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ABSTRACT 

Drugs with multiple chiral centers were observed as very effective for 

treating various diseases. However, the enantiomeric resolution of multiple chiral 

center racemates is not much developed compared to racemates having a single 

asymmetric center. This work aimed to develop a chiral separation method for 

antifungal drugs using electrokinetic chromatography (EKC) and to elucidate 

mechanism of enantioseparation using a computer-aided molecular modelling study. 

Two azole antifungal drugs were selected namely ketoconazole and itraconazole, 

which consists of two and three chiral centers, respectively. The separation for 

ketoconazole was achieved using heptakis (2,3,6-tri-O-methyl)-β-cyclodextrin (TM-

β-CD), a commonly used chiral selector, as it is relatively inexpensive and has a low 

UV absorbance in addition to an anionic surfactant, sodium dodecyl sulfate. The 

optimum conditions for chiral separation of ketoconazole was achieved using 10 mM 

phosphate buffer at pH 2.50 containing 20 mM TM-β-CD, 5 mM SDS, and          

1.0% (v/v) methanol with an applied voltage of 25 kV at 25°C with a 5-s 

hydrodynamic injection time at 50 mbar. The four ketoconazole stereoisomers were 

successfully resolved within 17 min (total analysis time was 28 min including 

capillary conditioning). The migration time precision of this method was examined 

to give a repeatability and reproducibility with RSDs ≤ 5.80% (n = 3) and              

RSDs ≤ 8.88% (n = 9), respectively. A computational study, using quantum 

mechanics calculations with AutoDock and semi-empirical PM3 calculations, were 

used to predict the enantiodiscrimination of ketoconazole enantiomers. A Density 

Functional Theory (DFT) single-point calculation at the level of B3LYP/6-311G 

(d,p) was performed for the PM3-optimized complexes to obtain more accurate 

binding energy and also electronic structures of the complexes. Molecular docking 

and DFT were simulated to predict the enantioresolution of itraconazole with two 

types of cyclodextrins (CDs), TM-β-CD and (2-hydroxylpropyl)-γ-cyclodextrin  

(HP-γ-CD). The difference in energies of the inclusion complexes between the 

enantiomers and CD is a measure of chiral discrimination, which results in the 

separation of the enantiomers in the experimental studies. The dual-CD and triple-

CD methods were developed for chiral separation of itraconazole using EKC. Highly 

sulfated β-cyclodextrin (S-β-CD), (2-hydroxylpropyl)-β-cyclodextrin (HP-β-CD), 

TM-β-CD and HP-γ-CD were screened as possible chiral selectors for 

enantioseparation of itraconazole. The enantioseparation of itraconazole was 

achieved using 10 mM phosphate buffer solution at pH 3.62 containing a mixture of 

10 mM of each HP-β-CD, TM-β-CD and HP-γ-CD and an applied voltage of 25 kV 

at 25°C. Both computational and experimental investigations complement each other 

prior to chiral recognition mechanism. Combination of molecular modelling and 

capillary electrophoresis appears as a new emerging method for chiral analysis of 

pharmaceutical drugs. 
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ABSTRAK 

Dadah dengan beberapa pusat kiral telah diamati sangat berkesan untuk 

merawat pelbagai penyakit. Walau bagaimanapun, resolusi enantiomer rasemat 

dengan pusat kiral berganda tidak banyak dibangunkan berbanding dengan rasemat 

yang mempunyai pusat asimetri tunggal. Kajian ini bertujuan untuk membangunkan 

kaedah pemisahan kiral bagi dadah antikulat menggunakan kromatografi 

elektrokinetik (EKC) dan menentukan mekanisme enantiopemisahan menggunakan 

kajian pemodelan molekul berbantukan komputer. Dua dadah antikulat azol telah 

dipilih iaitu ketokonazol dan itrakonazol, masing-masing mempunyai dua dan tiga 

pusat kiral. Pemisahan ketokonazol berjaya diperoleh menggunakan (2,3,6-tri-O-

metil)-β-siklodekstrin   (TM-β-CD), satu pemisah kiral yang biasa digunakan kerana 

