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ABSTRACT 

Slope monitoring is essential in periodical geotechnical monitoring exercise as slope 

behaviour would change over a period of time subjected to the surrounding environment.  The 

conventional instrumentations for slope displacement monitoring are inclinometers, tiltmeters 

and extensometers, but main drawbacks of using available instrumentation are the difficulties 

in handling as well as high cost of equipment installation at a complex geological terrain and 

massive size of slope.  The downside of these equipment can be overcome by alternatively 

employing a distributed optical sensing fibre technology for slope monitoring programme.  

However, current applications of distributed fibre optic sensor were limited by attaching the 

sensor onto the geo-structure surfaces such as soil nailing, anchor bolts or geotextile but the 

arrangement of sensors on soil-embedded soil slope is still under uncertain evaluation due to 

the non-linear soil behaviour.  Therefore, this study focuses on efficiency of the soil-embedded 

distributed fibre optic sensing system based on Brillouin Optical Time Domain Analysis 

(BOTDA) technology as an innovative instrumentation apparatus to monitor deformation 

event of an unsaturated soil slope. BOTDA could be attractively employed for soil slope 

monitoring since it allows a continual measurement of strain along its interrupted length of 

fibre optic cables.  In this study, a soil-embedded strain sensor placement approach was 

proposed which was achieved via the horizontal planting of a three-layered optical fibre cable 

in S-curve forming in the physical laboratory soil slope.  The residual soil slope model was 

also instrumented with tensiometers to measure suction distribution and subjected to different 

simulated rainfall intensities and surcharge loading until failure.  At the same time, the 

progressive failure images were also captured using DSLR camera which then analysed using 

Particle Image Velocimetry (PIV) method to compare with the new optical fibre sensor 

instrumentation set up.  A total of ten laboratory schemes was performed including four 

preliminary infiltration tests subjected to three different rainfall intensities of no-rainfall, 1-

hour and 24-hour infiltration and slope inclination of 27° and 45°.  Before the infiltration tests, 

calibration experimental work on optical fibre was performed due to the non-linear soil 

behaviour which influences the true strain deformation of the soil slope.  From the preliminary 

laboratory tests, the results show the soil-embedded sensing fibre arrangement has efficiently 

detected and measured the strain deformation due to both rainfall and loading.  The captured 

strain data indicated a progressive deformation behaviour of a soil slope when there were 

changes in suction distribution and loading-induced activity on a soil slope as rainwater 

infiltration has gradually weakened the unsaturated shear strength of the soil by reducing soil 

suction, and rapid surcharge loading has also caused the development of excess pore pressure.  

This phenomenon had resulted in declining of soil effective stress that led to undrained bearing 

capacity failure.  A series of numerical simulations were later conducted by employing the 

commercial software of SEEP/W and SIGMA/W to analyse further the deformation behaviour 

which also acted as a comparative case against to the PIV images and the experimental results.  

In comparison to the PIV measurements, the optical fibre sensor was found to be capable to 

exhibit overall deformation of the soil slope when placed under an optimum configuration 

layout of the sensor.  The optical fibre sensor has effectively captured the deformation 

behaviour of the unsaturated soil slope model in the presence of rainwater infiltration and 

imposed surcharge loads.  The outcomes from this study had contributed to important results 

in terms of the design of field deployment of soil-embedded optical sensing fibre in 

unsaturated natural soil slope and embankment subjected to rainfall infiltration or any 

similarities to the saturated and unsaturated condition.  
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ABSTRAK 

Pemantauan cerun sangat penting dalam pemantauan berkala geoteknik kerana sifat 

cerun tanah yang akan berubah mengikut masa dan tertakluk kepada persekitarannya. 

Penggunaan alat konvesional yang lazim digunakan untuk memantau anjakan cerun adalah 

seperti inclinometer, tiltmeters dan extensometers.  Walaubagaimanapun, terdapat kelemahan 

dalam penggunaaan alat-alat tersebut seperti kesukaran dalam mengendalikan alat-alat 

tersebut dan juga tertakluk kepada kos pemasangan yang tinggi sekiranya melibatkan 

pemasangan di kawasan geologi yang kompleks dan ukuran cerun yang sangat besar.  

