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ABSTRACT 

Membrane distillation (MD) is an emerging desalination technology which 

separates vaporized solutes from the feed solution using a hydrophobic membrane at 

fairly high temperature. Ceramic membranes are known to have excellent chemical 

and thermal stability. However, their application in MD has not been well received as 

compared to their polymeric counterparts due to high cost and intrinsic hydrophilicity. 

This study focused on the development of novel cost-effective hydrophobic ceramic 

hollow fiber membranes (CHFMs) from an industrial waste, palm oil fuel ash (POFA), 

for direct contact MD (DCMD). POFA has high silica and potassium oxide content 

that could endow it with lower sintering temperatures during membrane fabrication 

than that of the widely used alumina membranes. However, POFA also exhibits a 

significant amount of carbon and organic impurities that could be detrimental to the 

mechanical properties of CHFM. Hence, in the first stage of the study, POFA was 

subjected to thermal pre-treatment at temperatures of 500–1,000˚C, and the effect of 

pre-treatment temperature on the chemical and physical properties of POFA was 

correlated. It was found that the carbon content of POFA was eliminated after being 

pre-treated at ≥600˚C, whereas the silica content was improved to >70 wt%. Moreover, 

the physical properties of POFA changed with increasing pre-treatment temperatures. 

In the second stage of the study, the high-strength POFA-derived CHFMs were 

fabricated through combined phase inversion/sintering technique. It was found that the 

pre-treatment temperature of POFA, POFA loading, phase inversion parameters (i.e.: 

air gap distance, bore fluid flow rate), and sintering temperature had substantial 

influences on the morphology and mechanical properties of CHFM. A high-strength 

CHFM (98.1 MPa) was acquired at the following conditions: 700˚C POFA pre-

treatment temperature; 55 wt% POFA suspension loading; 5 cm air gap distance; 9 

mL/min bore fluid flow rate; 1,050˚C sintering temperature. To attain hydrophobic 

properties, the surface of the CHFM was modified via dip-coating with 

polymethylhydrosiloxane/tetraethylorthosilicate (PMHS/TEOS) hybrid in the third 

stage of the study. A novel post-coating spinning technique has been developed to 

facilitate the pore formation on the coating layer. The effect of the number of coating 

layer on the morphology of the CHFM was studied. The concentrations of ethanol and 

PMHS were also found to affect the surface morphology and hydrophobicity of the 

CHFM. High water contact angle (WCA) of 108.2˚ and liquid entry pressure with 

water (LEPw) of 1.0 bar was achieved by the CHFM modified with the following 

conditions: TEOS/ethanol molar ratio: 1:45; PMHS/TEOS mass ratio: 1:10; the 

number of coating layer: 2; with post-coating spinning. An excellent DCMD 

desalination performance was achieved with a salt rejection of >99.98% and flux of 

4.8 L/m2h at the feed salinity of 35,000 ppm. The outcomes of this study suggest that 

the hydrophobic POFA-derived CHFM could be an excellent low-cost alternative for 

MD desalination applications.   
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ABSTRAK 

Penyulingan membran (MD) merupakan teknologi penyahgaraman yang 

sedang berkembang dengan memisahkan zat terlarut yang teruap dari larutan suapan 

menggunakan membran hidrofobik pada suhu yang agak tinggi. Membran seramik 

mempunyai kestabilan kimia dan haba yang hebat, tetapi kurang mendapat perhatian 

dalam MD berbanding dengan membran polimer disebabkan kos yang tinggi dan 

sifatnya yang hidrofilik intrinsik. Kajian ini memfokuskan pada pembangunan 

membran gentian geronggang seramik hidrofobik (CHFM) baharu yang menjimatkan 

kos dari sisa industri, iaitu abu kelapa sawit (POFA) untuk penyulingan membran 

sentuhan langsung (DCMD). POFA mempunyai kandungan silika dan kalium oksida 

yang tinggi yang dapat menyumbang kepada penurunan suhu pensinteran semasa 

fabrikasi membran berbanding dengan alumina yang digunakan secara meluas. Namun 

begitu, POFA juga mengandungi karbon dan kekotoran organik yang boleh 

memudaratkan sifat mekanik CHFM. Oleh itu, pada peringkat pertama kajian, POFA 

menjalani pra-rawatan termal pada suhu 500–1,000˚C, dan pengaruh suhu pra-rawatan 

terhadap sifat kimia dan fizikal POFA telah dihubung kait. Keputusan menunjukkan 

kandungan karbon POFA telah dinyahkan setelah rawatan pada suhu ≥600˚C, 

manakala kandungan silika ditingkatkan menjadi >70 wt%. Selain itu, sifat fizikal 