ia relatif tidak mahal dan  mempunyai keserapan UV yang rendah sebagai tambahan 

kepada surfaktan anion, natrium dodesil sulfat (SDS). Keadaan optimum bagi 

pemisahan kiral ketokonazol telah diperoleh menggunakan larutan penimbal fosfat 

10 mM pada pH 2.50 yang mengandungi 20 mM TM-β-CD, 5 mM SDS, dan 1.0% 

(v/v) metanol pada voltan gunaan 25 kV pada 25°C dengan masa suntikan 

hidrodinamik 5-s pada 50 mbar. Empat stereoisomer ketokonazol berkenaan telah 

berjaya dipisahkan sepenuhnya dalam masa 17 min (jumlah masa analisis ialah 28 

min termasuk pengkondisian kapilari). Kepresisan masa migrasi kaedah ini telah 

dikaji untuk memberi keterulangan dan kebolehulangan dengan masing-masing 

RSDs ≤ 5.80% (n = 3) dan RSDs ≤ 8.88% (n = 9). Satu kajian komputeran 

menggunakan pengiraan mekanik kuantum dengan AutoDock dan pengiraan semi-

empirik PM3 telah digunakan untuk meramalkan enantiodiskriminasi ketokonazol. 

Pengiraan titik tunggal Teori Fungsi Ketumpatan (DFT) pada tahap B3LYP/6-311G 

(d,p) telah dilakukan daripada kompleks PM3 yang dioptimumkan untuk 

mendapatkan tenaga ikatan dan struktur elektronik kompleks tersebut yang lebih 

tepat. Dok molekul dan DFT telah disimulasikan untuk meramalkan enantioresolusi 

itrakonazol dengan menggunakan dua jenis siklodekstrin (CD), TM-β-CD dan (2-

hidroksilpropil)-γ-siklodekstrin (HP-γ-CD). Perbezaan tenaga kompleks rangkuman 

antara enantiomer dan CD adalah ukuran diskriminasi kiral, yang menghasilkan 

pemisahan enantiomer dalam kajian eksperimen. Kaedah dwi-CD dan tri-CD telah 

dibangunkan untuk pemisahan kiral itrakonazol menggunakan EKC. β-siklodekstrin 

yang sangat tersulfat (S-β-CD), (2-hidroksilpropil)-β-siklodekstrin (HP-β-CD), TM-

β-CD dan HP-γ-CD telah disaringkan sebagai pemilih kiral yang mungkin untuk 

pemisahan enantiomer itrakonazol. Pemisahan enantiomer itraconazol telah dicapai 

menggunakan larutan penimbal fosfat 10 mM pada pH 3.62 mengandungi campuran 

HP-β-CD, TM-β-CD dan HP-γ-CD, setiap satu 10 mM dan voltan gunaan 25 kV 

pada 25°C. Kedua-dua penyiasatan komputeran dan eksperimen saling 

melengkapkan antara satu sama lain sebelum mekanisme pengecaman kiral. 

Gabungan pemodelan molekul dan elektroforesis kapilari muncul sebagai kaedah 

baharu bagi analisis kiral dadah farmaseutikal. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

1.1 Research Background  

Over the last 50 years drug stereochemistry has become a significant issue for 

both the pharmaceutical industry and the regulatory authorities since the problems 

associated with drug stereochemistry are complex. Many pharmaceutical drugs are 

known to be a racemic mixture. Such mixtures are regarded by some as ‘compounds 

containing 50% impurity’ which sometimes can cause toxic effects to the patients 

(Hutt and O’Grady, 1996). Since then, most of the top selling drug companies around 

the world are administered as single enantiomers that is worth of the desired 

physiological activity. Thus the development of methods for the production of 

enantiomerically pure compounds and the assessment of their enantiomeric purity 

have become more and more important specially in life science applications, such as 

biochemical, toxicological, forensic and pharmaceutical research. The development 

of single-enantiomer drugs is preferred because of the reduced risk of side effects.  