Kelemahan penggunaan peralatan ini dapat diatasi dengan menggunakan teknologi sensor 

gentian optik untuk program pemantauan cerun.  Setakat ini, penggunaan teknologi tersebut 

hanyalah terhad kepada pemasangan di permukaan geo-struktur seperti kaedah pakuan tanah, 

bolt penambat dan geotekstil tetapi masih tiada penilaian yang jelas mengenai sensor gentian 

optik yang ditanam langsung ke dalam tanah.  Ini adalah kerana sifat tanah yang tidak linear 

menyulitkan pemasangan sensor gentian optik ini di dalam tanah.  Oleh kerana itu, kajian ini 

fokus pada kecekapan sistem sensor gentian optik di dalam tanah dengan menggunakan 

teknologi Brillouin Optical Time Domain Analysis (BOTDA) sebagai alat untuk memantau 

perubahan tanah cerun.  BOTDA juga amat sesuai digunakan untuk pemantauan cerun berkala 

kerana sistem tersebut boleh mengukur pergerakan tanah sepanjang kabel gentian optik.  Kabel 

gentian optik telah ditanam di dalam model makmal cerun tanah dengan berbentuk huruf S 

secara selari antara satu sama lain.  Apabila model tersebut dikenakan simulasi hujan dengan 

corak hujan yang pelbagai dan bebanan terhadap tanah sehingga runtuh, tensiometers juga 

diletakkan dimana alat ini bertujuan untuk mengukur taburan sedutan dalam tanah.  Pada masa 

yang sama, kamera DSLR juga digunakan untuk mengambil gambar yang menunjukkan 

proses cerun tanah runtuh di mana gambar–gambar itu akan dianalisa menggunakan kaedah 

analisa velocimetri imej zarah (PIV) untuk tujuan perbandingan dengan bacaan pergerakan 

tanah dari sensor gentian optik.  Sejumlah sepuluh siri ujian makmal termasuk empat model 

makmal cerun tanah dibina untuk data permulaan.  Simulasi pelbagai corak hujan terbahagi 

kepada tiga kategori iaitu tiada hujan, 1-jam dan 24-jam penyusupan hujan dengan cerun 27° 

dan 45°.  Ujian penentukuran bagi kabel gentian optik juga dilakukan sebelum ujian 

penyusupan hujan kerana sifat tidak linear tanah akan mempengaruhi nilai pergerakan tanah 

yang sebenar.  Keputusan ujian makmal dari data permulaan menunjukkan sensor gentian 

optik dalam tanah tersebut dapat mengukur pergerakan tanah tertakluk kepada hujan dan 

lebihan bebanan di atas cerun tanah.  Data pergerakan tanah dari sensor gentian optik 

menunjukkan proses perubahan cerun tanah apabila dikenakan hujan dan bebanan tambahan.  

Penyusupan hujan ke dalam cerun tanah telah menghilangkan kekuatan daya ricih tanah 

disebabkan pengurangan sedutan di dalam tanah. Seterusnya, simulasi berangka dilakukan 

dengan mengunakan perisian komersial SEEP/W dan SIGMA/W untuk analisis lebih lanjut 

terhadap perubahan struktur tanah dan perubahan tersebut akan dibandingkan dengan hasil siri 

ujian makmal dan PIV.  Kesimpulannya, sensor gentian optikal telah didapati boleh 

menunjukkan gambaran mengenai perubahan bentuk model cerun tanah di mana konfigurasi 

sensor di dalam tanah telah diletakkan secara optimum.  Sensor gentian optik telah berjaya 

menunjukkan perubahan bentuk model cerun tanah apabila dikenakan penyusupan hujan dan 

bebanan tambahan.  Hasil kajian daripada projek telah menyumbang kepada keputusan penting 

dari segi reka bentuk sensor gentian optik di dalam tanah bagi penggunaan lapangan bagi 

kecerunan semulajadi atau tambak tertakluk kepada keadaan ketepuan akibat penyusupan 