POFA juga berubah dengan peningkatan suhu pra-rawatan. Pada peringkat kedua 

kajian, CHFM yang dihasilkan dari POFA yang mempunyai kekuatan tinggi 

dihasilkan melalui teknik gabungan penyongsangan fasa dan pensinteran. Hasil kajian 

menunjukkan suhu pra-rawatan POFA, kandungan POFA, parameter penyongsangan 

fasa (jarak sela udara, kadar aliran cecair penebuk), dan suhu pensinteran membran 

mempunyai pengaruh yang besar terhadap morfologi dan sifat mekanik CHFM. 

CHFM mempunyai kekuatan tinggi (98.1 MPa) diperoleh pada keadaan berikut: Suhu 

pra-rawatan POFA: 700˚C; kandungan POFA: 55 % jisim; jarak sela udara: 5 cm; 

kadar aliran cecair penebuk: 9 mL/min; suhu pensinteran: 1,050˚C. Untuk mencapai 

sifat hidrofobik, permukaan CHFM telah diubahsuai melalui celupan salutan hibrid 

polimetilhidrililoksana/tetraetilorthosilikat (PMHS/ TEOS) pada peringkat ketiga 

kajian. Teknik pemintalan pasca salutan baharu telah dibangunkan untuk memudahkan 

pembentukan liang pada lapisan salutan. Pengaruh bilangan lapisan salutan terhadap 

morfologi CHFM telah dikaji. Kepekatan etanol dan PMHS juga didapati 

mempengaruhi morfologi permukaan dan sifat hidrofobik CHFM. Sudut sentuhan air 

(WCA) (108.2˚) dan tekanan masuk cecair dengan air (LEPw) (1.0 bar) yang tinggi 

telah dicapai oleh CHFM yang diubah suai pada keadaan berikut: nisbah molar 

TEOS/etanol: 1:45; nisbah jisim PMHS/TEOS: 1:10; bilangan lapisan: 2; dengan 

pintalan salutan pasca. Prestasi penyahgaraman DCMD hebat telah dicapai dengan 

penyahgaraman >99.98% dan fluks 4.8 L/m2h pada tahap kemasinan 35,000 ppm. 

Hasil kajian ini menunjukkan bahawa CHFM hidrofobik yang berasal dari POFA 

dapat menjadi alternatif kos rendah yang hebat untuk aplikasi penyahgaraman MD.  
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INTRODUCTION 

1.1 Background of Research 

Freshwater scarcity has been one of the major challenges in this modern era. 

Global climate change, flourishing agricultural and industrial development, rapid 

global population expansion, as well as aggravated water pollution have put great 

pressure on the world’s freshwater resources. It has been estimated that two-thirds of 

the global population (4.0 billion people) currently live under the conditions of severe 

water scarcity for at least one month yearly (UN Water, 2019). Desalination is deemed 

as one of the most promising methods to augment the freshwater capacity to cater to 

the immense freshwater needs. Through desalination, seawater and brackish water can 

be converted into freshwater by removing the dissolved solutes. 

Currently, reverse osmosis (RO) accounts for 84% of the total number of 

desalination plants in the world because of its capabilities to produce high purity water 

(Jones et al., 2019). RO is a membrane desalination process, which can produce clean 

water with salt rejections greater than 99% (Lee et al., 2011; Greenlee et al., 2009). 

