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ABSTRACT 

Photovoltaic (PV) panels are prone to overheating, ultimately decreasing PV 

efficiency. One of the solutions to prevent overheating of PV panels is by integrating 

nano-enhanced phase change material (NPCMs) at the back of the PV panel. Yet, it 

causes agglomeration, which degrades its thermophysical properties and becomes less 

effective in reducing the PV temperature. This leads to the addition of surfactants to 

NPCMs to reduce agglomeration. However, to date, no comparison studies reported 

how the addition of surfactant in NPCMs improves agglomeration and its 

thermophysical properties. Furthermore, the performance of this surfactant added 

NPCMs (SNPCMs) is still not fully explored when placed under field-testing 

conditions. Thus, this study aims to first evaluate the role of surfactants experimentally 

on reducing agglomeration and improving the thermophysical properties of NPCMs, 

followed by a comparison study and evaluation of the SNPCMs' temperature 

performance as a PV panel coolant under field testing conditions, and lastly, to 

evaluate the PV electrical performances when integrated with SNPCMs through 

simulation. The study was conducted in a few stages. The first stage of this study deals 

with the synthesis of NPCMs and SNPCMs at different nanoparticle weight 

percentages, followed by the addition of surfactants to the samples. Thermophysical 

properties, including charging/discharging rate, melting/solidifying temperature, latent 

heat, specific heat capacity, thermal conductivity, heat transfer rate, total heat stored, 

and morphological analysis were investigated for all the samples. The second stage of 

this study investigated the PV temperature reduction when samples were attached to 

the back of the PV panel. Solar irradiance, ambient temperature, and PV temperature 

for one sunny day were chosen for the analysis. Assessment of this material's potential 

electrical performance enhancement when applied to the PV panel was the focus of 

the final part of this study. Graphene nanoplatelet (GNP) with three different 

percentages (1wt%, 3wt%, and 5wt%) was used as nanoparticles of interest and added 

to paraffin wax (PW) to create NPCMs. Sodium dodecylbenzene sulfonate (SDBS) 

was used as a surfactant. The morphological study revealed that agglomeration and 

sedimentation were eliminated from the NPCMs when SDBS surfactant was added 

and led to the thermophysical improvement shown by sample PGS5 (PW/5wt% GNP 

with SDBS) which showed; (a) 56.3% improvement in charging and discharging rate, 

(b) 43.2% improvement in latent heat, (c) 69.5% improvement in specific heat 

capacity, (d) 73.45% enhancement of heat transfer rate, (e) can store the most heat with 

64.13% improvement, and (f) relative enhancement by a factor of 25.94 in thermal 

conductivity. The on-site evaluation showed temperature reduction as high as 44.2% 

was recorded when sample PGS5 was applied to the back of the PV panel. With PV 

operating at a lower temperature, the simulation results show that PV produces higher 

output power with an increase of maximum output power by 16.92% and a 7.37% 

improvement in efficiency. These results revealed that SDBS surfactant plays a vital 

role in reducing the agglomeration by enhancing the adsorption forces between PW 

and GNP, leading to improved thermophysical properties of NPCMs, thus acting as 

superior material PV coolant, which can ensure a more reliable and efficient PV 

performance. 
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ABSTRAK 

Panel fotovoltan (PV) mudah terdedah kepada masalah suhu operasi terlampau 

tinggi, yang akhirnya menyebabkan penurunan prestasi PV. Salah satu penyelesaian 

untuk mengelakkan pemanasan panel PV adalah dengan mengintegrasikan bahan 

berubah fasa dipertingkatkan nano (NPCMs) di bahagian belakang panel PV. Namun, 

ia menyebabkan penggumpalan, yang menyusutkan sifat termofizikalnya dan 

menjadikan ia kurang berkesan dalam mengurangkan suhu PV. Ini membawa kepada 

penambahan surfaktan ke dalam NPCMs untuk mengurangkan penggumpalan. 

Namun, setakat ini, tidak ada lagi kajian perbandingan yang melaporkan bagaimana 

penambahan surfaktan ke dalam NPCMs membantu mengurangkan penggumpalan 

dan meningkatkan sifat termofizikalnya. Tambahan pula, prestasi bahan berubah fasa 

dipertingkatkan nano yang ditambah surfaktan (SNPCMs) ini masih belum diterokai 

sepenuhnya ketika ia diletakkan di bawah ujian lapangan. Oleh itu, kajian ini bertujuan 

untuk menilai terlebih dahulu peranan surfaktan terhadap pengurangan penggumpalan 

dan peningkatan sifat termofizikal NPCMs, diikuti dengan kajian perbandingan dan 

penilaian prestasi SNPCMs sebagai penyejuk panel PV di bawah ujian lapangan, dan 

akhir sekali, untuk menilai prestasi elektrik PV apabila diintegrasikan dengan 

SNPCMs melalui simulasi. Kajian ini dilaksanakan dalam beberapa tahap. Tahap 

pertama kajian ini berkaitan dengan sintesis NPCMs dan SNPCMs pada peratusan 

berat nanozarah yang berbeza, diikuti dengan penambahan surfaktan pada sampel. 