hujan. 
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INTRODUCTION 

1.1 Background of Study 

Mountainous profile in Malaysia is prone to the rainfall-induced landslides 

consisting of an abundant of deep residual soil deposit.  Residual soil is defined as a 

soils formed in-situ subjected to the weathering process and had not experienced any 

transportation during the formation (Yunusa, 2015).  The soil is found to be abundant 

especially in tropical regions (Agus et al., 2001; Bujang B.K. Huat et al., 2013) and 

commonly existed in unsaturated condition for soil slope with a deep groundwater 

table (Rahardjo et al., 2005, 2009, 2012). Fredlund et al. (2012) stated that the stability 

of tropical residual soil slope is subjected to the influence of additional shear strength 

parameter namely negative pore water pressure (or matric suction) in the unsaturated 

soil mass.  The rainwater intrusion into unsaturated part of a soil slope can reduce the 

matric suction and subsequently caused the additional shear strength to diminish due 

to prolonged wet periods (Melinda et al., 2004; Li et al., 2005; Huat et al., 2006; 

Rahardjo et al., 2012). Zhang et al. (2005) also found that the rainfall infiltration 

caused a reduction of matric suction as well as significant changes both hydraulic and 

shear strength properties of unsaturated soil. The changes of hydraulic and shear 

strength properties sufficiently embark the initiation of failure plane as wetting front 

develops considerably during rainfall infiltration; either during an intense or prolonged 

period of rain. 

Most of the previous research work by Derbyshire (2001), Tsaparas et al. 

(2002), Rahardjo et al. (2004, 2005, 2009, 2014), Zhang et al. (2011, 2005), Tohari et 

al. (2007), Lee et al. (2009), and Leung and Ng (2015) on the unsaturated soil slope 

concluded that rainfall infiltration is the most significant triggering factor to slope 

instability in either tropical or subtropical regions. These research works were 

essentially considering how the distribution of suction and its redistribution affected 
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slope stability.  However, as stated by Wu et al. (2015) it is a great challenge to 

accurately address the effect of rainfall to slope failure as the mechanisms of rainfall-

triggered slope failures are very complex due to several factors including erosion, soil 

softening, seepage, stress redistribution and other different failure modes.  Lee et al. 

(2014) studied slope in Hulu Kelang area also claimed that the main causes which have 

contributed to the slope failure were still debatable as the failures keep recurring during 

rainy season. 

Due to unpredicted and sudden occurrence of slope failure, the geotechnical 

instrumentation is nowadays essential to slope engineering works in providing slope 

instability information for both natural and man-made slope. The geotechnical 

monitoring instrumentation plays a role to assess the safety condition of the geo-

structures. The results of the monitoring instrumentations are used to characterize site 

condition, verify design assumptions, determine the effects of construction, understand 

the geotechnical structures behaviour when subjected to different loadings (Klar et al., 

2006), impose the quality of workmanship and provide indicators to failures (Zhang et 

al., 2014).   

There are several geotechnical instrumentations for slopes which are 

commonly performed to observe and monitor the slope stability, for instance through 

photogrammetric techniques, scheduled monitoring using total stations, mapping 

using Global Positioning System (GPS) and instrumentation monitoring which is at 

foremost as to observe the movement of soil slope mass.  Common slope 

instrumentation monitoring devices are the borehole inclinometer and borehole 

extensometer that are known to measure the subsurface movement of slopes.  The 

movement are triggered by many factors such as geological features, rainwater 

infiltration, excessive vibration from earthquakes, human construction activities, 

natural topography or combination of these factors (Basile et al., 2003; Rahardjo et 

al., 2005, 2014; Yunusa, 2015). However, the point-wise of conventional monitoring 

instrumentation had restricted the reliability of data in general. The distributed 

measurement concept was based on the nature of Brillouin back scattered light 

principle which responsive to the variation of temperature and strain along the cable.  

The inherent characteristic has made the system involved Brillouin signal would 
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perform in a distributed measurement manner. Moreover, it is very expensive to have 

multiplexed sensors or to increase the number of sensors to enhance the quality of data 

monitoring. 

