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ABSTRACT

Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone that 

localises in the endoplasmic reticulum (ER). The HSP47 is essential for a proper 

formation of the collagen triple helix. The HSP47 binds to the completely-folded 

collagen molecule and accompanies it from the ER to the Golgi apparatus (GA), where 

dissociation occurs and HSP47 is recycled back to the ER. The binding and release 

behaviour are triggered by the lower pH in the GA or the ER-Golgi intermediate 

compartment (ERGIC). Histidine has been suggested to be the trigger residue due to 

the side chain pKa value of around 6.1, similar to the HSP47-collagen dissociation pH. 

In this study, Histidine-to-alanine (HA) mutants of human HSP47 were constructed to 

elucidate the specific mechanism that governs HSP47 release from collagen at the 

molecular level, known as the “pH-switch mechanism”. The binding of three mutants 

were found to be affected, namely H220A, H335A and H368A. This study investigated 

the effects of these mutations to the human HSP47 binding strength, using collagen 

type I extracted from rat tail tendon and modified enzyme-linked immunosorbent assay 

(ELISA)-based binding assay. The secondary structure of mutant proteins was 

investigated using circular dichroism (CD) spectroscopy. The result showed that 

mutants were found to retain their binding ability to collagen, except for H220A. The 

H335A and H368A were found to have slightly lower binding affinity to collagen 

relative to the wild-type (WT) (Kd  = 50.76 nM), with a dissociation constant (Kd ) of

152.9 nM and 131.3 nM respectively. In addition to the lost in collagen binding, 

H220A was also significantly more thermostable compared to the other mutants, that 

have similar thermostability to WT. The secondary structure of the HA mutants at 

alkaline pH was found to differ slightly from WT, with H368A showed a perturbed 

pH-induced secondary structural changes. In conclusion, the binding strength of the 

human HSP47 HA mutants was successfully elucidated and the structural changes 

caused by the mutations were described. The H220 was suggested to be important for 

binding with collagen while H368 was important for the release mechanism.
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ABSTRAK

Protein Kejutan Haba 47 (HSP47) adalah protein pendamping kolagen dan 

dijumpai di dalam retikulum endoplasma (ER). HSP47 sangat penting untuk 

pembentukan heliks tiga serangkai yang berfungsi sebagai peneman dari ER ke badan 

Golgi sebelum pemisahan berlaku dan kembali semula ke ER. Tingkah laku 

pengikatan dan pelepasan ini dicetuskan oleh pH rendah di dalam GA atau di ruang 

perantaraan ER-Golgi (ERGIC). Histidina telah dicadangkan sebagai residu pencetus 

kerana nilai pKa rantai sisinya iaitu sekitar 6.1 yang sama seperti nilai pH di mana 

pemisahan kolagen daripada HSP47 berlaku. Dalam kajian ini, mutan histidina-ke- 

alanina telah dibangunkan untuk HSP47 manusia bagi menjelaskan mekanisma khusus 

yang mengatur pelepasan HSP47 dari kolagen pada tahap molekul, yang dikenali 

sebagai “mekanisma pertukaran pH”. Tiga mutan sebelum ini didapati mempunyai 

pengikatan lebih rendah dengan kolagen, iaitu H220A, H335A dan H368A. Kajian ini 

bertujuan menyelidik kesan mutasi ini kepada kekuatan pengikatan HSP47 manusia. 

Kekuatan pengikatan dikaji menggunakan kolagen jenis I yang diekstrak daripada 

tendon ekor tikus dan kaedah berasaskan Imunoserap Berkait Enzim (ELISA). 

Struktur sekunder protin mutan seterusnya dikaji menggunakan spektroskopi 

dwikroisme membulat (CD). Keputusan menunjukkan semua mutan didapati masih 

mampu mengikat kepada kolagen, kecuali H220A. H368A dan H335A didapati 

mempunyai kemampuan mengikat kolagen yang lebih rendah, dengan pemalar 

pengasingan (Kd ) bernilai 131.3 nM dan 152.9 nM, berbanding protein jenis asal (WT) 

(Kd  = 50.76 nM). H220A bukan sahaja hilang kemampuan mengikat kolagen malah 

mempunyai tahap kestabilan haba yang lebih tinggi berbanding WT dan mutan yang 

lain. Struktur sekunder pada pH alkali untuk semua mutan didapati sedikit berbeza 

daripada WT, dengan H368A berbeza dari segi perubahan pertukaran struktur yang 

dicetuskan oleh pH. Kesimpulannya, kekuatan pengikatan di antara mutan HSP47 

manusia dan kolagen telah berjaya dikaji dan perubahan struktur disebabkan oleh 

mutasi telah dicadangkan di dalam kajian ini. Kajian ini mencadangkan yang H220 

adalah penting bagi pengikatan HSP47 dengan kolagen, manakala H368 penting bagi 

mekanisma pemisahan.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone that 

assists the maturation and transport of procollagens in collagen biosynthesis. This 

chaperone can be found in all vertebrates, where collagen is synthesised by the cell. 

