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ABSTRACT 

The TRIGA PUSPATI reactor is a custom model research reactor that allows 

storage of the irradiated fuel in the reactor tank, at the out-core. The fuel storage rack 

is positioned 1 m from the core, in the same vicinity of the reactor tank. In order to 

create a fuel-specific blueprint that validates the fuel type for safeguards and fuel 

characterization purposes, this study was undertaken to assess two fuel elements 

which were stored at the fuel storage rack.  To achieve this objective, the study was 

divided into three main parts. The first part was focused on the assessment of neutron 

flux in the core using MCNP code. Profiles of fast neutrons and thermal neutrons 

were plotted and it was observed that thermal neutrons were fully thermalized at 158 

cm with maximum flux of 1 × 10
12

 n.cm
2

.s
1

. As for the fast neutrons, the maximum 

flux occurred at the central thimble with the value of 5 × 10
13

 n.cm
2

.s
1   and  

travelled 70 cm before became fully thermalized at the distance of 158 cm from the 

core. The second part, ORIGEN calculation code was used and data pertaining to 

radionuclide composition, energy of each radionuclide and burn up were obtained. 

The result of the calculation was series of photon energy emission rate in 18 energy 

groups as a function of irradiation or decay time and a summary table listing the 

principal nuclide contributors to each of the 18 energy groups. The data base 

produced was the fission products that were produced from spontaneous fission, and 

bremsstrahlung. The third part, the underwater autoradiography technique had been 

used in these experiments. The autoradiography analysis required a new and special-

designed underwater gamma scanner rig to be developed. The underwater gamma 

scanner consisted of four main units; the arm block, the collimator, the stand and the 

main structure while the control system comprised electro-pneumatic system and 

control lifting system. The design of the scanner took into account conditions in the 

reactor pool and safety matters to avoid any incident or accident during the 

operation. The main results of this experiment were radiographic film images that 

had different brightness according to the type of wt% 
235

U of irradiated fuel. The 3D 

pixel view showed the presence of AgBr in the control sample while the pixel of the 

film exposed to uranium 8.5 wt% fuel indicated that most of the AgBr reduced to 

silver build up in the film. Changes in 3D pixel view profiles analyzed for   12 wt% 
235

U fuel exposure showed serious effects on photon impact on film. The effect of the 

blockade caused the pixel value to decrease by almost 29.3 % compared to the pixel 

value of the control sample and this made the resulting film darker than all analyzed 

samples. The film's gray value for exposure to 8.5 wt% 
235

U was 128 compared to 78 

for 12 wt% of fuel. Overall, when a specific fuel image was mapped with neutron-

character data, then a blueprint that outlines the type and the characterization of 

irradiated fuel was established. 
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ABSTRAK 

Reaktor TRIGA PUSPATI merupakan model khusus reaktor penyelidikan 

yang membenarkan penyimpanan bahan api terpakai di luar teras tangki reaktor. 

Kedudukan rak penyimpanan bahan api ini adalah 1 meter dari teras di dalam 

persekitaran tangki reaktor. Dalam mewujudkan cetakan biru bahan api khusus yang 

mengesahkan jenis dan pencirian bahan api bagi tujuan kawal selia, kajian ini 

dijalankan untuk menaksir dua unsur bahan api yang disimpan di rak penyimpanan 

bahan api.  Untuk mencapai objektif ini, kajian telah dibahagikan kepada tiga 

bahagian utama. Bahagian pertama kajian ini memfokus kepada penaksiran fluks 

neutron di dalam teras menggunakan kod MCNP. Profil neutron laju dan neutron 

terma telah diplot dan diperhatikan, didapati bahawa neutron terma ternyahterma 

sepenuhnya pada jarak 158 cm dengan fluks maksimum sebanyak 1 × 10
12

 

n.cm
2

.s
1

. Bagi neutron laju, fluks maksimum berlaku di pusat jidal reaktor dengan 

nilai 5 × 10
13

 n.cm
2

 s
1

, dan melalui jarak 70 cm sebelum ternyahterma sepenuhnya 

pada jarak 158 cm dari teras. Dalam bahagian kedua, kod pengiraan ORIGEN 

digunakan dalam pengiraan dan data berkaitan komposisi radionuklid, tenaga setiap 

radionuklid dan kadar bakar bahan api diperolehi. Keputusan pengiraan merupakan 

siri-siri kadar pelepasan tenaga foton dalam 18 kumpulan tenaga sebagai fungsi 

penyinaran atau masa reputan, dan ringkasan jadual senarai penyumbang radionuklid 

prinsipal kepada setiap 18 kumpulan tenaga. Pangkalan data yang dihasilkan adalah 

produk belahan yang terhasil daripada pembelahan spontan dan bremsstrahlung. 

