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ABSTRACT

The main purpose of this study is to solve the nonlinear Schrödinger (NLS)
equation of optical fiber type using inverse scattering transform (IST) method. Prior
to that, simpler problem on the initial-valued Korteweg-de Vries (KdV) equation
is discussed to show how such nonlinear evolution equation can be linearized and
solved using IST. Then, a more general IST method based on two schemes known
as AKNS (Ablowitz-Kaup-Newell-Sigur) and ZS (Zakharov-Shabat) are discussed.
AKNS method is described in terms of scattering theory whereas ZS method is
expressed solely based on operators. The NLS equation of optical fibre type should
be solved using ZS scheme to avoid any specific calculations of the scattering data.
Finally, the solutions obtained are used to demonstrate the occurence of solitons from
the constructed graph using Mathematica software. It is found that the solution from
the NLS equation is a propagating wave enveloped in a wave packet, called a bright
soliton. On the other hand, the existence of dark soliton is also detected when the
nonlinear term in the NLS equation is negative. Both of these solitons are able to retain
its shape after moving over some distance on the graph. The occurence of solitons are
able to be demonstrated based on the contructed graphs from the solutions of the NLS
equation.
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ABSTRAK

Tujuan utama kajian ini adalah untuk menyelesaikan Schrödinger nonlinear
(NLS) jenis gentian optik menggunakan kaedah transformasi penyebaran terbalik
(IST). Sebelum itu, masalah yang lebih mudah menggunakan persamaan Korteweg-
de Vries (KdV) yang mempunyai nilai awal telah dibincangkan untuk menunjukkan
bagaimana persamaan evolusi nonlinier tersebut dapat diselaraskan dan diselesaikan
menggunakan IST. Kemudian, kaedah IST yang lebih umum berdasarkan dua skema
yang dikenali sebagai AKNS (Ablowitz-Kaup-Newell-Sigur) dan ZS (Zakharov-
Shabat) dibincangkan. Kaedah AKNS dijelaskan dari segi teori penyebaran sedangkan
kaedah ZS dinyatakan hanya berdasarkan operator. Kemudian diputuskan bahawa
persamaan NLS jenis gentian optik diselesaikan dengan menggunakan skema ZS untuk
mengelakkan pengiraan spesifik dari data hamburan. Akhirnya, penyelesaian yang
diperoleh digunakan untuk menunjukkan berlakunya soliton dari graf yang dibina
menggunakan perisian Mathematica. Didapati bahawa penyelesaian dari persamaan
NLS adalah gelombang penyebaran yang dibungkus dalam paket gelombang, yang
disebut soliton terang. Sebaliknya, kewujudan soliton gelap juga dikesan apabila
istilah tidak linear dalam persamaan NLS adalah negatif. Kedua-dua soliton ini dapat
mengekalkan bentuknya setelah bergerak pada jarak yang tertentu mengunakan graf
yang dibina. Kemunculan soliton diperlihatkan berdasarkan graf-graf yang dibina dari
penyelesaian persamaan NLS.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Partial differential equation (PDE) is a differential equation that constitutes

multivariable functions along with their partial derivatives. This type of equation has its

origin from the study of geometrical surfaces and classical mechanics. Beginning in the

nineteeth century, many mathematicians become so progressively involved in various

research problems that can be described by using partial diferential equations. The

main reason partial differential equations were used is because they can express many

physical laws in nature and in pure mathematics for solving science and engineering

problems. Later in its further development, linear PDEs were characterized in order

to find the general theory as well as solution methods for these linear equations.

This is because PDEs have been found to be significant in the development of both

surface theory and to solve the physical problems while these mathematical areas

are related by means of variational calculus [1]. With the finding of distribution

properties and other fundamental ideas, the theory regarding linear PDE has now been

firmly established. However, the subject still has a significant role in the present-

day mathematics especially when the nonlinear PDEs are involved. The PDE can be

expressed formally in operator form of equation

Lx u(X) = f(X), (1.1)

where Lx is a partial differential operator and f(X) is a given function of independent

multivariables X = (x, y, . . .). If the operator Lx is not linear, then the equation is

called a nonlinear PDE. The equation is called a homogeneous nonlinear PDE if f(X)

is zero or a nonhomogeneous nonlinear PDE if f(X) is nonzero.
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Methods for finding solution of nonlinear equations is just one of several

aspects in the theory of nonlinear PDE. However, certain aspects such as uniqueness,

existence, and stability of solutions of nonlinear PDEs are of foundational significance.

These facts (and probably more) regarding nonlinear PDEs have led this field of study

to be applicable to diverse areas of research in mathematical science and engineering.

1.2 Solitary Waves and Their Interactions

Solitary wave (also known later as soliton) was first discovered by J. Scott

Russell in Glasgow canal in 1834 where he first called it as ’great wave of translation’

and later made a report on his observations to the British Association in 1844 known as

’Report on Waves’ [3]. He also did some laboratory experiments to reproduce solitary

waves by dropping a weight in water channel. From this experiment, he found that the

volume of water displaced by the weight is equivalent to the volume of the generated

wave. The speed of the solitary wave, U , can be obtained from

U2 = g(a+ h), (1.2)

where g is gravitational acceleration, a is a wave amplitude, and h is unaffected water

depth. From this equation, we can see that higher waves travel faster [4]. Figure 1.1

shows the parameters and variables applied to describe the solitary wave.

