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ABSTRACT 

Biocatalysis has emerged as a green technology that is able to replace 

hazardous and extreme conditions faced in chemical based catalysis. By using 

magnetized nanomaterials, enhancement on the downstream processing is evident as 

it eases the immobilized enzyme separation from reaction mixture without having to 

interfere reaction cavity directly and is able to prepare the enzyme for wide working 

environment applications. Immobilization of lipase enzyme on superparamagnetic 

iron oxide nanoparticles is important to maintain the lipase open form as its active 

sites lie within a conserved catalytic triad which occurs naturally in a closed state. 

Optimization on synthesis of nanomagnetic materials was conducted using 2.45 GHz 

microwave. The nanoparticles were synthesized in an aqueous solution of 

FeCl3.6H2O as precursor and NH3 as nucleating agent. Optimization runs were 

designed and statistically analyzed using face centered central composite design in 

Minitab® software. The optimized conditions for microwave assisted synthesis of 

nanomagnet materials were 100 
o
C reaction temperature, 20 minutes reaction time at 

631 W microwave power producing 0.371 g of magnetic nanoparticles. Based on the 

characteristic studies done on synthesized nanomagnets by using X-Ray diffraction 

crystallography, field emission scanning electrom microscopy, attenuated total 

reflectance – fourier transform infrared spectroscopy and vibrating sample 

magnetometer, the nanoparticles possessed the same structure as standard maghemite 

with good magnetic properties. Subsequent maghemite complex cross-linking with 

glutaraldehyde provide suitable environment for the enzyme to be immobilized. 

Optimization on the conditions for lipase immobilization was carried out using 

response surface methodology experimental design to obtain the precise optimized 

condition for the process. Selected process variables involved were incubation time, 

reaction temperature and glutaraldehyde content and optimized conditions obtained 

for lipase immobilization were at 5 hour incubation time, 44 ℃ incubation 

temperature and 11 % (v/v) glutaraldehyde content. The optimized immobilized 

lipase activity in an aqueous based catalysis was 1.49 ±0.05 U. Developed 

immobilized lipase complex was then subjected for biodiesel production using local 

sourced refined cooking palm oil as substrate. The work was performed under 

microwave irradiation to further speed up catalysis reaction. Effects on microwave 

treatment towards process efficiency were investigated quantitatively using fractional 

factorial experimental design. It was found that microwave power input, reaction 

time, immobilized lipase loading and methanol to feed palm oil ratio, affect the 

biodiesel yield significantly. The highest biodiesel recovery achieved from 

microwave assisted immobilized lipase catalysed transesterification of palm oil was  

70.2 %. The physical properties of produced biodiesel was evaluated and fulfilled the 

ASTM general requirement for fuels. Based on the findings, the constructed 

immobilized lipase from Candida antarctica onto maghemite nanoparticles managed 

to elevate the versatility of immobilized enzymes into wide range of applications by 

easing the downstream processing with high substrate tolerance and protein stability. 
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ABSTRAK 

 

 

 

Biomangkin telah muncul sebagai teknologi hijau yang boleh menggantikan 

keadaan lampau dan berbahaya yang dialami dalam kimia yang berasaskan mangkin.  

Dengan menggunakan nanobahan bermagnet, peningkatan pemprosesan hiliran 

sebagai bukti kerana ia memudahkan pemisahan enzim yang tidak boleh gerak 

daripada campuran tindakbalas tanpa mempunyai gangguan rongga tindakbalas 

secara terus dan mampu menyediakan enzim untuk penggunaan yang lebih luas. 

Proses sekat gerak enzim lipase menggunakan partikel superparamagnet nano adalah 

penting untuk memastikan enzim berada dalam keadaan terbuka disebabkan tapak 

aktif enzim secara naturalnya berada dalam keadaan tertutup. Pengoptimunan sintesis 

