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ABSTRACT 

Minor bone fractures could occur due to traumatic incidents such as injuries, 

vehicle accidents, and falls. The commonly used devices to diagnose for bone fracture 

are X-ray, Computerized Tomography (CT)-Scan, Positron Emission Tomography 

(PET)-Scan, and Magnetic Resonance Imaging (MRI). For a series of post diagnosis 

of bone fracture, it can be health threatening to expose the patient to ionization 

radiation repeatedly. This research proposes to utilize Electrical Impedance 

Tomography (EIT) as an invasive modality to monitor the recovery of bone fracture. 

The aim is to develop EIT circuit to measure the electrical impedance on the phantom 

model of the upper limb with fractured bones using saline solution and 3D printed 

bones, the phantom model is reconstructed in 2D images on each cross-section layer 

using pyEIT and analyze the performance of the reconstructed model of fractured 

bone. This initiative begins with the development of the EIT circuit system, which 

consist of sinusoidal waveform generator 100 kHz to 10 MHz frequency range, 32-

channel multiplexer unit, instrumentation amplifier with slew rate 35 V/µs, bandpass 

filter range of frequency from 10 kHz to 4 MHz, Root Mean Square (RMS) to Direct 

Current (DC) converter, 24-bit analog-to-digital converter, flexible Printed Circuit 

Board (PCB) 32 electrodes per layer, power supply and microcontroller. The EIT 

circuit is used to acquire voltage measurement using neighboring and opposite data 

collection techniques from the phantom tank which consist of saline solution (0.9% 

NaCl) and was tested on 3D printed Acrylonitrile Butadiene Styrene (ABS) bone and 

lamb bone. The EIT image of the phantom was reconstructed using pyEIT in three-

layers slices on 3D plane. Then, the images were analyzed its performance using root 

mean square error (RMSE) and correlation coefficient. The RMSE value of the 

reconstructed images at the frequency of 400 kHz was 0.2785 ± 0.01. From the 

correlation coefficient between the ABS bone and lamb bone, there are significant 

similarity in terms of impedance between both materials with Pearson correlation with 

minimum values of 0.636. It would be beneficial to use the ABS material to simulate 

the different shape of bone fracture to be reconstructed in EIT system. The fractures 

are observable on several images. In addition, the depth of the bone is can also be 

distinguished.  
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ABSTRAK 

Keretakan tulang kecil boleh berlaku disebabkan oleh insiden traumatik seperti 

kecederaan, kemalangan kenderaan dan terjatuh. Peranti yang biasa digunakan untuk 

mendiagnosis patah tulang ialah X-ray, Tomografi Berkomputer (CT)-Scan, 

Tomografi Pelepasan Positron (PET)-Scan, dan Pengimejan Resonans Magnetik 

(MRI). Untuk satu siri diagnosis pasca patah tulang, boleh membahayakan nyawa 

untuk mendedahkan pesakit dengan sinaran pengionan berulang kali. Pada 

penyelidikan ini mencadangkan untuk menggunakan Tomografi Impedansi Elektrik 

(EIT) sebagai modaliti  invasif untuk memantau pemulihan patah tulang. Matlamatnya 

adalah untuk membangunkan litar EIT untuk mengukur impedansi elektrik pada model 

buatan anggota tangan dengan tulang patah menggunakan larutan garam dan tulang 

cetakan 3D, model buatan telah dibina semula dalam imej 2D pada setiap lapisan 

keratan rentas menggunakan pyEIT dan menganalisis prestasi model tulang patah yang 

dibina semula. Inisiatif ini bermula dengan pembangunan sistem litar EIT, yang terdiri 

daripada penjana bentuk gelombang sinusoidal 100 kHz hingga 10 MHz julat 

frekuensi, unit pemultipleks 32 saluran, penguat instrumentasi dengan kadar slew 35 

