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ABSTRACT 

The aim of this study is to investigate the application of the Fourier series 

method to solve a known mathematical model of surface disinfection and in order to 

determine its effectiveness. The mathematical model is based on the reaction-

diffusion partial differential equation due to the diffusion of the bacteria into the 

disinfectant solution when the decontamination process begins and the reaction of the 

disinfectant killing effect on the bacteria. Analytical and approximate solution for the 

model is carried out using Fourier series. The infinite Fourier series is approximated 

twice by choosing finite terms of the series and by approximating some of the 

eigenvalues of the solution. Mathematica programming software is selected to 

execute the numerical computations. The obtained results are compared with the 

exact initial condition and a previous study. Simulation of the results demonstrate 

that the Fourier series method is able to approximate the solution of the surface 

disinfection model.  
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ABSTRAK 

Tujuan kajian ini adalah untuk mengkaji penggunaan kaedah siri Fourier 

untuk menyelesaikan model pembasmian kuman permukaan yang diketahui dan 

untuk menentukan keberkesanannya. Model matematik tersebut adalah berdasarkan 

persamaan pembezaan separa reaksi-difusi akibat penyebaran bakteria ke dalam 

larutan disinfektan apabila proses dekontaminasi bermula dan tindak balas kesan 

membunuh disinfektan pada bakteria. Penyelesaian analitik dan anggaran untuk 

model itu telah dijalankan menggunakan siri Fourier. Sisi Fourier tak terhingga telah 

dianggarkan dua kali dengan memilih terma siri terhingga dan dengan anggaran 

beberapa nilai eigen penyelesaiannya. Selain itu, perisian pengaturcaraan 

Mathematica dipilih untuk melaksanakan pengiraan berangka. Hasil yang diperoleh 

dibandingkan dengan syarat awal tepat dan kajian lepas. Hasil simulasi menunjukkan 

bahawa kaedah siri Fourier mampu menyelesaikan secara hampir model pembasmian 

kuman permukaan. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Disinfection is a process of cleaning contaminated surface. It is indeed a less 

lethal process than sterilization. Most of the microorganisms on the surface can be 

eliminated like microbial forms such as bacterial spores by disinfection. It does not 

ensure an “overkill’’ and therefore lacks the margin of safety achieved by sterilization 

procedures. Besides, there are some factors that can effect on the performance of the 

disinfection procedure and control it significantly (Favero and Arduino, 2006). Some 

of these factors are microorganisms' nature and number, the amount of organic matter 

present, the type and condition of instruments, devices, and materials to be disinfected 

and the temperature (Alhashmi, 2018). 

An example of disinfectant is clay solution. Clay is a finely-grained natural 

rock or soil material that combines one or more minerals. It includes hydrated 

aluminium silicate, quartz and some natural fragments. Further, many researchers have 

found that it is very beneficial to use the natural products like clay in the disinfection 

process because it displays antibacterial properties. Williams et al. (2008) reported that 

the healing skin and gastrointestinal ailments can be treated by using absorptive 

properties of clay minerals. 

Practically, the antibacterial activity of the disinfection is reaction-diffusion 

process because the bacteria diffuse into the disinfectant, interact with disinfectant and 

killed due to the killing effect of the disinfectant. This interaction process between 

disinfectant solution and contaminant can be modelled, mathematically, in terms of 

reaction- diffusion equation which is one of the well-known partial differential 

equations. 
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1.2 Background of Problem  

A study on formulating and solving a mathematical model for the effectiveness 

of the disinfectant on harmful bacteria reduction on a surface has been presented by 

Ockendon  et al. (2016). The governing equations have been formulated as a second 

order reaction-diffusion parabolic partial differential equation (PDE). They have used 

Laplace transform method (LTM) and finite difference method (FDM) to achieve an 

analytical and numerical solutions, respectively, for the problem over the infinite 

interval 0 x  . Later on, a numerical approach has been performed by Chai (2017) 

to solve the model over the finite interval 0 x h   based on FDM and method of lines 

(MOL) with fourth-order Runge-Kutta method (RK4). Recently, Alhashmi (2018) 

utilized the Laplace transform method to solve the same model for only 0x   and 

finite element method (FEM) over 0 x h  . Therefore, the studies mentioned above 

did not give an analytical approach for the problem over 0 x h  . This study presents 

a general and approximate solutions on solving the model based on Fourier series 

method.  

Figure 1.1 demonstrates the disinfectant solution and bacteria interaction on a 

hard-contaminated surface. The bacteria will be killed when it diffuse into the 

disinfectant solution region.  