However, this technology requires high operating pressures (17–82 bar) that make it 

susceptible to membrane fouling, consequently compromising freshwater productivity 

and quality (Jiang et al., 2017; Greenlee et al., 2009). Thermal desalination is another 

key desalination technology that is widely used in many of the desalination plants in 

the Middle East (Greenlee et al., 2009; Fritzmann et al., 2007). This energy-intensive 

technology is commonly fueled by fossil fuels, which are non-environmentally 

friendly and not sustainable due to the high carbon emission and depleting fossil fuel 

reserves (Gude et al., 2011; Kalogirou, 2005). Therefore, the development of 

desalination technology with consistent freshwater productivity and quality, as well as 

the feasibility to integrate with sustainable energy is greatly needed. 
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Membrane distillation (MD) is a burgeoning desalination technology and can 

be a replacement for the conventional desalination processes. It is a hybrid technology 

bringing together thermal and membrane processes that separate the vaporized solutes 

from the feed solution through a microporous hydrophobic membrane at fairly high 

temperatures. MD has several promising characteristics, such as (i) lower operating 

temperatures than the thermal desalination technologies as the feed solution is not 

required to be heated to its boiling point for the distillation to occur, (ii) much lower 

operating pressure compared to RO, (iii) theoretically 100% non-volatile solute 

rejection, and (iv) the performance is not affected by the high salinity of the feed 

solution (Ashoor et al., 2016; Alkhudhiri et al., 2012; Al-Obaidani et al., 2008; Banat 

and Al-Shannag, 2000). In addition, the feasibility of integrating MD with renewable 

energies, such as the solar and geothermal energies, as well as the low-temperature 

industrial waste stream also makes it particularly attractive in reducing the operating 

cost (Lokare et al., 2017; Sarbatly and Chiam, 2013; Blanco Gálvez et al., 2009). 

Moreover, the lower operating pressure condition allows the use of membranes with 

larger pore size and lower mechanical properties requirements as compared to RO, 

thus making MD cost-effective (Tijing et al., 2015; Alkhudhiri et al., 2012). The 

membranes with hydrophobic properties and larger pore sizes also reduce the 

susceptibility of MD to fouling (Ashoor et al., 2016; Alkhudhiri et al., 2012). 

Since its discovery in the early 1960s, the development and commercial 

implementation of MD has been relatively sluggish as compared to RO. The slow 

progress in the commercialization of MD technology has largely been associated with 

the lack of membrane materials with appropriate characteristics for the MD 

applications (Drioli et al., 2015; Alkhudhiri et al., 2012; El-Bourawi et al., 2006). The 

research on the development of the MD membranes has been vibrantly growing since 

the last two decades (González et al., 2017). In general, polymeric membranes have 

been extensively studied for MD applications due to their intrinsic hydrophobicity and 

low surface energy properties, ease of fabrication, low cost, and high availability (Xu 

et al., 2019; Wang et al., 2016; El-Bourawi et al., 2006). Polytetrafluoroethylene 

(PTFE), polyvinylidene fluoride (PVDF), and polypropylene (PP) are popularly 
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studied polymers for MD applications (González et al., 2017; Alkhudhiri et al., 2012). 

However, polymeric membranes possess low thermal stability and chemical resistivity 

(Wang et al., 2016; Hendren et al., 2009). These will affect the performances of the 

membranes in MD desalination, especially for long-term operations. 

Ceramic membranes can be a viable option for MD applications due to 

outstanding mechanical, thermal, and chemical stability (Li et al., 2016; Li, 2007). 

These remarkable properties allow ceramic membranes to operate at higher 

temperatures and in the presence of chemicals without concern for membrane 

deterioration (Li, 2007). As a result, ceramic membranes exhibit long membrane life 

span, which cannot be achieved by polymeric membranes. However, due to the high 

cost, the deployment of ceramic membranes for MD applications is still lacking 

(Hubadillah et al., 2019b). Most of the ceramic membranes used in MD studies are 

made from expensive ceramic materials, such as alumina (Al2O3) and titania (TiO2), 

which contribute immensely to the high cost of ceramic membranes (Fan et al., 2017; 

García-Fernández et al., 2017; Kujawa et al., 2014a; Fang et al., 2012). Hence, the 

development of low-cost ceramic membranes from alternative materials is pivotal to 

make the membranes more commercially attractive for MD applications. 