V/µs, julat penapis laluan jalur frekuensi dari 10 kHz kepada 4 MHz, penukar purata 

kuasa dua (RMS) ke arus terus (DC), penukar analog-ke-digital 24-bit, papan litar 

bercetak (PCB) fleksibel 32 elektrod pada setiap lapisan, bekalan kuasa dan 

mikropengawal. Litar EIT digunakan untuk memperoleh pengukuran voltan 

menggunakan teknik pengumpulan data jiran dan bertentangan daripada tangki buatan 

yang terdiri daripada larutan garam (0.9% NaCl) dan telah diuji pada tulang 

Acrylonitrile Butadiene Styrene (ABS) cetakan 3D dan tulang kambing. Imej EIT 

buatan telah dibina semula menggunakan pyEIT dalam potongan tiga lapisan pada 

satah 3D. Kemudian, imej dianalisis prestasinya menggunakan ralat purata kuasa dua 

akar (RMSE) dan pekali korelasi. Nilai RMSE bagi imej yang dibina semula pada 

frekuensi 400 kHz ialah 0.2785 ± 0.01. Daripada pekali korelasi antara tulang ABS dan 

tulang kambing, terdapat persamaan yang ketara dari segi impedans antara kedua-dua 

bahan dengan korelasi Pearson dengan nilai minimum 0.636. Adalah berfaedah untuk 

menggunakan bahan ABS untuk mensimulasikan bentuk patah tulang yang berbeza 

untuk dibina semula dalam sistem EIT. Patah boleh dilihat pada beberapa imej. Di 

samping itu, kedalaman tulang juga boleh dibezakan.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of the Study 

Skeleton system plays important roles in human body, such as protecting the 

internal organs, help maintaining the body shape and is involved in body growth. But 

what if this system fails to operate on its normal cause by incident that led to bone 

fracture? The bone fractures could occur because of traumatic incidents such as 

sporting injuries, vehicle accidents, falls, and conditions such as osteoporosis and some 

types of cancer could also easily cause bone fracture [1].  

Bone plays an important role in providing strong support to the soft tissues and 

muscles. These bones are built up from 20% of water, 80% of it are cells, lipids, and 

extracellular matrix (ECM) [2]. Even though the bone structures are strong, they can 

still break and lead to bone fracture. In the year 2019, about 1.78 million people 

experienced bone fracture on the forearm [3]. Moreover, 50% of children will break a 

bone before adulthood. In 2010, 158 million of people who exceeded 50 years of age 

worldwide have a high risk of osteoporotic fracture and estimated would multiple in 

2040 [4]. The most common factors causing bone fracture are traumas or specific bone 

diseases; bone fractures could also occur because of the micro-fracture’s accumulation 

in healthy bones, which is called ‘stress fracture’. These micro-fractures commonly 

occur after continuous loading [2]. There are several types of bone fractures, which 

can be classified into several types of fractures such as transverse, stress, oblique, 

greenstick and comminuted [2]. Figure 1.1 illustrated the types of fractures which 

occur at the femur bone. 
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Figure 1.1 Types of Bone Fracture [2]. 

When bone fracture occurs, a patient will need to be diagnosed to inspect the 

bone’s condition before and after the operation and to identify the morphology of the 

fracture part to determine the best treatment to be applied. There are several existing 

devices to perform bone imaging such as X-ray, Computerized Tomography (CT)-

Scan, Positron Emission Tomography (PET)-Scan, Magnetic Resonance Imaging 

(MRI), Ultrasound and Electrical Impedance Tomography (EIT). In this study, will be 

focusing on EIT to identify the bone fracture on the upper limb.  

1.2 Problem Statement 

Bone healing is a natural mechanism to preserve the mechanical function of 

bone. This process requires cell formation and tissue remodeling [5]. Over time, this 

regenerative process will reform normal morphology of bone on the fracture location 

until the bone is completely healed. But, for the healing rate depends on bone 

homeostasis and several hormones in our body, which differs between each person [6]. 