 As an alternative instrumentation monitoring, the recent use of relative cheap 

optical fibre as a monitoring sensor had been extended to structural and geotechnical 

monitoring instrumentations because of the measurement accuracy abilities 

(Mohamad et al., 2012).  There are three types of optical fibre sensors used in civil 

engineering application such as the Fibre-Bragg grating sensor (FBG), low coherence 

interferometry Surveillance d’Ouvrages par Fibres Optiques (i.e., SOFO) which is the 

long-gauge optical fibre sensor, and the time-domain reflectometry-based sensor, TDR 

(Rodrigues et al., 2013).  Recently, the distributed optical fibre sensing (DOFS) 

schemes like Brillouin optical time-domain reflectometry, BOTDR and Brillouin 

optical time-domain analysis, BOTDA was developed based on the TDR concept 

(Mohamad, 2008).  The distributed optical fibre sensors have been used to monitor 

pile foundation (Klar et al., 2006; Mohamad et al., 2011), tunnel (Shi et al., 2003; 

Mohamad et al., 2012) and slope which were only restricted to deployment at the soil 

nailing and integration with an inclinometer (Shi et al., 2006; Amatya et al., 2008; 

Minardo et al., 2014).  

However, the application of optical fibre directly embedded in the soil mass is 

still limited owing to the uncertainty of co-deformation between the optical fibre cable 

and soil displacement  (B.-J. Wang et al., 2009). The major setback on proper 

placement of optical fibre directly in the soil slope mass is still in research because the 

previous researchers were only limited to the application on homogenous soil slope 

specifically on the granular material and only the regular shape of optical fibre (round 

type).  Therefore, thorough explorations are in need as an innovation to the slope 

monitoring system.  
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1.2 Problem Statement 

Rainfall infiltration has been recognised as one of the important factors that 

lead to unsaturated residual soil slope failure in Malaysia.  The pore water pressure 

experiences a substantial fluctuation during the dry and wet condition for Southwest 

and Northeast monsoons, respectively. The rainwater infiltration into the unsaturated 

residual soil slope would cause a reduction in additional shear strength provided by 

the matric suction and triggering slope failure (Melinda et al., 2004; Li et al., 2005; 

Rahardjo et al., 2005, 2009, 2011, 2012; Huat et al., 2006).   

Previous studies on slope stability assessment when subjected to the 

distribution of matric suction in soil slope concluded the soil mass loses the additional 

soil strength due to the reduction of negative pore water pressure and this has directed 

to a strain deformation in the soil mass.  The risk of slope failure could be carefully 

monitored through periodic soil movement. The conventional monitoring 

instrumentation such as borehole inclinometer monitors the magnitudes of the 

subsurface movement of a slope with several limitations. The disadvantage of the 

inclinometer as an instrument is the accuracy of reading, where the field accuracy 

within the range of 1  to 6 mm accumulated over 50 readings.  The readings are 

discretely recorded at every 0.5 m along the inclinometer casing length.  Moreover, 

the tedious installation of inclinometer at complex geological terrain plus the 

enormous size of the slope would anticipate an extreme cost to expense. Alternatively, 

optical fibre technology was introduced in geo-structure instrumentation monitoring 

including natural slopes or embankments due to unsusceptible nature of optical fibre 

sensor to electromagnetic fields, corrosion, moisture, or ageing (Mohamad, 2008).  

However, the uses of optical fibre in slope monitoring from past research works were 

limited only to the deployment onto the geo-structure surfaces such as soil nailing, 

anchor bolts or geotextile.  The directly surface contact to soil slope sensors 

arrangement is still under uncertain evaluation due to the non-linear soil behaviour that 

influences the true strain deformation of the soil slope.  In addition, the scope of studies 

for the previous research works had not clearly explain the strain development during 

the transition effect of unsaturated to saturated condition.  
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In this study, the laboratory-sized slope test model used the distributed optical 

fibre technology known as BOTDA system and the monitoring sensors were arranged 

directly contact on the soil slope.  The sensors measured the horizontal strain 

deformation of an unsaturated soil slope soil mass when subjected to rainwater 

infiltration and surcharge load-induced failure.  The study focuses on the effectiveness 

and functionality of optical fibre sensor as instrumentation monitoring tools for 

Malaysian residual soil slope owing to local climate condition. 