Apart from developing ceramic membranes from low-cost starting materials, 

the membrane fabrication cost can also be minimized by lowering the sintering 

temperature to reduce energy consumption and shorten fabrication duration. The 

fabrication of ceramic membranes usually involves high sintering temperatures, which 

is one of the main reasons for the high fabrication cost. For instance, conventional 

Al2O3 membranes require an extremely high sintering temperature (usually >1,500˚C) 

to reach a trade-off between mechanical strength and porosity, which consequently 

results in high fabrication cost (Li et al., 2016). Although a large number of studies 

have been reported on the development of low-cost ceramic membranes, the 

fabrication of these membranes still involves high sintering temperatures (Hubadillah 

et al., 2020; Hubadillah et al., 2018a; Jamalludin et al., 2018; Li et al., 2016). 

Therefore, a contemporary strategy to reduce the fabrication cost of ceramic 

membranes is by deploying a low-cost ceramic material with inherent sintering aid 

properties.  
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In this study, we developed low-cost ceramic hollow fiber membranes 

(CHFMs) using palm oil fuel ash (POFA) via the phase inversion/sintering technique. 

POFA is an industrial waste from the thriving palm oil industry. This material is 

colossal in amount and usually being disposed to open field that poses threats to the 

surrounding environment and local communities (Hamada et al., 2020; Thomas et al., 

2017). POFA is mainly made up of silica (SiO2) which could provide essential 

mechanical strength to ceramic membranes (Othman et al., 2017; Thomas et al., 2017). 

The SiO2-rich composition could also bestow the ceramic membrane with a lower 

sintering temperature as compared to Al2O3 membranes (Othman et al., 2017). Based 

on the literature, the development of low-cost ceramic membrane from SiO2-based 

alternative materials such as rice husk ash, waste fly ash, ball clay and kaolin have 

been increasingly embraced in recent years. However, the fabrication of membranes 

from these materials still involves high sintering temperatures (>1,200˚C) to acquire 

high mechanical properties, which could be energy- and time-consuming (Hubadillah 

et al., 2020; Abd Aziz et al., 2019b; Zulkifli et al., 2019; Hubadillah et al., 2018a). 

The incorporation of liquid phase sintering aid has been known to stimulate diffusion 

mechanisms of ceramics and reduce sintering temperatures (Fang et al., 2014; Vu et 

al., 2013). However, the selection and process control of suitable sintering aid is rather 

complicated. Correspondingly, POFA contains a notable amount of potassium oxide 

(K2O). K2O has a relatively low melting point of ~700˚C, thus could act as a liquid 

phase sintering aid during membrane sintering. The intrinsic sintering aid properties 

of POFA could resolve problems related to the addition of sintering aid to the ceramic 

system, as well as reducing sintering temperature. 

Ceramic membranes are inherently hydrophilic due to abundant hydroxyl (–

OH) groups on the membrane surface (Fang et al., 2012; Krajewski et al., 2006). On 

the contrary, the membranes used for MD applications must be hydrophobic. The 

surface chemistry of ceramic membranes can be reversed from hydrophilic to 

hydrophobic through surface modification. Fluoroalkylsilane (FAS) is the most 

commonly used surface modifier to produce hydrophobic ceramic membranes due to 

the reduction of surface energy caused by the presence of abundant fluorine atoms 

(Hubadillah et al., 2019b; Krajewski et al., 2006). However, FAS is costly and can 

lead to high production costs of the hydrophobic ceramic membranes (Hubadillah et 

al., 2019b; Ahmad et al., 2015). Also, the instability of the FAS coating could cause 
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the leaching of FAS into the water streams during separation processes, leading to 

detrimental environmental effects (Kujawa et al., 2017a; Kujawa and Kujawski, 2016). 

The acquisition of hydrophobic properties via membrane surface modification with 

cheaper and non-fluorinated materials can be the key to overcome these constraints. 

Nonetheless, the establishment of hydrophobic ceramic membranes using alternative 

non-fluorinated low surface energy materials is still lacking, thus offering enormous 

opportunities for exploration.  