Through the advanced imaging technology, the bone healing progress can be 

monitored by a physician. The common imaging devices that have been used to 

diagnose the bone condition such as X-rays, Computerize Tomography (CT)-Scan and 

Positron Emission Tomography (PET)-Scan can give good images of our internal 
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organs and tissues. However, overexposure of ionization radiation can lead patients to 

the risk of tumour, leukaemia and cancer especially to children [7]. Magnetic 

Resonance Imaging (MRI) is an advanced radiation-free medical device, however, is 

quite costly and time-consuming [8]. For monitoring the bone healing progress 

especially on the upper limb, it is not worth to expose the patient with radiation and 

high-cost device, especially for post diagnosis. 

Several studies which tested EIT on bone fracture have been done, however, 

the number is still low and some of the studies only focus on lower limb and cranial 

fracture. This study aims to investigate alternative method in monitoring the condition 

of upper limb fracture by using EIT. To develop the circuit and the phantom model 

that resemble the electricity properties to the upper limb. Thus, to investigates the 

reconstruction images of bone fracture phantom and the most optimum range of 

frequency for signal measurement. 

1.3 Research Objectives 

The objectives of the research are: 

1. To develop EIT circuit to measure the electrical impedance on the phantom 

model. 

2. To develop phantom model of the upper limb with fractured bones using saline 

solution and 3D printed bones. 

3. To reconstruct 2D images on each cross-section layer of the upper limb 

phantom using pyEIT. 

4. To analyze the performance of the reconstructed model of fractured bone. 
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1.4 Scope of Study 

This research involves the development of an upper limb phantom tank consists 

with saline solution and will be tested the bone fractures on the lamb bone and the 

ABS bone on different positions. The EIT circuit developed using Autodesk Eagle 

PCB consist of different compartment stack together to connect with the 16 electrodes 

on the EIT tank. Meanwhile, the research uses pyEIT, an open-source python package 

for EIT system for the image reconstruction using the Graz consensus Reconstruction 

algorithm for EIT (GREIT). In this research, the reconstruction only limited to the 

three layers, which can produce three 2D cross-sectional image on the phantom and 

plotted on 3D plane. 

1.5 Significance of Study 

This research helps to investigate an alternative method for upper limb bone 

condition post-diagnosis in avoiding the use of harmful radiation device to detect bone 

fracture. It is also used to obtain unexpensive approach in monitoring upper limb’s 

bone fracture. It also aims to provide insights on the advantages and limitations of EIT 

system on bone fracture monitoring. Meanwhile, to provide enough evidence on the 

similarity of the reconstruction between the real bone and the ABS bone, to find an 

alternative method on design the phantom bone fracture for testing the reconstruction 

image in EIT. In addition, it aims to apply the python framework of the EIT system 

which is newly emerged image reconstruction tool in EIT community to test the 

applicability of this tool in reconstruct the EIT images. 
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1.6 Thesis Outline 

The contents of the thesis are arranged by chapter. The contents of each 

chapter are as follows: 

• Chapter 1 gives broad introduction of this thesis, consist of background of the 

study, problem statement, research objectives, scopes of study and significance 

of study. 

• Chapter 2 presents a review on the studies related to devices used to diagnose 

the bone fracture. Meanwhile, discuss the fundamental and the application of 

the EIT such as the measurement techniques, data acquisition module, image 

reconstruction module and the image reconstruction algorithms. 

• Chapter 3 describes the development and the experiment of the EIT system on 

the lamb bone and the ABS bone. This chapter discuss deeply on the circuit 

design, phantom design, and the reconstruction algorithms. 

• Chapter 4 shows the result from the reconstructed images and discuss the 

outcome from the reconstruction using analytical tools. Meanwhile, address 

the limitation on this study. 

• Chapter 5 presents the conclusion and the future recommendation to improve 

the limitation from this study. 
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