In the last two decades, the incidence of serious fungal infections has grown 

dramatically due to the increase of risk groups: the advent of human 

immunodeficiency virus (HIV) or undergoing anticancer chemotherapy or the 

increased use of immunosuppressive therapies in organ transplantation (Thienpont et 

al., 1999; Crego et al., 2001; Castro-Puyana et al., 2005). Amphotericin B 

(Fungizone) is a conventional topical antifungal drug was used to treat fungal 

infections. However, this drug is associated with significant toxicity, including 

infusion-related events, such as chills, fever, headache, nausea and vomiting (Saag 

and Dismukes, 1988). The availability of the azole antifungal agents represents a 

major advancement in the management of systemic fungal infections as they present 

low toxicity. Ketoconazole and itraconazole antifungal drugs have become 

frequently used as alternatives to Amphotericin B since they have versatility of 



 

    

2 

administration and a broad spectrum (Rotstein et al., 1992; Ahmed et al., 1998; 

Dilmaghanian et al., 2004). However, since these two azoles are chiral compounds, 

they also are not free from adverse side effects due to different properties of 

stereoisomers. Therefore, it is important to promote the chiral separation for chiral 

ketoconazole and itraconazole antifungal drugs in order to eliminate the unwanted 

isomer. The structures of these two azoles used in the study use are shown in Figure 

1.1. Ketoconazole and itraconazole consists of multiple chiral centers with two and 

three chiral centers, respectively. 

 

 

 

 

 

 

 

 

 

Figure 1.1 Structures of antifungal azole compounds, ketoconazole and itraconazole 

Enantiomeric resolution becomes more challenging when dealing with 

multichiral center racemates since it is very difficult to find the identical properties of 

the enantiomers (Ali et al., 2016). However, this challenge may be tackled by a 

versatile capillary electrophoresis (CE) technique which has rapidly attracted 

attention as a promising technique for enantioseparation due to its high separation 

efficiency and flexibility (Terabe and Otsuka 1994; Nishi and Terabe 1995). One of 

the most attractive advantages of CE for the separation of enantiomers is easy 

changes of separation media in the method development, that is, one can easily alter 
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the separation solution to find the optimum separation media and one can also use an 

expensive chiral selector because of the small amounts of media required (Nishi, 

1996). Chiral separation using CE also do not require a chiral stationary phase (CSP) 

like in HPLC since the chiral selectors can be directly added into the background 

electrolyte (BGE) to provide a chiral environment and form enantiomer-chiral 

selector complexes with analytes (Li et al., 2015a). 

Mechanistic aspect of enantioseparation becomes interesting since it may 

provide valuable information such as prediction of elution order, appropriate 

chromatographic conditions and types of analytes separable with a given selector 

(Maier et al., 2001). Additionally, it is desirable to obtain the structural models that 

explain the binding forces in chiral recognition to understand qualitatively the 

mechanism of enantioseparation. Computational investigations concerning chiral 

recognition of ketoconazole and itraconazole with cyclodextrins (CDs) have been 

performed to get further insight into the mechanism involved.  

Molecular modelling might be used as a supportive tool to enhance our 

understanding of chiral recognition. Molecular docking approaches proved to be very 

useful for the evaluation of chiral recognition systems. Molecular docking is aimed at 

explaining possible chiral recognition mechanism between the selected antifungal 

drugs and CDs as chiral selector. Furthermore, the computational tools employed in 

molecular modelling such as quantum mechanics and molecular mechanics have 

reached high level of sophistication allowing prediction of intermolecular binding 

scenarios between molecules (Maier et al., 2001). 
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1.2 Problem Statement 

Currently, the separation of the enantiomers of a chiral compound with a 

single center of chirality is no more the issue since tremendous researches have 

shown an excellent separation in separating compounds with a single chiral center. 

However, the separation of enantiomers with multiple chiral centers becomes more 

challenging since it is very difficult to choose suitable chiral selectors that have the 

ability to differentiate several chiral centers simultaneously.  

A variety of chiral selectors are available for chiral separation such as crown 

ethers, CDs, macrocyclic antibiotic and chiral surfactant. Among these chiral 

selectors, CDs offer great advantages in chiral separation as they can differ in 

selectivity of the enantiomers. Besides, CDs are commercially available at a cheaper 

price compared to macrocyclic antibiotic such as vancomycin. The application of 

CDs as chiral selector in CE has made CE a feasible technique for the separation of a 

large number of chiral compounds including azole antifungal drugs.  

