsuji. H. Shirai, H. Matsuda. P. Rajoo, "Emission Characteristics Of NO_x And Unburned Carbon In Fly Ash On High Ash Coal Combustion," *Fuel*, vol. 90, pp. 850-853, 2011.
- 65. C. Moon, Y. Sung, S. Eom, G. Choi, "NOx Emissions And Burnout Characteristics Of Bituminuous Coal, Lignite And Their Blends In A Pulverised Coal Fired Furnace," *Experimental Thermal And Fluid Science*, vol. 62, pp. 99-108, 2015.
- Z. Chen, Z. Wang, Z. Li, Y. Xie, S. Ti, Q. Zhu, "Experimental Investigation Into Pulverized Coal Combustion Performance And NO Formation Using Sub-Stoichiometric Ratios," *Energy*, vol. 73, pp. 844-855, 2014.
- S.S Daood, G. Ord, T. Wilkinson, W. Nimmo, "Fuel Additive Technology NOx Reduction, Combustion Efficiency And Fy Ash Improvement For Coal Fired Power Stations," *Fuel*, vol. 134, pp. 293-306, 2014.
- C. Wang, Y. Liu, S. Zheng, A. Jiang, "Optimizing Combustion Of Coal Fired Boilers For Reducing NO_x Emission Using Gaussian Process," *Energy*, vol. 153, pp. 149-158, 2018.
- K.Y. Lisandy, J.W. Kim, H. Lim, S.M. Kim, C.H. Jeon, "Prediction Of Unburned Carbon And NO Formation From Low-Rank Coal During Pulverized Coal Combustion: Experiments And Numerical Simulation," *Fuel*, vol. 185, pp. 478-490, 2016.
- J. Cheng, J. Zhou, J. Liu, Z. Zhou, Z. Huang, X. Cao, X. Zhao, K. Cen, "Sulfur Removal At High Temperature During Coal Combustion In Furnaces: A Review," *Progress In Energy And Combustion Science*, vol. 29, pp. 381-405, 2003.
- G. Chen, X. Ma, M. Lin, X. Peng, Z. Yu, "Pollutant Emission Characteristics And Interaction During Low Temperature Oxidation Of Blended Coal," *Journal Of The Energy Institute*, vol. 89, pp. 40-47, 2016.

- C. Lu, J. Xu, H. Xie, Z. Zeng, Y. Wu, "Equilibrium Strategy Based Coal Blending Method For Combined Carbon And PM10 Emission Reductions," *Applied Energy*, vol. 183, pp. 1035-1052, 2016.
- 73. C. Moon, Y. Sung, S. Eom, G. Choi, "NOx Emissions And Burnout Characteristics Of Bituminuous Coal, Lignite, And Their Blends In A Pulverised Coal Fired Furnace," *Experimental Thermal And Fluid Science*, vol. 62, pp. 99-108, 2015.
- K. Svoboda and M. Pohorely, "Influence Of Operating Conditions And Coal Properties On NO_x And N₂O Emissions In Pressurized Fluidized Bed Combustion Of Sub Bituminuous Coals," *Fuel*, vol. 83, pp. 1095-1103, 2004.
- E. Rokni, X. Ren, A. Panahi, Yiannis A. Levendis, "Emissions of SO₂, NO_x, CO₂, And HCl From Co Fring Of Coals With Raw And Torrefied Biomass Fuels," *Fuel*, vol. 211, pp. 363-374, 2018.
- X. Xu, C. Chen, H. Qi, R. He, C. You, G. Xiang, "Development of Coal Combustion Pollution Control For SO₂ And NO_x In China," *Fuel Processing Technology*, vol. 62, pp. 153-160, 2000.
- 77. J. Hou, S. Li, W. Shang, "A Comparative Study On Characteristics Of Sulfur And Nitrogen Transformation And Gaseous Emission For Combustion Of Bituminous Coal And Char," *Carbon Resources Conversion*, vol. 1, pp. 86-93, 2018.
- W. Moron and W. Rybak, "NOx and SO₂ Emissions Of Coals, Biomass And Their Blends Under Different Oxy-Fuel Atmospheres," *Atmospheric Environement*, vol. 116, pp. 65-71, 2015.
- S.H. Baek, H.Y. Park, S.H Ko, "The Effect Of The Coal Blending Method In A Coal Fired Boiler On Carbon In Ash And NO_x Emission," *Fuel*, vol. 128, pp. 62-70, 2014.
- C. Lv, J. Xu, H. Xie, Z. Zeng, Y. Wu, "Equilibrium Strategy Based Coal Blending Method For Combined Carbon And PM10 Emissions Reductions," *Applied Energy*, vol. 183, pp. 1035-1052, 2016.
- Y. Ninomiya, L. Zhang, A. Sato, Z. Dong, "Influence Of Coal Particle Size On Particulate Matter Emission And Its Chemical Species Produced During

Coal Combustion," *Fuel Processing Technology*, vol. 85, pp. 1065-1088, 2004.