In this regard, the non-fluorinated polymethylhydrosiloxane/ 

tetraethylorthosilicate (PMHS/TEOS) with low surface energy has been adopted for 

ceramic membrane surface modification in this study. PMHS/TEOS is an 

organic/inorganic hybrid material and possesses the advantageous characteristics of 

both organic and inorganic compounds (Wang et al., 2017b; Katagiri et al., 2001). 

Polymethylhydrosiloxane (PMHS) is a polymeric byproduct of the silicon industry, 

which is inexpensive, hydrophobic, non-toxic, and stable to air and moisture (Yadav 

et al., 2019; Yang et al., 2006). Having advantages of fascinating reaction character 

and flexible linear chain, PMHS can effectively take part in the sol-gel process together 

with tetraethylorthosilicate (TEOS). Besides, it can also tailor the surface chemistry of 

materials desirably and act as the structure-directing agent to produce a porous coating 

layer without the employment of a template (Guo et al., 2015; Yang et al., 2008). The 

incorporation of organic PMHS functional groups into the inorganic TEOS matrix 

creates a cross-linking organic-inorganic network, which changes the surface 

chemistry of the material and endows the hybrid material with hydrophobic properties. 

Moreover, PMHS/TEOS hybrid also inherits the excellent stability properties of 

inorganic compounds (Wang et al., 2017b). PMHS/TEOS can be synthesized via the 

sol-gel method that is simple and well suited for large scale production (Sanchez et al., 

2011; Sanchez et al., 2005). However, up until today, the use of PMHS/TEOS coating 

in the fabrication of hydrophobic ceramic membranes has not been explored. 

Therefore, it was of our interest to study the feasibility of PMHS/TEOS hybrid for the 

development of hydrophobic ceramic membrane for MD desalination. 
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1.2 Problem Statements 

To circumvent the high fabrication cost of ceramic membranes for MD 

applications, a novel low-cost hydrophobic CHFM derived from POFA had been 

proposed in this work. Like other ash-typed materials, POFA comprises of a notable 

amount of carbon and organic impurities due to incomplete burning (Thomas et al., 

2017). The presence of carbon and organic impurities could change the pore size 

distribution of the membrane and impede the bonding between particles during 

sintering as well as, most importantly, adversely affecting the SiO2 composition of the 

membrane (Thomas et al., 2017; Chandara et al., 2010; Jo et al., 1996). High SiO2 

content of POFA is crucial as it could provide strong mechanical properties to CHFMs 

(Othman et al., 2017).  Carbon and organic impurities can be removed via thermal pre-

treatment in the atmosphere (Alsubari et al., 2018; Ali et al., 2017; Chandara et al., 

2010). Therefore, in this study, POFA was subjected to thermal pre-treatment at 

different temperatures before the membrane fabrication process to overcome this 

challenge. Previous studies have shown that the chemical and physical properties of 

different ashes (i.e.: rice hull ash, sugarcane bagasse ash) would be changed at different 

calcination temperatures (Sánchez-Flores et al., 2016; Ribeiro and Morelli, 2014; 

Yang et al., 2008). Meanwhile, to date, the effect of pre-treatment temperature on the 

properties of POFA has yet been explored. Hence, the fundamental understanding of 

the effect of pre-treatment temperature on the chemical and physical properties of 

POFA was important to be explored in this study. 

The pre-treated POFA was used for the fabrication of CHFM. It is widely 

known that CHFM is brittle due to small diameters which could lead to membrane 

failure during handling or operations (Wang et al., 2016). Hence, high mechanical 

strength is particularly crucial for CHFM to ensure long-term performance stability of 

membranes (Fung and Wang, 2014; Xu et al., 2014). Literature has shown that CHFMs 

with the mechanical strength of about 100 MPa are capable to produce stable and 

efficient separation performances (Abdulhameed et al., 2017; Qasim Hussein et al., 

2015). Today, the study on the fabrication of the CHFM derived from POFA was still 

lacking and there has yet any report on the improvement of the mechanical strength of 

the POFA-derived CHFM. It is anticipated that the change of chemical and physical 
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properties of POFA after pre-treatment at different temperatures could affect the 

properties of the derived CHFM. The chemical and physical properties of starting 

material could influence the phase inversion and sintering processes during the 

membrane fabrication process (Hubadillah et al., 2018b; Hubadillah et al., 2016b). 