1.3 Aim and Objectives 

This study aims to investigate the performance of distributed fibre optic sensor 

as alternative monitoring instrumentations for the unsaturated residual soil slope when 

subjected to rainfall infiltration and surcharge loading.  The research objectives are the 

following: 

1) To characterize the residual soil in a homogeneous soil slope model in laboratory.

2) To determine the BOTDA configuration parameters and soil-fibre interface

behaviour through calibration experiments and pull-out test, respectively.

3) To develop a soil-embedded distributed optical fibre sensing system for the

laboratory-scale residual soil slope model.

4) To assess the strain development of distributed fibre optic sensor by considering

the after-effect of rainfall infiltration and surcharge loading.

1.4 Scope of Work 

This study used a distributed optical fibre strain sensing (DOFS) system to 

investigate the horizontal strain deformation behaviour of a residual soil slope.  An 

optical fibre sensor technology based on ‘distributed’ measurement concept in 
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comparison to the conventional sensor which mostly measure in a discrete manner 

(point-wise measurement).  The distributed measurement concept was based on the 

nature of Brillouin back scattered light principle which responsive to the variation of 

temperature and strain along the cable.  The inherent characteristic has made the 

system involved Brillouin signal would perform in a distributed measurement manner. 

There were two research methods used to achieve the aim of this study: (i) laboratory 

modelling and (ii) numerical simulations using commercial software of SEEP/W, 

SLOPE/W, and SIGMA/W.  

In the first stage of laboratory modelling, a bulk of soil samples were acquired 

from Block P16 of the Faculty of Electrical Engineering to produce a representative 

sample for the laboratory modelling.  The site is a sloping site located within the 

premises of Universiti Teknologi Malaysia (UTM), Johor Bahru campus. The soil 

arrangement of the laboratory slope model is representative of the soil arrangement at 

the study site by manipulating the gravimetric water content and volumetric water 

content.  Firstly, soil characterization tests were conducted to obtain the index and 

engineering properties as the input parameters for the laboratory modelling 

experiments and later in numerical analyses.  Further explanation would be elaborated 

in Chapter 3 of this thesis. Secondly, the statistical analyses of historical local rainfall 

were simultaneously performed to obtain different rainfall intensities according to time 

of infiltration. The rainfall intensities were determined based on statistical analyses of 

local (Johor Bahru) rainfall data, which had generated from the polynomial equation 

for the shorter duration and Intensity Duration Frequency (IDF) curve for the 24-hour 

duration. Next, the mineralogy and micro fabric arrangement of residual soil were 

determined to enhance the soil properties data.  Finally, the optical fibre sensor had 

undergone the mechanical and thermal calibration tests for the BOTDA interrogator 

set up and soil/fibre interfacial behaviour.  

 In the second stage of the first research method, the physical model set-up 

comprising of the construction of soil slope model, arrangement of soil-embedment 

optical fibre sensor, artificial rainfall and photogrammetry using digital single-lens 

reflex (DSLR) camera.  The physical model was designed as a finite slope model; with 

a well-defined crest and toe with limited extent which defined by the critical length to 
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depth ratio (L/H) of a slope.  The study focused on a homogenous system of residual 

soil slope with two different configurations of slope angles; 27° and 45° inclinations 

because the natural and man-made slope exist at these angles where the rainfall-

induced slope failure mostly occurred with.  In addition, Jabatan Kerja Raya (JKR), 

Malaysia has specified the slope gradient of 1V:1H (45°) for the cut areas and 1:2 (27°) 

for the fill areas when using the conventional technique of balancing earthwork for 

embankment construction (Jabatan Kerja Raya Malaysia, 2010).  The placement of the 

optical fibre sensor was the soil-embedment type and the artificial rainfall was 

calibrated to an intended intensity prior for each test.  The DSLR camera was about 

±1.5 m in position from the front view of the acrylic chamber to capture images during 

loading.   