- L. Huang, Z. Li, R. Sun, J. Zhou, "Numerical Study On The Effect Of The Over Fire Air To The Air Flow And Coal Combustion In A 670 t/h Wall Fired Boiler," *Fuel Processing Technology*, vol. 87, pp. 363-371, 2006.
- W. Fan, Z. Lin, J. Kuang, Y. Li, "Impact Of Air Staging Along Furnace Height On NOx Emissions From Pulverized Coal Combustion," *Fuel Processing Technology*, vol. 91, pp. 625-634, 2010.
- 84. Q. Wang, Z. Chen, J. Wang, L. Zeng, X. Zhang, X. Li, Z. Li, "Effects Of Secondary Air Distribution In Primary Combustion Zone On Combustion And NO_x Emissions Of S Large Scale Down Fired Boiler With Air Staging," *Energy*, vol. 165, pp. 399-410, 2018.
- J. Yang, R. Sun, S. Sun, N. Zhao, N. Hao, H. Chen, Y. Wang, H. Gao, J. Meng, "Experimental Study On NO_x Reduction From Staging Combustion Of High Volatile Pulverized Coals. Part 1. Air Staging," *Fuel Processing Technology*, vol. 126, pp. 266-275, 2014.
- S. Munir, W. Nimmo, B.M. Gibbs, "The Effect Of Air Staged, Co-Combustion Of Pulverised Coal And Biomass Blends On NOx Emissions And Combustion Efficiency," *Fuel*, vol. 90, pp. 126-135, 2011.
- X. Wu, X. Zhang, K. Yan, N. Chen, J. Zhang, X. Xu, B. Dai, J. Zhang, L. Zhang, "Ash Deposition And Slagging Behavior Of Chinese Xinjiang High Alkali Coal In 3 MW Pilot Scale Combustion Test," *Fuel*, vol. 181, pp. 1191-1202, 2016.
- X. Yang, D. Ingham, L. Ma, N. Srinivasan, M. Pourkashanian, "Ash Deposition Propensity Of Coals/Blends Combustion In Boilers: A Modeling Analysis Based On Multi Slagging Routes," *Proceedings Of The Combustion Institute*, vol. 36, pp. 3341-3350, 2017.
- X. Wen, Y. Xu, J. Wang, "Assessing Slagging Propensity of Coal From Their Slagging Indices," *Journal Of The Energy Institute*, vol. 91, pp. 646-654, 2018.

- M.U. Degereji, D.B. Ingjam, L. Ma, M. Pourkashanian, A. Williams, "Prediction Of Ash Slagging Propensity In A Pulverized Coal Combustion Furnace," *Fuel*, vol. 101, pp. 171-178, 2012.
- X. Weiwei, Z. Jiansheng, X. Dehong, "Crystallization Characteristics Prediction Of Coal Slags Based On SiO₂-Al₂O₃-CaO-Fe₂O₃-MgO Components," *Journal Of Industrial And Engineering Chemistry*, vol. 59, pp. 341-349, 2018.
- 92. H.Y. Park, J.E. Lee, H.H. Kim, S. Park, S.H. Baek, I. Yee, C. Ryu, "Thermal Resistance By Slagging And Its Relationship With Ash Properties For Six Coal Blends In A Commercial Coal Fired Boiler," *Fuel*, vol. 235, pp. 1377-1386, 2019.
- 93. G. Song, X. Qi, W. Song, S. Yang, "Slagging And Fouling Of Zhundong Coal At Different Air Equivalence Ratios In Circulating Fluidized Bed," *Fuel*, vol. 205, pp. 46-59, 2017.
- 94. W.J. Shi, L.X. Kong, J. Bai, J. Xu, W.C. Li, Z.Q. Bai, W. Li, "Effect Of CaO/Fe₂O₃ On Fusion Behaviors Of Coal Ash At High Temperatures," *Fuel Processing Technology*, vol. 181, pp. 18-24, 2018.
- 95. Q. Fang, H. Wang, Y. Wei, L. Lei, X. Duan, H. Zhou, "Numerical Simulations Of The Slagging Characteristics In A Down-Fired, Pulverized Coal Boiler Furnace," *Fuel Processing Technology*, vol. 91, pp. 88-96, 2010.
- 96. I. Panagiotidis, K. Vafiadis, A. Tourlidakis, A. Tomboulides, "Study Of Slagging And Fouling Mechanisms In A Lignite-Fired Power Plant," *Applied Thermal Engineering*, vol. 74, pp. 156-164, 2014.
- 97. T. Yan, J. Bai, L. Kong, Z. Bai, W. Li, J. Xu, "Effect Of SiO2/Al2O3 On Fusion Behavior Of Coal Ash At High Temperature," *Fuel*, vol. 193, pp. 275-283, 2017.
- Y. Wang, J. Jin, D. Liu, H. Yang, X. Kou, "Undestanding Ash Deposition For Zhundong Coal Combustion In 330MW Utility Boiler: Focusing On Surface Temperature Effects," *Fuel*, vol. 216, pp. 697-706, 2018.
- 99. B. Wei, H. Tan, X. Wang, R. Ruan, Z. Hu, Y. Wang, "Investigation on Ash Deposition Characteristics During Zhundong Coal Combustion," *Journal of The Energy Institute*, vol. 91, pp. 33-42, 2018.