Previously, studies on ketoconazole (Castro-Puyana et al., 2005) and 

itraconazole (Castro-Puyana et al., 2006) antifungal drugs with multiple chiral 

centers were performed with single CDs using CE. However, only half of the 

stereoisomers were successfully resolved. Therefore, in order to improved and 

enhanced the resolution of stereoisomers of ketoconazole and itraconazole drugs, 

modifications in BGE solution was performed such as addition of surfactant and the 

use of dual and triple CDs.  

Even though CE can offers a great advantage that is easy to choose a number 

of chiral selectors for chiral separation, however, the screening of suitable chiral 

selectors is a time consuming (Jimidar et al., 2004). Furthermore, the lack of 

fundamental understanding of the chiral recognition mechanisms draw researchers’ 

attention to employ computational techniques in chiral separation. Currently, 

tremendous articles were published on computational studies concerning chiral 

recognition mechanism. However, only one article was published on computational 

study of chiral recognition mechanism of ketoconazole with β-cyclodextrin (β-CD) 



 

    

5 

as chiral selector (Redenti et al., 1999), and the study of chiral recognition 

mechanism of itraconazole has not been reported so far. Hence, it is our interest to 

perform computational studies on these two antifungal drugs so that we can get 

further insight into the chiral interactions and mechanism in the enantioseparation 

process. 

 

1.3 Aims and Objectives 

The aim of the study is to develop computational and experimental studies for 

chiral separation of ketoconazole and itraconazole antifungal drugs using molecular 

modelling and electrokinetic chromatography (EKC), respectively. The interaction 

and possible chiral recognition mechanism of ketoconazole and itraconazole 

antifungal drugs with the CDs chiral selector will be elucidated using computational 

approach via molecular docking studies. The objectives of this study are to: 

1. optimize separation of chiral ketoconazole and itraconazole antifungal 

drugs using CDs as chiral selector in EKC. 

2. elucidate mechanism of ketoconazole antifungal drug enantioseparation 

using computer-aided molecular modelling study.  

3. screen and predict potentials of dual and triple CD system for 

enantioseparation of itraconazole antifungal drug using molecular 

modelling technique, then testing the results using experimental approach.  
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1.4 Scope of the Research 

The focus of the research is to separate two azole chiral drugs, ketoconazole 

and itraconazole using EKC due to its high efficiency, short analysis time and wide 

application range. EKC is known as a suitable and simple method for separation of 

either acidic or basic drugs. The mechanism of enantioseparation was elucidated 

using a computer-aided molecular modelling study. The interaction of enantiomers 

with CD as chiral selector and their binding energies were studied for the chiral 

recognition mechanism. Separation of four and eight stereoisomers of ketoconazole 

and itraconazole, respectively still has not been achieved by far using EKC 

technique. Therefore, studies on these two antifungal drugs should be interesting for 

the purpose of enantioseparation mechanism. 

However, it is very important to note that the results derived from molecular 

modelling generally do not account for the presence of modifiers, ions, effects of 

differential solvation of the diastereomeric complexes and the underlying support 

(Maier et al., 2001). Therefore, there is still limited knowledge on chiral 

discrimination processes and phenomena when comparing experimental 

enantioselectivity data with the results of molecular modelling. 

 

1.5 Significance of Research 

Chirality is a major concern in the modern pharmaceutical industry and still a 

scientific challenge especially to predict successful baseline separations of chiral 

compounds. Hence there is a great need to develop suitable method for analysis and 

separation of chiral compounds especially for compounds with multiple chiral 

centers. In this study, multiple chiral centers ketoconazole and itraconazole 

antifungal drugs were successfully separated and developed using EKC method with 

multiple CDs. For the first time we have succeeded in the enantioseparation of four 

stereoisomers of ketoconazole using EKC with addition of small amount of anionic 

surfactant, sodium dodecyl sulphate (SDS) and addition of three different type of 
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CDs simultaneously in the CE BGE. In addition, the use of dual and triple CDs 

shows significant results in obtaining a complete separation of itraconazole 

stereoisomers. 

This study also contributed to the combination of experimental and 

computational studies using molecular modelling approaches to obtain further insight 

into formation of complexes of chiral compounds with CDs as chiral selectors. 