bahan nanomagnet telah dijalankan dengan menggunakan ketuhar gelombang mikro 

2.45 GHz. Nanopartikel tersebut telah disintesiskan melalui tindakbalas 

menggunakan larutan akues FeCl3.6H2O sebagai prapenanda dan NH3 sebagai agen 

pengnukleusan. Kajian pengoptimunan direkabentuk menggunakan program statistik 

rekabentuk komposit berpusat dalam perisian Minitab®. Keadaan optimum tindak 

balas menggunakan ketuhar gelombang mikro dalam penghasilan nanomagnet adalah 

100 
o
C, 20 min tempoh tindak balas, 631 W kuasa ketuhar gelombang mikro serta 

dapat menghasilkan sebanyak 0.371 g nanomagnet. Berdasarkan keputusan kajian 

pencirian nanomagnet menggunakan kristalografi pembelauan x-ray, mikroskopi 

elektron pancaran medan, spektroskopi pantulan cahaya inframerah jelmaan Fourier 

dan magnetometer getaran sampel, nanopartikel mempunyai struktur yang sama 

seperti maghemite piawai dengan mempunyai sifat magnet yang baik. Tidak balas 

silang maghemite bersama larutan glutaraldehida  menyediakan sekitaran yang sesuai 

untuk enzim tidak boleh gerak.  Pengoptimunan terhadap keadaan yang diperlukan 

untuk tidak boleh gerak enzim lipase secara statistik telah dijalankan menggunakan 

kaedah sambutan permukaan untuk mencari keadaan optimum proses. Tiga 

parameter proses tidak boleh gerak enzim lipase telah dipilih iaitu tempoh inkubasi, 

suhu inkubasi dan kandungan glutaraldehida dan didapati keadaan optimum untuk 

tidak boleh gerak enzim lipase adalah pada tempoh inkubasi 5 jam, suhu inkubasi 44 

℃ dan kepekatan larutan glutaraldehida 11 %. Aktiviti optimum enzim dalam akues 

bermangkin adalah 1.49 ± 0.05 U. Enzim lipase tidak boleh gerak yang dihasilkan 

kemudian menjadi mangkin dalam penghasilan biodiesel menggunakan minyak 

kelapa sawit bertapis sebagai substrat. Ketuhar gelombang mikro telah digunakan 

untuk mempercepatkan tindak balas mangkin. Kesan rawatan gelombang mikro 

terhadap kecekapan proses telah dikaji secara kuantitatif menggunakan reka bentuk 

eksperimen pecahan faktoran. Didapati kuasa masukan gelombang mikro, tempoh 

tindakbalas, kuantiti enzim tidak boleh gerak yang digunakan serta pecahan mol 

metanol kepada minyak sawit yang digunakan  mempengaruhi secara ketara 

kebolehupayaan penghasilan biodiesel. Perolehan biodiesel tertinggi dicapai daripada 

gelombang mikro berbantukan transesterifikasi bermangkin lipase tidak boleh gerak 

minyak sawit adalah 70.2%. Ciri – ciri fizikal biodiesel yang terhasil telah dinilai dan 

didapati memenuhi spesifikasi ASTM untuk bahan bakar. Berdasarkan penyelidikan 

yang telah dijalankan, pembentukan enzim lipase tidak boleh gerak daripada 

Candida antarctica yang dirangkap kepada nanopartikel maghemite meningkatkan 

keupayaan enzim tidak boleh gerak dalam penggunaan yang luas dengan 

memudahkan proses hiliran yang mempunyai protin yang lebih stabil serta toleransi 

tinggi kepada pelbagai substrat. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1  Research Background 

Enzymes are the most environmental friendly catalysts that can be utilized in 

various chemical reactions either in vivo or in vitro. The urge to shift towards green 

and sustainable chemistry is increasingly demanding due to presence of many heavy 

elements and transitional metals in catalysts which in turn caused handling and 

disposal issues (Brahmachari, 2017). Generally, these enzymes are natural proteins 

that sourced out from plants down to microorganisms. These biocatalysts are able to 

work under atmospheric conditions with high specificity and not substantially 

consumed post reactions. Such characteristics promotes these bio-based catalysts as 

important alternatives to chemical catalysts (Dwevedi & Kayastha, 2011). Ability for 

enzymes to speed up reactions is just like chemical catalysts where they lowered the 

activation energy (Ea) of any chemical reaction hence are able to reach the substrate-

enzyme transient stage (Krishtalik, 1985). This transient stage is the most important 

part in determining the success of any catalysed reactions. In such stage, interaction 

between enzyme-substrate occurred through various mechanisms depending on the 

biological and chemical natures of both enzymes and substrates. Pathway for 

enzymatic catalysis is shown in Figure 1.1.  
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Figure 1.1 Enzymes as biocatalysts and ability to reduce activation energy of 

reaction (Bretz & Linenberger, 2012) . 