- X. Qi, G. Song, W. Song, Q. Lu, "Influence of Sodium-Based Materials on The Slagging Characteristics of Zhundong Coal," *Journal of The Energy Institute*, vol. 90, pp. 914-922, 2017.
- X. Qi, G. Song, W. Song, S. Yang, Q. Lu, "Combustion Performance And Slagging Characteristics During Co-Combustion Of Zhundong Coal And Sludge," *Journal Of The Energy Institute*, vol. 91, pp. 397-410, 2018.
- H. Bilirgen, "Slagging In Pulverised Coal Boilers And Developing Mitigation Strategies," *Fuel*, vol. 115, pp. 618-624, 2014.
- 103. H. Wang and J.N. Harb, "Modeling Of Ash Deposition In Large Scale Combustion Facilities Burning Pulverised Coal," *Progress In Energy Combustion Science*, vol. 23, pp. 267-282, 1997.
- 104. H. Namkung, L.H. Xu, T.J. Kang, D.S. Kim, H B. Kwon, H.T. Kim, "Prediction Of Coal Fouling Using An Alternative Index Under The Gasification Condition," *Applied Energy*, vol. 102, pp. 1246-1255, 2013.
- 105. V. Doshi, H.B. Vuthaluru, R. Korbee, J.H.A. Kiel, "Development Of A Modeling Approach To Predict Ash Formation During Co Firing Of Coal And Biomass," *Fuel Processing Technology*, vol. 90, pp. 1148-1156, 2009.
- 106. S. Balakrishnan, R. Nagarajan, K. Karthick, "Mechanistic Modeling, Numerical Simulation And Validation Of Slag Layer Growth In A Coal Fired Boiler," *Energy*, vol. 81, pp. 462-470, 2015.
- 107. X. Liu and R.C. Bansal, "Integrating Multi-Objective Optimization With Computational Fluid Dynamics To Optimize Boiler Combustion Process Of A Coal Fired Power Plant," *Applied Energy*, vol. 130, pp. 658-669, 2014.
- M. Reiche, S. Grahl, M. Beckmann, "Advanced Monitoring Of The Fouling Process On Waterwalls," *Fuel*, vol. 216, pp. 436-444, 2018.
- 109. A. Valero and C. Cortes, "Ash Fouling In Coal Fired Utility Boilers Monitoring And Optimization of on Load Cleaning," *Progress In Energy Combustion Science*, vol. 22, pp. 189-200, 1996.
- S. Su, J.H. Pohl, D. Holcombe, "Fouling Propensities Of Blended Coals In Pulverized Coal Fired Power Station Boilers," *Fuel*, vol. 82, pp. 1653-1667, 2003.