Sifat termofizikal, termasuk kadar pengecasan/nyahcas, suhu lebur/pemejalan, haba 

pendam, muatan haba tentu, kekonduksian terma, kadar pemindahan haba, jumlah 

haba yang disimpan dan analisis morfologi diselidik untuk semua sampel. Tahap kedua 

kajian ini pula menyelidiki penurunan suhu PV apabila sampel diletakkan di bahagian 

belakang PV. Sinaran matahari, suhu persekitaran, dan suhu PV untuk satu hari yang 

cerah dipilih untuk analisis. Penilaian potensi peningkatan prestasi elektrik PV panel 

apabila bahan ini digunakan pada panel PV menjadi fokus bahagian akhir kajian ini. 

Nanoplatlet grafin (GNP) dengan tiga peratusan yang berbeza (1wt%, 3wt%, dan 

5wt%) digunakan sebagai nanozarah dan ditambahkan ke lilin parafin (PW) untuk 

penyediaan NPCMs. Natrium dodesilbenzena sulfonat (SDBS) digunakan sebagai 

surfaktan. Kajian morfologi menunjukkan bahawa penggumpalan dan pemendapan 

berjaya dihilangkan apabila surfaktan ditambah, dan membawa kepada peningkatan 

yang ditunjukkan oleh sampel PGS5 (PW/5wt% GNP dengan SDBS) iaitu; (a) 

peningkatan 56.3% dalam kadar pengecasan dan nyahcas, (b) peningkatan 43.2% pada 

haba pendam, (c) peningkatan 69.5% dalam muatan haba tentu, (d) peningkatan kadar 

pemindahan haba sebanyak 73.45%, (e) dapat menyimpan jumlah haba dengan 

peningkatan 64.13%, dan (f) peningkatan relatif dengan faktor 25.94 dalam 

kekonduksian terma. Penilaian ujian lapangan menunjukkan penurunan suhu setinggi 

44.2% dicatatkan ketika sampel PGS5 digunakan pada bahagian belakang panel PV. 

Dengan PV beroperasi pada suhu rendah, keputusan simulasi menunjukkan daya 

pengeluaran maksimum meningkat sebanyak 16.92% dan peningkatan kecekapan 

sebanyak 7.37%. Hasil ini menunjukkan bahawa surfaktan SDBS memainkan peranan 

penting dalam mengurangkan penggumpalan dengan meningkatkan daya penjerapan 

antara PW dan GNP, yang membawa kepada sifat termofizikal NPCMs yang lebih 

baik, sekali gus bertindak sebagai bahan penyejuk PV yang unggul, serta dapat 

memastikan prestasi PV yang lebih dipercayai dan cekap. 
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INTRODUCTION 

1.1 Problem Background 

As of recent times, the combustion process of fossil fuel has been proven to 

cause an increase in greenhouse effects. Thus, the idea of moving towards renewable 

energy (RE) is rapidly cultivated. It is gaining worldwide attention due to its non-

depleting nature and its positive impact on the natural environment. RE emits little to 

no greenhouse gases or pollutants into the air compared to fossil fuels. Thus, the 

interest in one of the largest RE sources, Photovoltaic (PV), has broadened among 

researchers due to its advantages. PV offers the most reliable, profuse, and pollution-

free energy in the world [1, 2]. PV is a technology that can capture sunlight and convert 

it into electricity. Energy conversion efficiency has high as 23% has been achieved 

using PV technology [3].  

However, in hot climate countries, the increment of PV panels temperature is 

the primary concern. A previous study showed that for every 1°C increment in 

operating temperature, the amount of PV electricity generated is reduced by as much 

as 0.4% [4]. Despite the effectiveness of methods such as water sprinklers [5], forced 

ventilation [6], and high ventilation [7] in cooling PV panels, these approaches require 

high capital outlays and are expensive to maintain in terms of water and electricity 

consumption. In addition, long-term exposure to humidity can lead to corrosion in 

systems that use water-based sprinklers, thereby shortening the life span of the panels. 