Based on Figure 1.1, in order for enzyme to catalyse a reaction, reactants are 

required to enter the enzyme’s active site for correct enzyme-substrate docking 

confirmation. The weak transient bond that formed provides sites for product 

formations and this is where pronounced difference in the activation energy (Ea) of 

non-catalysed and catalysed reactions are seen (Bretz & Linenberger, 2012). The Ea 

for catalysed reaction is substantially lower than reaction without enzyme thus 

requires less energy input and shorter reaction time to push the reaction forward. 

Upon reaction completion, enzymes will release the desired products and return to its 

native shape to be ready for the next run. 

Enzyme lipase of carboxylesterase is one of the biocatalysts vastly utilized in 

industries due to their versatility. The enzymes are able to work in different polarity 

reaction medium and are abundantly available in nature. There are no limitation in 

accepting acyl donors and acceptors with different chain lengths and branching and 

they have high tolerance towards elevated working temperature (Ghaly, Ghaly, Dave, 

Brooks, & Budge, 2010). Although exploitation of bio-catalysts in process industries 

is increasingly demanding, high operational cost seems to be one of major drawbacks 

especially when free enzymes are used. Direct exposure of free enzymes to the 

reaction environment may result in biocatalyst inhibition and these results in process 

instability as well as lacking in selectivity. Process separation during product 

recovery is also laborious due single phase product formation (Dwevedi & Kayastha, 
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2011). These free enzymes are known for only one time usage. In order to overcome 

the challenge, utilization of immobilized lipase as biocatalyst in biodiesel production 

is seen as one of promising solutions as the enzyme can be used repetitively (Zhong 

et al., 2020). 

Immobilization of enzymes are able to elevate the robustness of biocatalysts 

in reactions as they can withstand a wide range of reaction conditions due to increase 

in enzyme stability (D. M. Liu, Chen, & Shi, 2018; Nishida et al., 2018). The process 

is able to improve product separation and reduce purification time and cost as 

immobilized enzymes can be separated directly from reaction medium either by 

filtration, centrifugation, or even just simple decantation. By immobilizing enzymes 

onto targeted matrices, biocatalysts which are robust can be produced for enhanced 

applications in various sectors.  There are many ways to achieve successful lipase 

immobilization for different purposes. Immobilization procedures can be performed 

either physically or chemically. Physical adsorption and enzyme entrapment within 

insoluble carrier matrices are examples of physical enzyme immobilization whilst 

covalent attachment and crosslinking are categorised as chemical immobilization (D. 

M. Liu et al., 2018; Quilles Junior et al., 2016). 

Since enzyme immobilization involves two different entities in its 

construction, apart from the method applied, it is important to choose the correct 

carrier for successful enzymatic catalysis. Organic, inorganic hybrid or composite are 

types of materials that have been applied as enzyme immobilizing carriers. Despite 

reaction targeting enzyme complex, several other carrier characteristics are important 

to ensure the complex stability and flexibility hence successful catalysis. A small size 

of carrier is able to create large surface area for enzyme attachment thus will increase 

the probability of successful substrate - enzyme interaction. Apart from that, the 

presence of specific chemical moieties within carriers is able to attract enzymes more 

efficiently hence increase the chances for successful enzyme immobilization. Since 

bio-catalysed reaction is favoured mostly due to its ‘green’ behaviour, it is also 

important to ensure the carriers are also those of environmental friendly and non-

toxic to the reactions performed (Barbosa et al., 2013; D. M. Liu et al., 2018). 
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It is of high interest in constructing magnetic nanoparticles carriers from 

inorganic materials to be utilized in enzyme immobilization. The main interest is 

because of their ability to induce non- disruptive contactless enzyme separation. 