Molecular docking was successfully performed using Autodock 4.2 software which 

minimized the cost as the usage of certain software are quite expensive. To the best 

of our knowledge, the use of dual CDs in modelling the host-guest system was also 

the first to be performed using Autodock software.  

 

1.6 Outline of the Thesis 

This thesis consists of seven chapters. Chapter 1 describes the research 

background, problem statement, objectives, scope as well as significance of the 

study.  

Chapter 2 reports the literature search related to stereoisomers of chiral 

compounds, the importance of chiral separation, introduction to azole antifungal 

drug, review on previous enantioseparation of ketoconazole and itraconazole drugs, 

capillary electrophoresis as a chiral separation technique, cyclodextrin as a chiral 

selector and last but not least the trends in molecular modelling studies related to 

chiral analysis.  

Chapter 3 explores the enantioseparation of ketoconazole using CD-EKC. 

This chapter reports on the optimization of several parameters of CD-EKC system 

including concentration of heptakis (2,3,6-tri-O-methyl)-β-cyclodextrin  (TM-β-CD) 

used, concentration of sodium dodecyl sulphate (SDS), pH effect, buffer phosphate 

concentration, effect of separation temperature, effect applied voltage, and effect of 

addition organic modifiers. Method validation is also reported in this chapter which 
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discussed on linearity, precision and limit of detection (LOD) of the method 

developed. Furthermore, the method developed was applied to real sample analysis 

in urine and cream formulation using solid phase extraction (SPE) as a sample pre-

treatment. 

Chapter 4 describes the computational investigations on chiral recognition of 

ketoconazole and TM-β-CD. Molecular docking was performed to investigate the 

mechanism of chiral recognition of ketoconazole and TM-β-CD using MS Modelling 

software and Autodock software. In this chapter, four stereoisomers of ketoconazole 

was placed into CD cavity manually to study the inclusion mechanism and obtain the 

binding energy of the complexes using MS Modelling software. The binding energy 

of the complexes was calculated using PM3 with Gaussian 09 software. Next, 

molecular docking of ketoconazole with TM-β-CD was performed using Autodock 

software. Further calculations of binding energies from molecular docking with 

Autodock were performed with Gaussian 09 software using PM3 and DFT method. 

Results from molecular docking showed that the magnitude of binding energy 

difference which indicates the enantiodiscrimination of the separation. The 

interactions involved in the formation of complexes are also discussed in this 

chapter.  

Chapter 5 explores the molecular docking of itraconazole drugs with two 

types of CDs. TM-β-CD and HP-γ-CD were selected as hosts to differentiate the 

ability of different size cavity in the formation of complexes. Difference of 

functional groups were also taken into accounts as the factors in the complexes 

formation. In this chapter, the formation of the complexes was explored using single 

macromolecule and dual macromolecules as host/s. The binding energy was 

calculated with Gaussian 09 using DFT method. The binding energy differences of 

complexes obtain from TM-β-CD and HP-γ-CD was also compared.  Furthermore, 

the chapter discussed on chiral separation of itraconazole using CD-EKC. The 

discussion involved the screening process to find the suitable chiral selector using 

dual and triple CDs system. Native CDs namely TM-β-CD, hydroxylpropyl-γ-

cyclodextrin (HP-γ-CD), and hydroxylpropyl-β-cyclodextrin (HP-β-CD) were used 

for screening. Charged CDs namely highly sulphated β-CD was also used for 
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screening purposes. This chapter also reports the optimization of several parameters 

of CD-EKC system including concentration of CDs used, pH effect, buffer phosphate 

concentration, effect of separation temperature, effect applied voltage, and effect of 

addition organic modifiers. The optimum separation achieved in experimental studies 

was compared with the results obtained in computational study.  

Lastly, chapter 6 presents the overall conclusions and suggestion for further 

studies. This chapter summarizes the result obtained throughout the study such as the 

optimum conditions of the enantioseparation of ketoconazole and itraconazole. In 

addition, the chiral discrimination for both ketoconazole and itraconazole obtained 

from molecular docking are also summarized in this chapter. Suggestions for further 

studies are presented.  
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