Bahagian ketiga, teknik autoradiografi dalam air digunakan dalam eksperimen. 

Analisis autoradiografi memerlukan pelantar pengimbas gamma dalam air yang 

baharu dan direkabentuk khusus. Pengimbas gamma  dalam air ini terdiri daripada 

empat unit utama; blok lengan, pengkolimat, tapak dan struktur utama sementara 

sistem kawalan terdiri daripada sistem elektro-pneumatik dan sistem angkat. 

Rekabentuk pengimbas ini mengambilkira keadaan di dalam kolam reaktor serta 

aspek keselamatan bagi mengelak sebarang kejadian atau kemalangan semasa 

operasi. Hasil utama eksperimen ialah imej filem radiografi yang mempunyai 

kecerahan berbeza mengikut jenis wt% 
235

U bahan api  terpakai. Pandangan piksel 

3D menunjukkan kehadiran AgBr dalam sampel kawalan manakala piksel filem yang 

terdedah kepada bahan api 8.5 wt% 
235

U menunjukkan kebanyakan AgBr terturun 

menjadi unsur perak dan menumpuk pada filem. Perubahan profil piksel 3D yang 

dianalisis untuk dedahan kepada bahan api 12 wt% 
235

U menunjukkan keseriusan 

kesan hentaman foton terhadap filem. Kesan kepungan menyebabkan nilai piksel 

berkurangan hampir 29.3 % berbanding nilai pixel dari sampel kawalan dan ini 

menjadikan filem lebih gelap berbanding sampel-sampel lain yang dianalisis. Nilai 

kelabu filem bagi dedahan kepada 8.5 wt% 
235

U ialah 128 berbanding 78 untuk 

bahan api 12 wt% 
235

U. Secara keseluruhannya, apabila imej bahan api tertentu 

dipetakan dengan data ciri-ciri neutron,  cetakan biru yang menggariskan jenis dan 

pencirian bahan api terpakai dapat dibangunkan. 
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CHAPTER 1  

 

 

 

INTRODUCTION 

 Background  1.1

The PUSPATI TRIGA Mark II reactor at the Malaysian Nuclear Agency or 

typically referred to by the acronym RTP that stands for Reactor TRIGA PUSPATI, 

is the one and only research reactor in Malaysia. TRIGA stands for Training 

Research Isotopes, General Atomics while PUSPATI stands for Pusat Penyelidikan 

Tenaga Atom Tun Dr. Ismail (the Tun Dr. Ismail Center for Atomic Energy 

Research). The reactor achieved its first criticality on June 28, 1982, and since then it 

has been operated for an average of 500 hours per year. In terms of the design, the 

RTP is a custom model that allow storage of the irradiated fuel in the reactor tank 

specifically at the out-core.  The fuel storage rack is located 1 m from the core 

(Masood, 2016). 

The RTP is loaded with 3 types of standard TRIGA Uraninum Zirconium 

Hydride (UZrH) fuels of differing 
235

U composition: 8.5 wt%, 12 wt%, and 20 wt%. 

(Malaysian Nuklear Agency, 2015). According to the International Atomic Energy 

Agency (IAEA), Member States operating or having previously operated a research 

reactor are responsible for the safe and sustainable management of associated 

radioactive waste, including the spent nuclear fuel from the research reactor. 

Malaysian Nuclear Agency at the moment possesses six irradiated fuels in the 

storage rack located in the reactor pool. However, no irradiated fuel is declared by 

Malaysian Nuclear Agency as spent fuel yet. To declare an irradiated fuel as a spent 

fuel, it shall fulfil either one of the three conditions; 

 

i. Burn up limit has been reached,  



 

 

2 

 

ii. Manufacturing defects such as small size, and 

iii. Incident or accident involving fuel such as drop and dented. 