Phase-change materials (PCMs) [8-16] offer a cheaper alternative as coolants 

for PV modules. In addition, PCMs also easily scalable, offering added advantage of 

covering big surface areas without occurring huge cost. Not to mention it is easier to 

maintain for a more extended period. Moreover, PCMs are abundantly available and 
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cheap, and they can be easily obtained, ensuring economic viability and market 

penetration [17].  

However, PCMs alone have several undesirable thermal characteristics. They 

are generally characterized by low specific heat capacities [18], low thermal 

conductivity [19], and low latent heat, which contradict the characteristics of good 

coolant material for PV modules. To improve the properties of existing PCMs, they 

are often combined with other materials such as microfin [17, 20-24], other types of 

PCMs [25], carbons [26, 27], and nanoparticles. A PCMs blended with nanoparticles 

is known as a nano-enhanced phase-change material (NPCMs). Examples of 

nanoparticles used in NPCMs include graphene oxide (GO) [28] , titanium oxide 

(TiO2) [29-35], aluminum oxide (Al2O3) [8, 36-38] , iron oxide (Fe2O3) [39] , silicon 

dioxide (SiO2) [37, 39] , cobalt oxide (CoO) [40], copper oxide (CuO) [41-45] and 

zinc oxide (ZnO) [39] [46]. Since the tiny nanoparticles have larger surface-area-to-

volume ratios, they foster the interaction of nanoparticles with the PCMs, thus 

adjusting the PCM's thermal properties [47]. In addition, NPCMs have been proven to 

enhance panel performance by enhancing their thermophysical properties. However, 

despite these advantages, the use of NPCMs was reported to cause agglomeration, a 

phenomenon in which nanoparticles cluster and suspend together, thereby increasing 

the effective size of the nanoparticles. After several melting–solidification thermal 

cycles (increased hours of operation), this severe agglomeration will ultimately lead to 

reliability issues in NPCMs. Therefore, it is important to avoid agglomeration as it can 

degrade the thermophysical properties of NPCMs, making them less effective in 

reducing PV module temperature.  

To mitigate the agglomeration problem, surfactants can be added to the 

NPCMs matrix [48, 49], producing so-called surfactant added NPCMs (SNPCMs). As 

a result, the surface tension between the nanoparticles and the PCMs is reduced, 

making the PCMs and nanoparticles disperse better, reducing the agglomeration and, 

in turn, improving their thermophysical properties. 
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Paraffin wax (PW) was employed as base PCMs material due to its low cost and 

characteristics such as (a)non-corrosive and non-toxic nature, (b) lack of sub-cooling, 

and (c) and high heat capacity and latent heat. In addition, PW can store and release 

large amounts of latent heat energy while transitioning from a solid to a liquid and 

remains constant throughout a phase change [50]. Graphene nanoplatelet (GNP) has 

been utilized as a nanoparticle because it has an excellent thermal conductivity [51] 

and is a cationic nanoparticle  [52]. In addition, they are non-reactive with PW, which 

prevents hazardous substances during the material development phase resistance. 

Sodium dodecyl-benzene sulfonate (SDBS) was used as a surfactant due to its low 

cost, ease to purchase, and anionic properties [52]. SDBS is an anionic surfactant, 

while GNP is a cationic nanoparticle, which leads to more stable dispersion when an 

oppositely charged surfactant and nanoparticles are used [52].  

1.2 Problem Statement 

Overheating of the PV panel is a common phenomenon that could affect the 

PV system's efficiency. Increasing temperature increases the charge carrier 

concentration, increasing the saturation current due to a reduced bandgap, causing the 

open-circuit voltage to drop [53]. This occurs due to increased recombination rates, 

thereby reducing the PV's overall power output.  As a result, heat can severely reduce 

the PV panel's power production. Therefore, as time passes, many researchers try to 

investigate a method for cooling the PV panel and maintaining the temperature close 

to their nominal operating value besides being economically viable. This is to ensure 

that there will be minimum power loss with the increasing temperature on the PV 

panel, and where it can stand hot climate for a more extended period, thus would help 

to reduce the cost of maintenance.  

PCMs currently one of the most reliable techniques to cool and regulate PV 

panels' temperature and improve electrical efficiency. Integrating PCMs into the back 

of the PV panel may regulate the PV panel's thermal behaviors and performance [54]. 