Figure 1.1: Parameters and variables in the soliton [1]
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However, there is more being discussed in the Russell’s report which is the

interaction between waves. What can be analyzed from this result is that if we start with

two initial solitary waves moving near to each other, then these waves can later move

apart from each other as shown in Figure 1.2 since taller waves have greater velocity.

We can see that the taller wave that appear to be initially on the left will overtake the

smaller wave and then continue to be moving apart from each other on its own without

any change of form [5]. This result has nothing to do with the superposition principle

because the process is nonlinear.

.

Figure 1.2: Illustration showing the interaction of two solitions at different times [1].

In addition, according to research done by Zabusky and Kruskal [6] in 1965

on the boundary-value problem for the KdV equation, nonlinear waves produced in

this case can interact strongly and then continue propagating at later time as if they

had been no interaction at all due to some sort of balance between nonlinearity and

dispersion. This behaviour of waves led Zabusky and Kruskal to come up with the

name ’soliton’ (like electron, proton, photon and so forth) to highlight the particle-like

character of waves that can retain their shape after the collision.
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1.3 Nonlinear Schrodinger Equation of Optical Fiber Type

The communication technology that has been used in daily life nowadays is an

industry largely based around optical fiber. With the application of an optical fiber to

transmit data in the form of light pulse, this fiber acts to guide the travelling light in

it, known as waveguide. Basically what happened in this process is when light goes

inside the fiber, it will exit at the fiber’s end. The optic fiber is commonly made of

glass or silica because of its magnificent clarity [7].

The evolution equation of optical solitons in optic fiber can be expressed by

using the governing NLS equation. This equations can be derived from Maxwell’s

equations [8] to finally yield the form of equation (1.3)

i
∂u

∂t
+

1

2

∂2u

∂x2
± |u|2u = 0, (1.3)

where t is time coordinate, x is spatial coordinate and u is the description for the

solitary profile. This equation is our main focus because it can be integrated exactly.

As for ± sign at the nonlinear term, + sign is referring to the self-focusing (bright)

while − sign is for self-defocusing (dark) solitons, respectively [9]. This is the form

of NLS equation to be solved in this research.

1.4 Problem Statement

It is known that the linear superposition principle is used to solve PDEs if these

equations are linear and certain conditions on convergence are met. This principle

can generate a single solution by linearly combining a set of solutions. However,

the principle cannot be used for nonlinear PDEs. The problem is there has been no

generalization made on the method to solve nonlinear PDEs analytically because most

techniques developed for linear PDEs are not applicable to it and as a result numerical

methods are normally used to obtain their approximate solutions [1]. Therefore,
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to solve the nonlinear PDEs analytically, transformation of variables is required to

linearize these nonlinear PDEs. This can be done by using a method known as

the inverse scattering transform (IST). The method can be used to solve NLS other

evolution equations and it was invented by [10] known as a Zakharov-Shabat (ZS)

scheme that mainly utilized the Lax formulation. Other scheme was also developed

by [11] known as the Ablowitz-Kaup-Newell-Segur (AKNS) scheme which is the

generalization of the Sturm-Liouville equation.

1.5 Scope of the Study

This study is limited to the KdV equation and ultimately one particular type

of nonlinear PDE known as the nonlinear Schrödinger (NLS) equation. To deal with

the NLS equation, the consideration is only focus on employing both AKNS and ZS

schemes in the IST. The NLS equation studied is the one which is applicable in optical

fiber where its solution can produce a particular type of optical solitons known as

spatial solitons.

1.6 Research Objectives

The objectives of this research are :

1. To derive the AKNS and ZS schemes in IST method and solve the NLS equation of

optical fiber type using the most preferable scheme.

2. To demonstrate the existence of solitons based on the plotted graph from the

solution of NLS equation of optical fiber type.
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1.7 Significance of the Study

The study seeks to enhance the understanding of optical soliton based on

NLS equation of optical fiber type. This is because the equation is derived from the

Maxwell’s equations that can describe the propagation of light in the optical fiber [8].

Because the NLS equation involves complex nonlinear term, a more general

IST method is required to obtain its solution. Thus, this research starts from the

discussions in solving the KdV equation will all real terms first, which requires a

simpler IST technique. The implementation of the more complex AKNS and ZS

schemes in IST can be done more effectively afterwards.

On the other hand, this study also explains the results of both bright and dark

solitons based on the plotted graph. This is due to the resulting soliton solution that

can propagates differently with time when changing the sign of the nonlinear complex

term in the NLS equation. Therefore, these solitons can be used to elucidate different

phenomenon (bright or dark) in the way that they propagate.

1.8 Outline of the Research

Chapter 1 begins with the introduction of the research which is background

of the research including solitary waves, the form of NLS equation to be used in this

research, problem statement, research objectives, scope and significance of the study.

Chapter 2 deals with the literature review on optical fiber. Then the review is

done on the solitions in optical fiber. The development of IST is reviewed towards end

of the chapter.
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Chapter 3 is focused on the derivation of IST. The derivation starts from the

earlier method used for solving the KdV equation first since it was the simpler form

of evolution equation. Then, the derivation proceeds to a more general IST such as

AKNS scheme and ZS scheme. The solution for NLS equation of optical fiber type is

finally given at the last section of the chapter.

Chapter 4 discusses the results of both bright and dark soliton obtained from

the solution of NLS equations discussed in Chapter 3. The discussion is mainly based

on the graphical plot using the Mathematica software.

And lastly, Chapter 5 concludes the discussion and results found in this

research. Some suggestions are given for future study research.
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