 

 

For managing future spent fuel generated from the TRIGA research reactor, 

Malaysia has the option of participating in the take back program or defer the spent 

fuel management if the RTP will continue its operation using the current nuclear 

fuel. In 2014, the fuel supplier, General Atomics, through the government of United 

States of America offered Malaysia with the option to repatriate the spent fuel back 

to USA under the Foreign Research Reactor Spent Nuclear Fuel Repatriation 

Program or in short FRR SNF RP Program (IAEA 2008), with the condition that the 

reactor need to be shut down by 2016. However, Malaysia has decided to continue 

with the operation of the RTP for strategic reasons since the reactor is the only 

reactor in Malaysia, providing service and teaching tool in nuclear technology. The 

reactor needs to meet the demand of service especially in the Neutron Activation 

Analysis. At the same time, substantial investment has been expended for 

modernizing the reactor involving change of reactor console and upgrade of cooling 

system. Thus continuing the reactor in an operating state will maximize the benefit 

gained from the investment.  

 

 

Whichever the case, it is important to fully understand the characteristics of 

the fuels that will be handled as exemplified in Figure 1.1. If the fuels will continue 

to be used, fuel characterization data is needed to prepare all documents as per 

regulator‟s requirement such as the Decommissioning Plan, Safety Analysis Report, 

Spent Fuel Management Plan or to prepare for safeguards inspection. In the spent 

fuel management plan, options are available between the closed loop and opened 

loop, but both options may involve probable disposal in Malaysia. If the fuels are 

meant to be repatriated, then fuel characterization data is imperative to design or 

identify suitable transfer cask and transport cask. In the case where the reactor has no 

more fuel for its operation, it is expected that the reactor will eventually undergo a 

decommissioning program. Depending on the level of decommissioning activities 

that will be performed, various types of waste will be generated such as very low 

level waste (VLLW), low level waste (LLW) or intermediate level waste (ILW).   
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Figure 1.1  Role of Fuel Characteristics Database in Spent Fuel Management Plan  
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 Problem Statements 1.2

It is recognized that at the moment, there is lack of facilities and appropriate 

instruments in Malaysian Nuclear Agency to assess and validate inventory of the 

fuel. Without the suitable facility, and appropriate instruments, it is difficult to 

perform safeguards inspection or to draw up spent fuel management plan based on 

fuel characteristic data. Therefore, this study is driven by two conditions which are 

seen as the gap in the current fuel management. The first condition is the lack of 

characterization data of the fuel and the second condition is the need to fulfil the 

safeguards requirement.  

1.2.1 Lack of characterization data 

In a fuel characterization program, information attributes to the 

characteristics, and behaviour of the spent nuclear fuel is determined. The main 

attribute for spent fuel is burnup, for which the parametric burn up results can lead to 

estimation of the actinide, activation, fission product, radionuclide inventory, decay 

heat, and dose rate (Sterbentz, 1997). With the availability of the characteristic data, 

it will support the decision for the transport, interim storage, safety analyses and 

repository post closure performance assessment.  

There is a limited study on RTP characteristics. Ismail et.al. (2012) attempted 

preliminary calculation on radionuclides inventory in the fuel using assumed burn up 

data. Other researchers, Rabir and Usang (2015), determined characteristics data 

covering burn up and isotopic compositions of fuel elements of the RTP TRIGA 

MARK II reactor for a few selected irradiated fuels, generated from computer code 

simulation such as MCNP, TRIGLAV and ORIGEN. However, validation and 

comparison of the calculation results were not presented. There is also lack of 

quantitative analysis to support the calculational data, which may be derived from 

the lack of suitable facility capable to perform post irradiation analysis since the RTP 
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is not equipped with attached experimental pool unlike the TRIGA MARK III 

model.   

Characterization requires dedicated facility such as neutron activation 

measurement and proper simulation tools for modelling the neutronics, the dynamics 

and the thermal-hydraulics of the system.  Although validating of calculation result 

is recognized to be imperative in any spent fuel characterization program, however 

no attempt earlier was made to perform validation test as the only suitable area to 

carry out such experiment involving irradiated fuel is in the confined reactor tank. 

Thus, it requires a specific and specially design test rig to be developed in order to 

conduct the validation experiments such as the underwater gamma scanner. 

Furthermore, there are two irradiated fuel elements that have been stored in 

the fuel storage rack in the reactor pool for a very long time. The fuel elements are 

not being used due to defect from specification and faulty. As the fuel elements are 

kept in the reactor pool environment over a long period of time, hence the activation 

effect  due to neutron exposure has now become a concern on these fuel elements. 

These two irradiated fuels have never been characterized so far.  