PCMs play a significant role in improving the heat transfer, thus reducing the 

temperature variation resulting in a more efficient PV system. Nevertheless, due to 
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PCM's poor thermal conductivity, nanoparticles are often added to the PCMs, to create 

NPCMs with improved conductivity. Many researchers used nanoparticles into PCMs 

in the even or odd sequences of the number. The use of 1 wt%, 3 wt%, and 5 wt% in 

previous and current studies was the common amount that has been frequently used. 

Besides, a study by Sharma et al. [29] also shows that 5wt% is the optimum percentage 

of nanoparticle weight in improving the PCM’s properties even with agglomeration. 

However, agglomeration of NPCMs worsened over time, which led to the 

addition of surfactants to the NPCMs [48, 49], producing surfactant added NPCMs 

(SNPCMs). Nevertheless, studies show that the optimum thermal conductivity, 

uniform dispersion, and less agglomeration were achieved using the surfactant-to-

nanoparticle ratio of 1:1 [29, 55]. Despite the various studies reported on using 

SNPCMs with several different characterizations, an absence of comparison studies 

reported on how SDBS surfactant in a paraffin wax/graphene nanoplatelet NPCMs 

matrix plays a role in eliminating agglomeration and improving its thermophysical 

properties. Moreover, no studies have assessed its performance in enhancing the 

temperature-reduction characteristics of PV panels under field-testing conditions. In 

addition, no studies on the predicted/expected improvement of the PV electrical 

performance when applied with SNPCM using simulation. Therefore, it is essential to 

analyze the role of surfactants in enhancing the thermophysical properties of the 

NPCMs to ensure the best formula in cooling PV panels, which can offer not only 

significant advantages of the simpler method without the need for any controlled 

environment but also economically viable approach for long term reliability of PV 

modules. Furthermore, it is also important to do a simulation to prove the effectiveness 

of regulating the PV temperature on its electrical performance without the hassle of 

testing it, which could involve high cost. Besides, all PV components, parameters, and 

interactions are considered through simulation, thus making it as accurate as 

experimental testing. Consequently, the implementation of the materials in the PV 

panel in this work thus can be regarded as a novel attempt that can contribute to 

enhancing knowledge mainly in the area of photovoltaic panels coolant application. 
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1.3 Research Objectives 

This study aims to investigate the enhancement of PV performance through the 

integration of the surfactant added nano-enhanced phase change materials (SNPCMs). 

To achieve this aim, the following objectives were identified: 

(a) To synthesis different ratios of paraffin wax/graphene nanoplatelet NPCMs 

with and without SDBS, investigate and compare the thermophysical (charging 

and discharging rate, latent heat, specific heat capacity, heat transfer rate, 

thermal conductivity, and total heat stored) and the morphological effect of 

SDBS surfactant on the NPCMs. 

(b) To analyze the temperature reduction of PV panels under field-testing 

conditions (at the same location, irradiance, ambient temperature, and wind 

speed) by using the prepared paraffin wax/graphene nanoplatelet with SDBS 

SNPCMs. 

(c) To evaluate the PV electrical performances (short circuit current, open-circuit 

voltage, output power, performance ratio, and efficiency) by inputting 

parameters from the field-testing experiment such as solar irradiance, ambient 

temperature, and PV surface temperature when integrated with paraffin 

wax/graphene nanoplatelet with SDBS SNPCMs through simulation. 

1.4 Scope of Research  

This research was conducted with the following scope: 

(a) The fabricated PV coolant that focused on nano-enhanced phase change 

materials are; paraffin wax (PW), which was used as the base material with the 

addition of 1wt%, 3wt%, and 5wt% of nanoparticles which are graphene 

nanoplatelets (GNP) 
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(b) The surfactant was added to nano-enhanced phase change material using the 

two-steps method, and sodium dodecylbenzene sulfonate (SDBS) was used as 

a surfactant. The addition of SDBS was varied to study the effect of SDBS on 

the thermophysical properties of the NPCMs sample. The morphological 

analysis of NPCMs with SDBS (SNPCMs) and NPCMs without SDBS was 

conducted using FESEM. 

(c) Laboratory investigations were carried out on NPCMs and SNPCMs to study 

their thermophysical properties, charging and discharging rate, latent heat, 

specific heat capacity, heat transfer rate, thermal conductivity, and total heat 

stored.  

(d) A stopwatch was used to observe charging and discharging rate, differential 

scanning calorimeter (DSC) was used to measure melting and solidification 

temperature, latent heat and specific heat capacity, the thermal camera was 

used to measure heat transfer rate, thermal conductivity apparatus was used to 

measure thermal conductivity, and lastly, total heat stored was calculated from 

the data obtained. 