- S.M.L. Martinez aand K. Watanabe, "Slagging And Fouling Characteristics Of Seam 32/33, Panian Coalfield, Semirara Island, Philiphines," *Fuel*, vol. 85, pp. 306-314, 2006.
- V. Mishra, T. Bhowmick, S. Chakravarty, A.K. Varma, M. Sharma, "Influence Of Coal Quality On Combustion Behaviour And Mineral Phases Transformations," *Fuel*, vol. 186, pp. 443-455, 2016.
- 113. A. Luxsanayotin, S. Pipatmanomai, S. Bhattacharya, "Effect Of Mineral Oxides On Slag Formation Tendency Of Mae Moh Lignite," *Songklanakarin Journal Of Science And Technology*, vol. 32, no. 4, pp. 403-412, 2010.
- H. Soll Morris, C. Sawyer, Z.T. Zhang, G.N. Shannon, J. Nakano, S. Sridhar,
 "The Interaction Of Spherical Al₂O₃ Particles With Molten Al₂O₃ –CaO– Fe₂O₃ –SiO₂ slags," *Fuel*, vol. 88, p. 2009, 670-682.
- 115. J.C. Van Dyk, S.A. Benson, M.L. Laumb, B. Waanders, "Coal And Coal Ash Characteristics To Understand Mineral Transformations And Slag Formation," *Fuel*, vol. 88, pp. 1057-1063, 2009.
- 116. C. Yongtie, T. Kunlin, Z. Zhimin, Y. Wenming, W. Hui, Z. Guang, L. Zhiwang, S.K. Boon, P. Subbaiah, "Modeling Of Ash Formation And Deposition Processes In Coal And Biomass Fired Boilers: A Comprehensive Review," *Applied Energy*, vol. 230, pp. 1447-1544, 2018.
- 117. Arthur F. Stam, K. Haasnoot, G. Brem, "Superheater Fouling In A BFB Boiler Firing Wood-Based Fuel Blends," *Fuel*, vol. 135, pp. 322-331, 2014.
- 118. L. Guo, M. Zhai, Z. Wang, Y. Zhang, P.Dong, "Comparison Of Bituminous Coal And Lignite During Combustion: Combustion Performance, Coking And Slagging Characteristics," *Journal of The Energy Institute*, vol. 1, pp. 1-11, 2018.
- 119. M. Kuang, Z. Li, C. Liu, Q. Zhu, "Experimental Study On Combustion And NO_x Emissions For A Down-Fired Supercritical Boiler With Multiple Injection Multiple Staging Technology Without Overfire Air," *Applied Energy*, vol. 106, pp. 254-261, 2013.
- 120. J. Barroso, J. Ballester, A. Pina, "Study Of Coal Ash Deposition In An Entrained Flow Reactor: Assessment of Traditional And Alternative Slagging Indices," *Fuel Processing Technology*, vol. 88, pp. 865-876, 2007.

- 121. P. Teixeira, H. Lopes, I. Gulyurtlu, N. Lapa, P. Abelha, "Evaluation of Slagging And Fouling Tendency During Biomass Co-Firing With Coal In A Fluidized Bed," *Biomass and Bioenergy*, vol. 39, pp. 192-203, 2012.
- T. Yan, L. Kong, J. Bai, Z. Bai, W. Li, "Thermomechanical Analysis of Coal Ash Fusion Behavior," *Chemical Engineering Science*, vol. 147, pp. 74-82, 2016.
- N.S. Harding and D.C. O'Connor, "Ash Deposition Impacts In The Power Industry," *Fuel Processing Technology*, vol. 88, pp. 1082-1093, 2007.
- 124. R. W. Bryers, "Fireside Slagging, Fouling And High Temperature Corrosion Of Heat Transfer Surface Due To Impurities In Steam Raising Fuels," *Progress In Energy Combustion Science*, vol. 22, pp. 29-120, 1996.
- 125. J. Marchand, "Air Preaheater System Description Manual," *Plant Operation and Control Concept*, pp 195, 2011.
- 126. NM Skorupska, "Coal Specifications-Impact on Power Station Performance," IEA Coal Research IAECR/52, 1993.
- 127. M. Gerhart, G. Davidson, "Fired Steam Generator," *Performance Test Code, ASME PTC 4*, pp 82-107, 1998.

LIST OF PUBLICATIONS

- "Coal Combustion Prediction Analysis Tool for Ultra Supercritical Thermal Power Plant", Mohammad Zahari Sukimi Mat Zaid, Mazlan A. Wahid, M. Mailah, International Review of Mechanical Engineering, Vol 14 no 10, pp 635-645 (2020)
- "Coal Fired Power Plant: A Review on Coal Blending and Emission Issues", Mohammad Zahari Sukimi Mat Zaid, Mazlan A Wahid, Musa Mailah, Mohammad Amri Mazlan, Aminuddin Saat, American Institute of Physics CP Vol. 2062, pp 020022-1-020022-6 (2019)
- "Coal Combustion Analysis Tool in Coal Fired Power Plant for Slagging and Fouling Guidelines", Mohammad Zahari Sukimi Mat Zaid, Mazlan A Wahid, Musa Mailah, Mohammad Amri Mazlan, Aminuddin Saat, American Institute of Physics CP Vol.2062, pp 020028-1-020028-7 (2019)