1.2.2 Safeguards requirement 

Management of nuclear fuel, be it spent fuel or irradiated fuel, is technically 

and administratively challenging as it also involves aspects of safeguards and 

security, besides the safety and technical aspect. Malaysia has signed the Non 

Proliferation Treaty on the 7
th
 January 1968, and 2 years later on 3

rd
 May 1970 the 

treaty was rectified. In line with this agreement, Malaysia is obliged to ensure any 

activities carried out in this country do not pose any proliferation risks 

(INFCIRC/182, 1973).  In this decade, there have been more activities pertaining to 

fuel taken place at the RTP, for instance additional fresh fuel stock up, burning of 

fuel in the core, storage of irradiated fuel, and the recent is the construction of a spent 

fuel pool. Thus, there is a timely need for a safeguard analysis to be carried out to 
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ensure that all activities are performed in accord to the requirements set forth in the 

Treaty.    

Previous works using ORIGEN 2.2 by Usang et. al. (2015) only reported the 

dose rate of the fuel while Ismail et.al. determined radionuclide from a 20 wt% fuel. 

Clearly, there is inadequate data to fulfil the safeguards requirements in terms of 

nuclear material accountancy. Nuclear material accounting refers to activities carried 

out to establish the quantities of nuclear material present within defined areas and the 

changes in those quantities within defined periods (IAEA-SVS-15, 2008). This 

requires verification works to verify quantitatively the amount of nuclear material 

reported (IAEA, 2003). For TRIGA reactors, the safeguards concerns mostly revolve 

around the plutonium and 
233

U production, open pool reactors with ease of refuelling 

and loading targets (Pan. P., et. al., 2012). 

 Research Goal 1.3

The goal of this research is to create a fuel-specific blueprint that would 

validate the fuel type for safeguards purpose and relates to other characteristics data 

of the fuel such as the radionuclides composition, energy, radioactivity and burn up. 

This blueprint will be a primary data towards establishing the spent fuel 

characterization database. 

 Research Objectives 1.4

In order to create the blueprint, the research will comprise of several works. 

Therefore, the specific objectives of this study are outlined below. 

(a) To investigate neutron flux effect onto fuel burnup using MCNPX code for 

the irradiated fuels that has been stored in the RTP pool.  
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(b) To determine fuel element materials composition and density for the 

irradiated fuel ID No: 9009 and ID No: 9316 by using MCNPX code.  

 

(c) To determine the irradiated fuel characterization such as the energy of gamma 

photon group, radionuclides mass and activity using ORIGEN code. 

 

(d) To produce radiography image of the fuel element in order to map the 

spectrum of the energy captured by the radiography film with the neutronic 

calculation data. 

 Scopes of the research  1.5

In order to achieve the objectives of this research, the following scopes  of 

work are outlined as follows; 

(a) The neutronic calculation requires the use of several modelling simulation 

and computer codes. In this study, established and proven codes in this field 

will be used, for example ORIGEN and Monte Carlo N-particle (MCNPX) 

simulation code. 

(b) Design, build and commission a reactor pool-in test rig. An innovative 

underwater radiography scanner was developed in this study which was 

designed and fabricated to allow experiment to be conducted within the tight 

space in the reactor tank, close to the reactor core.  This rig will be used to 

create the fuel blueprint. Being the first of its kind, the rig need to pass, 

approved and commissioned before it can be used in the reactor. It is also 

subject to rigorous safety protocol that needs to be met as specified by the 

Nuclear Malaysia‟s Safety Committee in the letter dated 15 Mac 2017, 

reference no. NM/JKKR/Memo Klt.1 (2). Among the requirements are the 

finite-element-mechanical strength analysis and the estimated dose exposure 
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to operator. The communication letter and the approval from the Safety 

Committee are attached in Appendix A. 

(c) Selection of fuel for the research. Only two fuel elements will be selected for 

further non-destructive analysis using the radiography technique. These are 

the fuels that are kept at the storage rack in the pool. Fuels that have been 

irradiated in the core will remain active therefore, the fuel need to be taken 

out of the reactor core and left to „cool‟ for certain period of time, in order to 

cool it from decay heat and radioactivity before characterization works can be 

carried out. Therefore, the fuels in the core or have been irradiated recently 

do not qualify for immediate characterization. 

(d) Security aspect is out of scope of this study. The results from this study will 

be covering the safety and safeguards aspects only.  