The subsequent stage in this research study was the data collection from the 

simulation of infiltration and loading tests.  The physical testings performed were 

subjected to two different slope inclinations, two rainfall patterns and no rainfall as a 

control tests.  The strain data were evaluated to relate to the progressive failure process 

in a soil mass when subjected to infiltration and surcharge loading.  The strain data is 

defined as the horizontal strain developed due to the rainfall and loading-induced 

which later would cause the slope failure. At the same time, images of the progressive 

failure process were also captured using DSLR camera. They were then analysed using 

Particle Image Velocimetry (PIV) method to process the captured images for 

comparison to the new optical fibre sensor instrumentation.   

Finally, the second research method is the numerical modelling stage.  The 

numerical simulations were using the commercial software of SEEP/W and 

SIGMA/W (GeoStudio 2012). The progressive strain deformation results from the 

laboratory modelling; both from the optical sensing fibre and PIV analyses were 

compared to the numerical analyses of the soil slope model.  
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1.5 Limitations of Study 

The research work is subjected to several limitations as listed: 

(a) The simulated rainfall intensity in the laboratory modelling experiments were

estimated and applied through the rainfall simulator using trial and error

method.

(b) The ideal environment in the laboratory with controlled precipitation and the

room temperature was assumed to be representative of the actual climate

condition.

(c) The soil materials used in laboratory modelling are assumed to be homogenous.

(d) The type of optical fibre used is limited to 12-ribbon Fujikura cable.

(e) The optimum size of the model was designed as 1.0 m in length and 0.5 m in

height to represent slope inclination angles: 27° and 45°.

(f) The size of the chamber was limited to 1.0 m in length due to limited space in

the laboratory.

1.6 Significance of Study 

The study contributes to a piece of new knowledge and advanced idea for the 

slope monitoring implementation and provides a better understanding of the usage of 

optical fibre technology as an innovative sensor in monitoring slope movement.  The 

findings are also valuable to the local civil engineers as it considers the tropical soil 

condition and contributes to new knowledge in slope engineering design and 

geotechnical monitoring programme. 
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1.7 Thesis Organization 

This thesis consists of six chapters: Introduction (Chapter 1), Literature Review 

(Chapter 2), Research Methodology (Chapter 3), Preliminary Data (Chapter 4), 

Physical Test Model Set-up (Chapter 5), Result and Discussion (Chapter 6) and the 

final Chapter 7 Conclusion and Recommendation.  At the end of each chapter, 

concluding remarks are provided to briefly discuss and summarize the content of the 

chapter. 

Chapter 1 describes the background of problems associated with the slope 

movement monitoring method for tropical residual soils as well as the objectives, 

scope and significance of the present study. 

Chapter 2 presents descriptions, comparisons, concepts of appropriate theories 

published in the literature of this thesis.  Besides that, Chapter 2 also outlines the 

laboratory modelling techniques and methodologies employed in previous studies. 

Chapter 3 Research Methodology describes the methodologies involved in the 

laboratory modelling; (i) soil sample characterizations, (ii) data obtained from 

probability distribution rainfall analysis using Gumbel’s method, and (iii) optical fibre 

characterizations through several calibration experiments.  The methodologies of the 

laboratory modelling set up also had also been explained in this chapter, which 

consisted of the construction of soil slope model, data configuration set up of optical 

fibre sensor, loading system set up and rainfall simulation.  The chapter ends with a 

brief description of numerical analysis modelling and PIV method.  

Chapter 4 presents and discusses the preliminary data obtained from 

experimental data works as described in Chapter 3. 

Chapter 5 presents the physical model set-up and results acquired from the pilot 

laboratory tests which illustrating the efficiency and functionality of the soil-embedded 

sensing fibre to monitor soil slope.  
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Chapter 6 discusses mainly on slope behavior resulted from the effect of 

rainfall infiltration and surcharge loading to the strain development which gathered 

from the embedded optical fibre sensing system.  Also, the matric suction 

measurements were discussed for the homogenous soil slope model.  Lastly, numerical 

simulations were also explained in modelling the deformation behaviour of the 

homogenous soil slope model as captured from the innovative sensor    

The final chapter of the thesis (Chapter 7) covers the summary of the thesis and 

conclusions drawn from the present study as well as the recommendations for further 

researches. 
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