Immobilized enzyme on magnetic nanoparticles can be easily separated from 

reaction medium by applying external magnet on the outer side of reaction vessel. In 

addition to that, the nano – sized magnetic particles create super large surface areas 

with high pore volume to ease successfulness in enzyme immobilization (Wenlei & 

Ning, 2009). This distinct characteristic of magnetic nanoparticles enhances 

substrate-enzyme successful collisions by reducing substrate diffusional limitation to 

the enzyme’s active site (Jia, Zhu, & Wang, 2003).  

Maghemite, magnetite and hematite are three types of superparamagnetic iron 

oxide nanoparticles (SPIONs) that are widely known for their vast applications. 

Among those three, magghemite and magnetite are more favoured as they can be 

synthesized at lower temperature. The superparamagnetic properties of SPIONs 

further enhance their applications in biological based industries. Their super small 

nano-sized molecules resulted in the nanoparticle magnetic hysteresis free loop 

(absence of remnant magnetism in absence of external magnetic field) and sensitive 

magnetophoretic response (Ha et al., 2018; Sodipo & Aziz, 2016). This allows 

SPIONs to be applied as enzyme carrier due to fast separation post reaction as well 

as generation of clean reaction mixture complex.  

In order to enhance enzyme immobilization on SPIONs, their outer surface 

needs modification or grafting with suitable coating agent in order to attract enzyme 

protein (-NH moiety) efficiently (Magro et al., 2020). Such modification will 

increase the stability of nanoparticles thus prevent them from aggregation and 

structure expansion (Sharafi, Bakhshi, Javidi, & Adrangi, 2018). There have been 

many organic and inorganic polymers applied as grafting agent which in turn 

determine the surface and physicochemical properties of SPIONs following 

functionalization post modification (Z. Zhu et al., 2014). 
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One of prominent application of catalysts can be seen through biodiesel 

production. The biodiesel production can be achieved through two separate methods 

which are non-catalysed and chemical or enzymatic catalysed transesterification 

where two substrates of different nature are efficiently mixed in two media of 

different polarity. Triacylglyceride as acyl donor is dominantly present in 

hydrophobic solution and alcohol as acyl acceptor dissolve in denser hydrophilic 

solution within the same reaction tube. By applying optimum mixing rate and 

catalysts in the tube, an transesterification occurred as method for biodiesel 

production. Such process is important for reducing the viscosity of triacylglycerol 

(which normally uses vegetable oils as sources) towards conventional diesel thus 

enhancing the engine life by converting triglyceride to three mono-alkyl esters (Math 

& Chandrashekhara, 2016; Thangarasu & Anand, 2019).  

Catalysis in biodiesel production can be further separated into three different 

ways which are homogenous catalysis, heterogeneous catalysis and enzymatic 

catalysis. Homogenous catalysis involves both bases and acids catalysed 

transesterification. Alkaline catalysed esterification is applied when low free fatty 

acid level is used and acidic catalysed esterification is used at higher level of free 

fatty acid (Math & Chandrashekhara, 2016). Homogenous catalysed 

transesterification shows greater efficiency than heterogenous catalysis as it has 

lower substrate diffusional limitation into the catalyst pore in order to achieve 

efficient forward transesterification reaction (S. H. Ali, Tarakmah, Merchant, & Al-

Sahhaf, 2007; Cipolatti et al., 2014; Jyoti, Keshav, & Anandkumar, 2016).   

Despite of its advantageous, homogenous transesterification resulted in some 

side reactions as well as increase difficulty in downstream product extraction due to 

catalyst-substrate-product homogeneity (Jyoti, Keshav, Anandkumar, & Bhoi, 2018). 

The drawbacks of homogenous catalysed transesterification reaction on the other 

hand became the strength for heterogenous catalysis. The nature for heterogenous 

catalysts ease product recovery hence increases the biodiesel yield and purity. 
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Enzymatic catalysed transesterification is currently the most favoured route in 

biodiesel production due to its high selectivity, ability to produce biodiesel in high 

purity hence ease the downstream processing as well as its friendliness towards 

environment and handling (Kaur, Yellapu, & Tyagi, 2019). Furthermore, the 

structure of the enzymes that used in transesterification is not affected by the 

reactions hence they can be used repetitively. The method is the most promising in 

generating complete green technology for betterment. However, introduction of 

biocatalysis in synthesis industries resulted in reaction sensitiveness in order to 

maintain the ‘living’ nature of enzymes for them to be functional in reactions. As 

such, the enzymatic catalysed reactions are highly sensitive to their working 

environment and need proper protection to maximize the catalysts’ performance. 