(e) At the moment, Malaysian Nuclear Agency did not register any spent fuel 

declaration to the Atomic Energy Licensing Board. With respect to the 

current standing, the term „irradiated fuel‟ is more appropriate to be used to 

refer to the fuels that are already placed at the fuel storage rack. Hence, the 

term „irradiated fuel‟ will be used instead of „spent fuel‟ throughout the 

thesis. 

 Significance of the research 1.6

1.6.1 Verification of neutron effect onto burn up of the irradiated fuel at the 

storage rack 

The RTP is a custom model that allow storage of the irradiated fuel in the 

reactor tank, at the out-core. The fuel storage rack is positioned only 1 m from the 

core, in the same vicinity of the reactor tank. In the reactor core, the neutrons are 

thermalized and diffused through elastic and inelastic neutron-nucleus scattering 
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collisions. The thermalization and diffusion parameters of the neutron flux and the 

neutron density spectra differ according to the average energy. It is assumed that 

possible leaked neutrons i.e neutrons that escape from the vicinity of the fissionable 

material in the reactor core; travel relatively far distance from the core, reaching to 

the fuel left at the storage rack. Hence there is a possibility of fast neutron being 

thermalized and absorbed by the fuels stored at the storage rack and induce fission. 

According to Ueda et.al (1993), the burn up parameters can be obtained from the 

measurement of the neutron flux produced by burn up dependent neutron source in a 

spent fuel. Hence present study would verify as whether the thermal or fast neutron 

would influence the burn up of the irradiated fuel stored in the same vicinity of the 

reactor core.  

1.6.2 Characterization of irradiated fuel 

 

 

The fuel elements used in RTP have never been characterized in detail due to 

technical limitation and unavailability of suitable post-irradiation facility. 

Characterization data is needed to determine what is the best approach and good 

practices for the entire back end management of the spent fuel that include handling, 

packaging, transportation, treatment and perhaps disposal. The evaluation of neutron 

and gamma ray source distribution in spent fuel is important for the shielding design 

and criticality safety analysis of spent fuel storage facilities (Sasahara et al, 2004). 

Moreover, understanding the neutronic physics is pertinent to evaluate the burn up of 

the nuclear fuel, to profile nuclear isotopes for safeguard purpose, and also to 

determine the residual reactivity of the irradiated fuel (Bolind, 2014). The 

characteristics of the fuel are also needed to be described in the RTP 

decommissioning plan. With the characterization details collected in the study would 

support a more pragmatic plan can be formulated for the management of spent fuel in 

Malaysia. 
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1.6.3 Conformance to regulatory requirements on safety and safeguards 

From the blueprint output, this study is able to demonstrate the conformance 

to regulatory requirements from the aspect of safety and safeguards.  While only two 

fuel elements will be used for detail analysis, the developed test rig can be used by 

other researchers to continue working with other fuel elements of interest, leading 

towards a much more substantial fuel element database developed for the one 

hundred over fuels in the RTP. 

1.6.4 A new facility designed and developed 

The underwater radiography scanner developed in the research is possible to 

be used in other facility, not only limited to research reactor. In addition, the scanner 

will find its applicability in other research reactor all around the world particularly 

those that have limited or no post-irradiation facility. This scanner will find its 

usefulness for inspection, monitoring, dose measurement and validating simulation 

calculation. 

 Thesis outline 1.7

This thesis is structured and written in 5 Chapters.  Chapter 1 introduces the 

objectives of the study, scope, problem statements and define the significance of the 

study conducted.   Chapter 2 begins by reviewing the history of the TRIGA reactor 

and describes the fuel used in this study. This chapter also provide theories related to 

reactor physics, neutron physics, neutronic calculation and outline the radiography 

principle and processes applied in the subsequent works. This chapter critically 

review the status and development taking place with respect to fuel characterization 

for RTP.  Chapter 3 highlights the methodology adopted in the study which 

encompasses the process flow, procedures, calculation code simulation as well as 

analytical laboratory work undertaken for the radiography analysis. The development 
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of a new rig used in this work is also described in Chapter 3. Chapter 4 is the Results 

and Discussions, depicting the calculational output and radiography analysis results, 

followed by corresponding discussions of the results to establish arguments and 

comparative view with other works of similar field. Chapter 5 draws up conclusions 

of the study and offer recommendations for future works in order to improve or 

complete the fuel blueprint database initiated in this study using the radiography 

technique. Such work can be continued for TRIGA PUSPATI or can be emulated in 

other research reactor in the world using the scanner developed in this study. 
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