Nowadays, there are a growing body of evidence on the involvement of HSP47 in 

various types of diseases, such as in osteogenesis imperfecta (OI), fibrosis, and cancer 

(Syx et al., 2021; Westra et al., 2016; Fan et al., 2020). A close relation between the 

increased expression of HSP47 and the excessive deposition of collagen has been 

reported in human, in vivo and in vitro fibrotic disease models (Kim et al., 2019). The 

increased expression in fibrotic diseases is known to help in the increased assembly of 

procollagen and thus lead to the excessive accumulation of collagen in fibrotic area 

(Bellaye et al., 2020). HSP47 is also being reported to be upregulated in various types 

of cancers such as stomach cancer, lung cancer, head and neck cancer, pancreatic 

ductal adenocarcinoma and ulcerative colitis-associated carcinomas (Chern et al., 

2020; Fan et al., 2020; Zhao et al., 2014). This urges the need to completely elucidate 

the molecular mechanisms of this chaperone.

Previously, Abdul Wahab and colleagues (2013) have successfully constructed 

a series of His-to-Ala (HA) mutants targeting all fourteen histidine residues of mouse 

HSP47, to elucidate the so-called “pH-switch mechanism”. This is the mechanism 

known to govern the release of HSP47 from collagen. This relates to its cellular 

behaviour, where HSP47 is recycled back to the endoplasmic reticulum (ER) after 

assisting the transport of procollagen from the ER to the cis-Golgi. From the study, 

some HA mutations do not impose significant perturbations in HSP47 function, but 

several others were found to impair the binding to collagen, which is an unexpected 

effect.
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In 2014, fourteen histidine residues of human HSP47 were successfully 

mutated to Alanine (unpublished data). This project was therefore proposed to 

investigate the effects of the selected HA mutations in human HSP47, and to further 

investigate the pH-switch mechanism. Human HSP47 was used for more 

physiologically-relevant results as it has 98% of similarities with mouse species. The 

mutants investigated were H220A, H335A and H368A, based on the perturbed 

behaviour observed previously (unpublished data). Mutations to alanine abolished the 

histidine side chain characteristics and the possible bonding with the neighbouring 

residues, allowing for the assessment of the importance of these target residues.

1.2 Problem Statement

It was found that the HA mutations at specific locations (particularly H220A, 

H335A, H368A) of HSP47 has significantly affected the binding behaviour based on 

gelatin agarose pull down assay (unpublished data). These mutations could potentially 

affect the release mechanism too. The binding study using gelatin pull down assay was 

only able to predict the conservation of structure and binding interface of the mutants, 

but unfortunately it does not provide further information on the binding strength. Thus, 

to investigate further the effects of the mutation on the binding strength, an enzyme- 

linked immunosorbent assay (ELISA)-based binding assay was proposed. This assay 

allowed quantification of the binding strength of the mutants, relative to wild type 

(WT). Consequently, the effects of mutations on HSP47 were investigated based on 

the secondary structural changes with pH, using circular dichroism (CD) spectroscopy. 

This technique allowed a more detailed understanding of the pH-induced structural 

transition of the mutants.
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1.3 Research Objectives

The aim of this research project was to study the binding strength and pH-

release behaviour of human HSP47 and target mutants (H220A, H335A, H368A)

relative to the WT. The specific objectives are as follows:

1. To express and purify the recombinant human HSP47 WT and target mutants.

2. To determine the binding affinity of human HSP47 WT and target mutants 

using ELISA-based binding assay.

3. To determine the pH-induced structural transition of human HSP47 WT and 

target mutants using circular dichroism spectroscopy.

1.4 Scope of Research

This project covers a few aspects:

(a) Preparation of competent cell by using CaCl2 method and transformation of 

competent cells using heat shock protocol.

(b) Expression and purification of recombinant HSP47 wild type (WT) and target 

mutants (H220A, H335A, H368A). The purification was done using 

immobilised nickel affinity column as the first purification step and then using 

HiTrap™ HP desalting column as the second purification step.

(c) Determination of binding affinity of human HSP47 WT and target mutants by 

using ELISA-based binding assay.

(d) Investigation on the changes to pH-induced structural transition of HSP47 WT 

and target mutants by using circular dichroism spectroscopy.
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1.5 Significance of Research

This research is important to discover the key His residue(s) that controls 

HSP47 pH-switch release, and the involvement in binding or structural integrity. 

Methods used in this research can directly be applied in collagen-related disease model 

studies. Therefore, this will increase the understanding on these diseases thus can move 

towards designing suitable therapeutic strategies.
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