This can be achieved through enzyme immobilization on suitable matrices as 

mentioned previously.  

Due to the needs of enzyme catalysed reactions as alternative routes for 

chemical based catalyses, this research is focused on generating immobilized lipase 

originated from C.antarctica on SPIONs through chemical immobilization. By 

utilizing chitosan poly [b-(1,4)-linked-2-amino-deoxy-D-glucose] polymer to modify 

the surfaces of SPIONs, a high valued nanoparticle with environmental friendly 

characteristics such as good biocompatibility, bioactivity, the non-toxicity can be 

constructed (Xie & Huang, 2018).  Above all, the most important characteristic of 

chitosan that can be exploited in the enzymatic immobilization method is its ability 

to protects the SPIONs from erosions due to particles agglomeration and provide 

important functional groups for glutaraldehyde attachment to assist lipase covalent 

binding (Zhao, Qi, Yuan, Du, & Liu, 2015). The pre-activated SPIONs with 

glutaraldehyde are then applied as carriers for enzyme lipase. This pre-activation is 

essential to create simple and highly efficient immobilized lipase complex as it 

enhanced the enzyme stability by inducing strong multipoint covalent bonding 

between them (R. M. Barros et al., 2003). 
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With such aim in mind, this research is focused in targeting the development 

of immobilized biocatalyst with high stability, enhanced working environment 

adaptability as well as environmental friendly catalyses. It is important to have 

continuity to the clean technology during exploitation of biocatalyst in the world of 

synthesis in order to create a thorough green working path. In order to achieve that, 

microwave assisted technique (MWA) became the synthesis method of interest for 

both SPIONs and lipase biocatalysed transesterification of refined palm oil to 

produce biodiesel due to its rapid reactions and ease of handling.  

1.2 Problem Statement  

Enzyme lipases (triacylglycerol acylhydrolases, EC 3.1.1.3) ability to 

catalyse both hydrolysis and synthesis of esters with high chemo-, regio- and/or 

enantioselectivity are highly influenced by their working hydration environment. 

Such robust properties of enzymes made them the most favoured enzymes in 

industries (Verma, Azmi, & Kanwar, 2008; Yan, Bornscheuer, & Schmid, 1999). To 

cater the needs, immobilization of lipase enzymes on nanoparticles has become one 

of many methods to improve enzymes’ robustness (Zhong et al., 2020). Stability of 

immobilized lipase enzyme on SPIONs is crucial in determining the successfulness 

on the bio-catalysed reactions.  

Chemical structure of solid carriers applied in immobilization will determine 

type of interactions between lipase and solid support (Miletić, Nastasović, & Loos, 

2012). Besides possessing these properties, the ability to separate the biocatalyst 

from reaction media and enzyme reusability are also another factor to be considered. 

Thus, attachment of lipases on SPIONs groups provides opportunities for the said 

advantages. Activation of active sites for specific purposes on lipase is highly 

dependent on the properties of immobilized enzyme complex construction. 

Therefore, for enzyme to work successfully in bio-synthesis industry, it is crucial to 

develop immobilized lipase complex with high enzyme activity and durability. 
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One of biggest challenges in synthesizing SPIONs is the controlled 

nanomagnet size distribution as it is the important limiting factor in physicochemical 

properties determination (Majidi, Sehrig, Farkhani, Goloujeh, & Akbarzadeh, 2016). 

Chemical co-precipitation method in producing nanoparticles provides several 

advantages as it can produce homogenous products at high purity, it does not 

requires extreme heat treatment and to be one of the cheapest method for SPIONs 

synthesis (Nazari, Ghasemi, Maddah, & Motlagh, 2014). This method however 

demands long synthesis period (5-6 hours working time). Hence, the need in method 

improvisation is essential for the process. 

