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ABSTRACT 

Carbon nanotube (CNT) synthesis in flame has enormous potential as an 

energy-efficient and economical production method compared to the conventional 

catalytic chemical vapor deposition (CCVD) synthesis process. However, synthesis 

control remains a great challenge for flame synthesis due to the limited understanding 

on the effect of flame inlet condition toward CNT growth region in a heterogeneous 

flame environment and premature catalyst surface encapsulation by the amorphous 

carbon layer. The present study formulates a simple, yet accurate method called wire-

based macro image analysis (WMA) for thorough growth region identification. The 

WMA method is employed to investigate the effects of reactant composition and 

aerodynamics on the spatial distribution of CNT growth region. Besides that, bend 

wire method is developed to provide cross-sectional analysis of the CNT growth region 

with focus on the amorphous carbon layer thickness (ACLT) at variable reactant 

concentration including fuel from 50% to 100% and oxygen from 19% to 27%, with 

addition of water vapor up to 0.14 mg/sec mass flow rate within the fuel stream. The 

CNT is synthesized on a 0.4 mm diameter pure nickel wire within the methane 

diffusion flame with a stainless-steel wire mesh placed on top and water vapor is 

introduced in a fuel stream using a bubbler mechanism. The CNT growth region is 

confined within the flame sheet, gradually shifts from flame front to flame centreline 

as height above the burner increases. The growth region is more sensitive towards the 

change in the oxygen concentration compared to that of the fuel concentration due to 

the significant change of flame height caused by the former. A segregation of growth 

region temperature with temperature difference of 100 ℃ that is observed between the 

upstream and downstream growth region is governed by the proximity with respect to 

the flame sheet. The ACLT reduces in lean flame due to the reduction in excess carbon 

concentration and the addition of water vapor remarkably reduces ACLT by 17% on 

average in any combination of inlet conditions due to the water-induced etching and 

oxidation of amorphous carbon on the catalyst surface. Development of the WMA and 

bend wire method leads to deeper fundamental understanding of CNT flame synthesis 

and further enhance possibility of highly efficient and economical CNT production 

process in the future.   
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ABSTRAK 

Sintesis karbon tiub nano (CNT) menggunakan api mempunyai potensi besar 

sebagai kaedah pembuatan yang cekap tenaga dan ekonomik jika dibandingkan dengan 

proses sintesis konvensional menggunakan pemangkin deposit wap kimia pemangkin 

(CCVD). Walau bagaimanapun, kawalan sintesis dalam api menjadi cabaran utama 

disebabkan oleh persekitaran heterogen dan enkapsulasi pramatang permukaan 

pemangkin oleh lapisan karbon amorfus. Kajian ini mencipta satu kaedah yang mudah 

dan tepat yang dinamakan sebagai analisis imej makro berasaskan wayar (WMA) 

untuk pengenalpastian ruang pertumbuhan CNT. Analisis WMA digunakan untuk 

mengkaji kesan komposisi reaktan dan aerodinamik pada ruang pertumbuhan CNT di 

dalam api. Di samping itu, kaedah lenturan wayar dicipta untuk analisis keratan rentas 

ruang pertumbuhan CNT dengan memberikan tumpuan khusus kepada ketebalan 

lapisan karbon amorfus (ACLT) pada komposisi reaktan berbeza termasuklah 

kepekatan bahan bakar dari 50% hingga 100% dan oksigen dari 19% ke 27% dengan 

tambahan wap air sehingga 0.14 mg/s di dalam aliran bahan bakar. CNT disintesis 

pada dawai nikel tulen dalam api di bawah jaring keluli tahan karat dan wap air 

ditambah dalam aliran bahan bakar menggunakan mekanisma gelembung. Ruang 

pertumbuhan CNT terkurung di dalam kawasan nyalaan, secara beransur-ansur beralih 

dari tepi ke tengah kawasan nyalaan dengan peningkatan ketinggian di atas pembakar. 

Ruang pertumbuhan lebih sensitif terhadap perubahan kepekatan oksigen berbanding 

bahan api kerana perubahan panjang nyalaan yang disebabkan oleh kepekatan oksigen. 