𝑥̂ = ℎ 

Disinfectant Solution Region      

𝑥̂ = 𝛿    

Bacteria Region 

𝑥̂ = 0 

Figure 1.1 The interaction between disinfectant solution and bacteria on the surface. 

According to Ockendon  et al. ( 2016), the mathematical model of the problem 

can be described as reaction-diffusion equation is 

Bacteria move into Disinfectant 
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2

2
ˆ ˆ,0 , 0

ˆ ˆ
ˆˆ

ˆ ˆ

b b
D b x h t

t x


 
    

 
    (1.1)  

where b̂  is bacteria concentration, t̂ is the time, D is bacteria diffusion coefficient, x̂

is region thickness, ̂  disinfectant killing effect and h  is the total thickness of 

microorganisms and disinfectant solution regions. 

with boundary conditions 

 
ˆ

ˆ ˆˆˆ 0 : , 0
ˆ ˆ

b
x D t t

t x




 
   

 
                                  (1.2) 

                         1 ˆˆ ˆ ˆˆ 0 : 0, , 0x t K b t t      (1.3) 

                       
ˆ

ˆ ˆ ˆˆ : , 0  or  0, 0
ˆ

b
x h b h t t

x


   


 (1.4) 

where K  is the partition coefficient, ̂  is bacteria growth rate,  t̂ is the surface 

concentration of the bacteria per area and  bacteria region thickness. 

The initial condition for the problem is assumed to be equally distributed and 

taking the value 0b  over bacteria region ˆ0 x    and no bacteria over the disinfection 

region (Ockendon et al., 2016).  

Hence, from Figure 1.1, we have 

              0
ˆ, 0 ,ˆ ˆ,0
ˆ0 , .

b x
b x

x h





 
 

 
 (1.5) 

The previous model (model A) was formulated and modified by Ockendon  et 

al. (2016) leading to three modified models B, C and D. In Chapter 2, a discussion on 

formulating all these models' cases is presented.  
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Unlike the previous studies in solving the governing equation presented by Ockendon  

et al. (2016), Chai (2017) and Alhashmi ( 2018), this research has utilized separation 

of variables and Fourier series methods to give analytical and approximate solutions 

for the model. These techniques are mostly being used to solve different type of PDEs 

like parabolic, hyperbolic and elliptic equations. 

1.3 Problem Statement 

A surface decontamination model has been proposed by Ockendon  et al. 

(2016) and solved over the infinite interval 0 x   by means of Laplace transform 

method. Chai (2017) has solved the model over the finite interval 0 x h   using finite 

difference method (FDM) and method of lines (MOL). Alhashmi (2018) has applied 

the Laplace transform method to solve the model over finite interval. These studies 

have led to the following questions: 

a) Can the surface decontamination model equations (1.1) to (1.4) over 

the finite interval ˆ0 x h   be solved using separation of variables and 

Fourier series method?  

b)  How will the results compared with the exact initial condition and the 

previous studies? 

1.4 Research Objectives 

The objectives of this research are:  

a) To study a reaction-diffusion equation model for disinfectant solution of 

surface decontamination. 

b) To apply the method of separation of variables and Fourier series method to 

solve a surface decontamination model. 

c) To analyze the numerical results for various cases of the model’s parameters. 
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1.5 Significance of the Study 

The significant of this research is the new general and approximate solution for 

the surface decontamination model in terms of Fourier series. Thus, this study 

contributed in both knowledge and method of solving a surface decontamination model. 

Besides, solving the surface decontamination model will help relevant industries in 

optimising their decontamination products as well as the customers to save cost and the 

effort for the cleansing process. 

1.6  Scope of the Study 

In this research, the one-dimensional linear time dependent reaction-diffusion 

equation which formulates the disinfectant solution process is considered. The Fourier 

series method to solve the mathematical model is considered to obtain the analytical and 

approximate solutions on the domain of interest. To execute the mathematical code of the 

disinfectant solution model, Mathematica software is utilized.  

1.7 Organization of Dissertation 

This dissertation consists of five chapters. Chapter 1 introduces the main 

concepts and objectives of the research. In Chapter 2, the related literatures are 

presented and evaluated. Chapter 3 discusses the research methodology and provides 

the analytical approximate solutions of disinfectant solution model using Fourier series 

method. The analysis of the results and comparisons using different values of the 

model parameters are analysed in Chapter 4. Finally, Chapter 5 gives a conclusion and 

some recommendations for the future studies.
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