Biodiesels production through alkaline transesterification process requires the 

usage of concentrated alkali, high reaction temperatures and the use of either 

homogeneous or heterogenous chemical catalysts. Due to unwanted side effects and 

wastes generated from conventional chemical catalysis (V. Gude, Patil, Martinez-

Guerra, Deng, & Nirmalakhandan, 2013)., the drive to use enzymatic catalysed 

esterification for biodiesel production has become an attractive alternative. MWA 

lipase biocatalysed biodiesel production allows sufficient excitation energy to 

overcome energy barrier so reactions proceed faster than conventional heating 

(Yadav, Hude, & Talpade, 2015). Increase in solvent polarity enhances the 

microwave energy absorption hence forcing the reaction forward. However, this is 

unfavourable to lipase biocatalysed biodiesel production as it leads to activation of 

lipase active sites that is responsible for hydrolysis. The change of solvents to low 

polarity which favours biocatalysis does not favour microwave irradiation resulting 

in energy transparency. Tailoring the working reaction solvents is one of major 

limiting factors in determining successfulness in microwave assisted biocatalyses. 

Hence, this has become of interest of this study to investigate. 
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1.3 Research Objectives 

The objective of this study is to construct immobilized lipase on SPIONs 

(maghemite) and develop efficient microwave intensification on lipase biocatalysed 

biodiesel production. In order to achieve the main objective, following objectives 

need to be fulfilled: 

a) To develop an efficient system for SPIONs synthesis under 

microwave irradiation.  

b) To construct SPIONs surface coating complex for efficient lipase 

enzyme attachment and evaluation on immobilized enzyme properties 

and activities. 

c) To optimize conditions for lipase immobilization on surface modified 

SPIONs.  

d) To evaluate performance of immobilized lipase under microwave 

assisted catalysed transesterification of refined palm oil as model 

organic based biocatalysis. 

1.4 SCOPES OF THE STUDY 

The scope of this study is divided into: 

a) SPIONs are synthesized using modified co-precipitation method 

under microwave irradiation to enhance process efficiency. The 

process was performed and analysed statistically. 
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b) Properties of SPIONs synthesized such as size distribution and 

magnetic properties were determined. The SPIONs thermal profiling 

was performed. 

c) Lipase immobilization on modified SPIONs was conducted and 

influence of reaction parameters (reaction temperature, contact time 

and glutaraldehyde content) on process efficiency were investigated 

statistically. 

d) Immobilized lipase catalysed synthesis of biodiesel was performed 

under microwave irradiation and effect of process parameters 

(reaction time, microwave intensity, reaction temperature, solvent 

ratio and enzyme loading) were investigated statistically.  

e) Physical properties of produced biodiesel were investigated and 

evaluated for standard ASTM fuel fulfilment. 

1.3 Significance of the Study 

The main significance of this work can be seen through development of a 

thorough green technology in synthesizing high valued products. The work herein 

intends to develop robust and highly stabilized immobilized lipase that is able to 

work in both aqueous and organic catalysis using SPIONs which further enhances 

the reaction downstream processing. The immobilized lipase / SPIONs complex can 

be easily separated and reuse to increase the system sustainability. This work also 

improvises the method for biodiesel production to rapid, fast and green technology 

for immobilized lipase bio-catalysed synthesis. This work combines latest emerging 

technology with sustainable resources to ensure continuous supply for biofuels.  

 



 

11 

SPIONs synthesized under microwave irradiation are able to reduce the 

production period hence increase the production efficiency. Utilization of SPIONs 

synthesized under microwave assisted (MWA) as enzyme carrier eases the 

downstream processing with contact-less enzyme removal post reaction.  

The immobilization of lipase enzyme from C.antarctica through chemical 

techniques with utilization of common linkers is able to produce running biological 

catalyst with high stability and efficiency. The study utilized chitosan polymers to 

surface modified SPIONs nanoparticles in order to prevent agglomeration and 

glutaraldehyde as linker to the enzyme moiety. The use of immobilized lipase as 

green catalyst, SPIONs synthesis and biodiesel production through MWA provide 

another frontier in the world of enzymatic biocatalysis, as it is not just allowing rapid 

reaction in a clean environment with advantage to both reaction system and lipase 

enzyme folding stability. 
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