Perbezaan suhu ruang pertumbuhan setinggi 100 ℃ di antara ruang pertumbuhan hulu 

dan hiliran nyalaan adalah disebabkan oleh kedekatan dengan lapisan nyalaan. ACLT 

berkurang dalam nyalaan yang kurang kerana pengurangan kepekatan karbon yang 

berlebihan dan penambahan wap air membantu mengurangkan ACLT sebanyak 17% 

dalam sebarang gabungan komposisi salur masuk. Ini disebabkan oleh pengoksidaan 

dan penghakisan karbon amorfus yang disebabkan oleh wap air pada permukaan 

pemangkin. Penciptaan kaedah analisis WMA dan lenturan wayar membantu 

menjadikan proses CNT sintesis di dalam api lebih difahami secara mendalam dan 

menambah kebarangkalian untuk proses pembuatan CNT yang sangat efisien dan 

ekonomik di masa hadapan.      
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background 

The discovery of a third carbon allotrope, Buckminsterfullerene C60 in 1985 

by Kroto, Curl, Smalley, and co-workers marked the beginning of an era of carbon 

nanostructured materials [1]. With remarkable electrical, thermal, and mechanical 

properties, coupled with rapid development of nanoscience and nanotechnology, last 

three decades has seen the emergence of carbon nanostructures in various application 

for modern society. Nobel Prize that are awarded to Curl, Kroto, and Smalley for the 

work on Buckminsterfullerene, and to Geim and Novoselov for extracting single layer 

carbon atoms known as graphene in 1996 and 2010 respectively, are clear indications 

of the significant contribution of carbon nanostructured material to the society [2,3]. 

Combustion-based synthesis of carbon nanotube (CNT) has significant 

potential to revolutionize the conventional CNT synthesis process. The combination 

of the autothermal condition and the continuous supply of carbon sources within flame 

produce an energy-efficient synthesis process. Theoretically, the flame synthesis is 

capable to synthesize CNT at an order of magnitude faster compared to that of the 

catalytic chemical vapor deposition (CCVD) to significantly reduce the overall cost of 

the CNT production [4,5]. Furthermore, the process is technically simple to be scaled 

up for large volume production, proven with current production of widely used 

nanoparticles such as carbon black, fumed silica, and titania in the order of millions of 

tons valued at over 15 billion dollar per year [6,7]. These compelling fundamental 

advantages of flame synthesis process have driven researchers to enhance the 

understanding on the flame synthesis process for the last three decades. As the CNT 

market continues to expand each year, the search for a novel and optimized synthesis 

process for producing low-cost CNT remains strong [5]. Numerous research groups 

are currently active in exploring new possibilities to exploit the advantages of 
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combustion-based CNT synthesis to produce an improved synthesis method through 

experimental works and modelling [4,8–12]. 

However, limited progress has been reported in the development of industrial 

scale of CNT synthesis process in flame. The development of a stable and well-

controlled synthesis process within highly complex flame environment has been 

proven to be the stumbling block for mainstream acceptance of the technology [5,7]. 

Compared to CCVD, the degree of complexity of the CNTs growth is significantly 

amplified in flame environment due to the combustion process that creates dynamic 

gas phase kinetics with significant temperature gradient within the flame.  

1.2 Problem Statement 

Even though theoretically flame synthesis is capable of producing similar yield 

of CNTs at much higher growth rate compared to that of CCVD, none of the recorded 

lab-scale experiments able to achieve major breakthrough for mass production to the 

best of author’s knowledge. The complex interrelation between fuel, oxidizer, and 

temperature that are coupled with other synthesis parameters like catalyst type and 

composition, lead to highly complex optimization parameter space which requires 

extensive analysis on the effect of flame inlet condition toward certain specific set of 

synthesis parameters toward CNT growth region distribution. Unfortunately, 

conventional method of CNT growth region identification using repetitive scanning 

electron microscopy (SEM) analysis is impractical especially for large-area 

heterogeneous flame synthesis environment which inhibit a comprehensive parametric 

study on spatial distribution of CNT growth region in flame to be performed.  

Besides practical and precise growth region identification, one of the main 

obstacles in optimizing CNT synthesis in flame is maintaining the delicate balance of 

carbon supply rate and flame temperature. Oversupply of carbon will lead to the 

formation of the amorphous carbon layer which will encapsulate catalyst nanoparticles 

and caused a premature catalyst poisoning. On the other hand, the oversupply of 

carbon in most cases is dictated by the amount of fuel required to achieved desirable 
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temperature within the flame for CNT inception and growth. The formation of 

amorphous carbon layer on catalyst nanoparticles has been extensively studied in the 

context of CCVD. Application of additive such as water vapor in CCVD process has 

been widely accepted as an effective method of minimizing formation of amorphous 

carbon. The same has not been systematically studied in the context of flame synthesis. 