(e) The prepared SNPCMs were integrated into the back of the PV panel. The PV 

panel were left under the same field-testing conditions (solar irradiance, 

ambient temperature, wind speed, and location) for one week to study the PV 

temperature reduction compared to conventional PV. 

(f) The Sunwaysolar SW10P-36, a typical 10W PV panel, used for the experiment, 

was chosen to simulate the electrical performance of the PV panel, open-circuit 

voltage, and output power. 

 

The following were limitations of this study: 

(a) In this study, the chosen nanoparticles' weight percentages were 1 wt%, 3wt%, 

and 5wt%. These weight percentages were the common amounts frequently 

used in previous research, which also agreed with the previous work done by 

researchers in references [56] [29]. 
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(b) This work only focuses on the effect of one type of surfactant, SDBS, and using 

a fixed amount. It does not consider other surfactants due to its easy availability 

and low cost compared to other surfactants. 

(c) The electrical performance of the PV panel, open-circuit voltage, and output 

power were simulated instead of field-testing due to difficulties in getting the 

device to measure all these parameters at the exact location, time, and 

conditions, which are costly and time-consuming.  

 

1.5 Significance of Study 

The contributions of this study are listed below: 

(a) An SDBS surfactant was used to reduce the formation of agglomeration. Hence 

the uniform GNP distribution inside the PW was achieved. Furthermore, SDBS 

had shown promising results when the compatibility between GNP and its PW 

matrices was improved, thereby enhancing the thermophysical properties of 

the nano-enhanced phase change material. The effect of SDBS on charging and 

discharging rate, melting and solidification temperature, latent heat, specific 

heat capacity, thermal conductivity, heat transfer rate, and total heat stored 

have been carried out for the first time accordingly.     

(b) The addition of SDBS into the NPCMs has improved the thermophysical 

properties of the material. In particular, the charging and discharging rate, 

latent heat, specific heat capacity, heat transfer rate, thermal conductivity, and 

total heat stored have been improved. Hence, the addition of SDBS into 

NPCMs was successfully done to identify the best formulation that enhanced 

the material's thermophysical properties as a PV panel coolant. 

(c) The newly prepared SNPCMs integrated behind the PV panel have reduced the 

PV panel temperature. Hence, it proved the effectiveness of SNPCMs as a PV 

coolant. 
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(d) A simulation on the PV electrical performance, open-circuit voltage, and 

output power show that the PV panel integrated with SNPCMs has better 

performance than PV without SNPCMs. Hence, it was successfully proven that 

SNPCMs also improve the PV panel's performance, leading to a more efficient 

PV panel. 

(e) This study has used SDBS to reduce the agglomeration between GNP and PW. 

It is remarkably found that the PW/5wt% GNP with SDBS exhibits the most 

excellent thermophysical properties and reduced the PV temperature as high as 

31.6 °C. Furthermore, the simulation shows that PV with SNPCMs has the 

highest open-circuit voltage and output power with 13.27% and 16.92% 

improvement, respectively.  
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1.6 Thesis Outline 

The thesis is organized as follows: 

Chapter 2 presents a comprehensive review of PV panels, other cooling 

techniques of PV panels, concepts of phase change material, and nano-enhanced phase 

change material. The concept of adding surfactants into nano-enhanced phase change 

materials and their advantages is described here. Previous studies on surfactant added 

nano-enhanced phase change material for different applications, PV panels integrated 

with phase change material, and nano-enhanced phase change material was also 

presented and reviewed. 

Chapter 3 presents the research methodology that explains the experimental 

setup and procedures employed in this study. It includes a description of the materials 

used and a detailed procedure of synthesizing surfactant added nano-enhanced phase 

change material. The experimental setup used for measuring charging and discharging 

rate, differential scanning calorimeter, thermal conductivity, heat transfer rate 

measurement, calculation of total heat stored, and morphology have also been 

described. The modification of the PV panel by integrating SNPCMs and the 

experimental setup to study the PV temperature reduction has also been described. 

Finally, a detailed description of the simulation of PV electrical performance was 

explained thoroughly. 

Chapter 4 describes the main results and analysis of data collected in this study; 

The effect of surfactants on the NPCMs. In addition, the morphological and structural 

analysis explained thermophysical properties such as; charging and discharging rate, 

latent heat, specific heat capacity, heat transfer rate, thermal conductivity, and total 

heat stored. Chapter 4 also describes the analysis of PV temperature performance that 

was field-tested. Finally, the simulation study of PV electrical performance, including 

open-circuit voltage and output power using MATLAB, was explained. 

Chapter 5 concludes the study's findings, and some recommendations are also 

included for future work.  
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