Limited understanding on the effect of flame inlet condition on formation of 

amorphous carbon layer on catalyst nanoparticles in flame environment hinders further 

optimization of the CNT synthesis process in flame.   

 

1.3 Hypothesis  

CNT growth region surface is generally recognizable by its characteristically 

deep black colour covered with dense CNT. Utilizing concept of colour segregation, 

the CNT growth region is expected to produce high contrast to the surrounding 

substrate surface and can be visually distinguishable using high magnification image 

which allow for a low cost and practical growth region identification process.  

Since the catalytic growth mechanism of CNT in CCVD and flame 

environment are similar, it is expected that reduction of amorphous carbon layer on 

the catalyst nanoparticles can be minimize through precise control over carbon supply 

rate on the catalyst nanoparticles surface. Manipulation flame inlet condition in 

diffusion flame will have significant effects toward the carbon supply rates in region 

within the flame front which will has significant effect on the distribution of CNT 

growth region and formation of amorphous carbon layer. Additionally, water vapor as 

a weak oxidizer is expected to produce etching effects on the amorphous carbon layer 

on the substrate-supported catalyst surface in the flame environment as has been shown 

in the synthesis chamber environment of CVD. However, water vapor may also 

inadvertently change the local temperature and species distribution in flames. Though 

the etching effects are desirable, an ideal temperature and carbon precursor 

concentration must be maintained to achieve the desired CNT synthesis characteristics 

in the flame.  
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1.4 Objectives of the Study 

The objectives of the present study are:  

1. To determine the effect of flame inlet condition toward the distribution of CNT 

growth region in methane diffusion flame using wire-based macro-image 

method. 

2. To analyse the effect of flame inlet condition toward the thickness of 

amorphous carbon layer within CNT growth region using cross-sectional 

analysis.  

1.5 Significance of the Study 

The present study analyses the effect of flame inlet conditions toward spatial 

distribution of CNT growth region and formation of amorphous carbon layer. The 

objectives will be achieved through development of a novel CNT growth region 

identification method using wire-based macro-image analysis (WMA) method and 

amorphous carbon layer analysis using cross-sectional imaging technique through 

bend wire method. The simplification of growth region identification using WMA 

method allow in depth and thorough growth region distribution analysis in flame with 

varied inlet condition. Whereas the bend wire method reveals the cross-sectional 

condition within the growth region and enable extensive study on the effect of flame 

condition toward the formation of amorphous carbon layer on the substrate surface. 

Furthermore, the work also explores effects of water vapor in fuel stream toward CNT 

growth region, temperature, and formation of amorphous carbon layer. The analyses 

will provide fundamental understanding on the etching effect of water on catalytic 

growth of CNTs in flame. It is envisaged that the develop methodologies and findings 

in the present study will be the foundation toward further development of effective 

manipulation of flame parameters especially for enhancement of the yield, growth rate, 

and the quality of CNTs produced in flame synthesis in the future.  
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1.6 Research Scope 

The present study is an experimental-only work on CNT growth region 

characterization and amorphous carbon formation analysis using wire-based macro-

image analysis and bend wire method respectively within methane diffusion flame. 

Pure methane gas is employed to ensure consistency and significant size of growth 

region for measurement reliability. Dilution of methane is done through addition of 

pure nitrogen gas to the fuel stream. Mixture of pure oxygen and nitrogen gas were 

utilized to provide desired concentration in the oxidizer stream, whereas in the oxidizer 

flow rate experiments, compressed dry air is employed for economical purposes. Pure 

nickel wire with 0.4 mm diameter without any pre-treatment is used as catalyst. The 

utilization of the wire provide consistency in terms of catalyst preparation and 

eliminate any contributing factor in catalyst preparation toward the effect of CNT 

growth. The established flame characterization done through direct image capture and 

temperature measurement. The growth region is characterized through measurement 

of spatial distribution and temperature. The synthesized CNT is analysed using 

FESEM, TEM, EDX, and Raman spectra analysis only. 
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