Thus, it is pivotal to investigate how pre-treatment temperatures of POFA could affect 

the morphology and mechanical strength of the derived CHFM. Moreover, past studies 

have also witnessed the manipulation of ceramic loading, phase inversion parameters, 

and sintering temperature to augment the mechanical strength of CHFMs (Hubadillah 

et al., 2018a; García-Fernández et al., 2017). The variation of these parameters would 

change the morphological structure of membranes, and as a result, affecting their 

mechanical strength. Therefore, it was of great interest in this study to investigate the 

impacts of ceramic loading, phase inversion parameters, and sintering temperature on 

the mechanical strength of CHFM. 

To reverse the surface chemistry of the POFA-derived CHFM from 

hydrophilic to hydrophobic for MD desalination, the surface of the membrane was 

modified via dip-coating with PMHS/TEOS hybrid material. Some studies have 

revealed that PMHS/TEOS sol-gel compositions could affect sol-gel behaviors and 

change the surface chemistry of the hybrid coating (Yang et al., 2008; Yang et al., 

2006). Moreover, the change of sol-gel compositions and the number of coating layer 

would also affect the morphology of the coating layer (Anderson and Binions, 2014; 

Yang et al., 2008). Thus, in this study, ethanol and PMHS concentrations of the 

PMHS/TEOS hybrid solution, and the number of coating layer were manipulated to 

enhance the hydrophobicity and morphological structure of the membrane coating. 

Additionally, a highly porous coating layer is also essential to ameliorate the flux 

across the membrane. Generally, the organic-inorganic hybrid coating layers prepared 

via the sol-gel method are dense with extremely small pore sizes (Dong et al., 2020; 

Xiangli et al., 2007). The use of the template-based sol-gel method has been widely 

adopted to produce porous coating layer, but the process of removing template can be 

energy consuming and less environmentally-friendly (Chua et al., 2015; Chen et al., 

2011). Meanwhile, a study by Yang et al. (2008) has shown the successful 

development of macro-porous SiO2 films from PMHS/TEOS via the spin coating 

method without the employment of a template. The fast-moving coating process 

facilitated the reaction between the unreacted PMHS and ethanol in the sol-gel system 
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which released hydrogen (H2) gas, producing a highly porous structure. Intrigued by 

Yang’s success, this work adapted his fabrication approach to coat our hollow fiber 

substrate. Since the geometry of hollow fiber and flat substrate are different, here we 

developed a facile method to spin the hollow fiber immediately after the dip-coating 

process to produce a porous hydrophobic CHFM. The proposed approach could offer 

a simple, effective, and environmentally friendly pathway to produce hydrophobic 

ceramic membranes for MD desalination. 

1.3 Research Objectives 

The ultimate objective of this study was to develop a novel hydrophobic 

POFA-derived CHFM for MD desalination via the phase inversion/sintering technique 

followed by surface modification with PMHS/TEOS hybrid material. To achieve the 

final objective, this study was set out with the following specific objectives: 

1. To correlate the effect of pre-treatment temperature on the chemical and 

physical properties of POFA 

2. To examine the effects of pre-treatment temperature of POFA, POFA loading, 

phase inversion parameters, and sintering temperature on the development of 

high-strength POFA-derived CHFM 

3. To investigate the influences of PMHS/TEOS sol-gel compositions, the 

number of coating layer, and coating procedure on the morphological structure 

and hydrophobicity, as well as the DCMD desalination performance of the 

POFA-derived CHFM 
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1.4 Research Scope 

The scopes of the study have been identified and are listed as follows: 

For objective 1: 

(a) Pre-treating the POFA obtained from a crude palm oil mill in Chaah, Johor via 

the thermal process at different temperatures (500–1,000˚C). 

(b) Studying the morphological changes of POFA via scanning electron 

microscopy (SEM) and transmission electron microscopy (TEM). 

(c) Characterizing the changes of chemical properties of POFA through X-ray 

fluorescence (XRF) analysis, carbon elemental analysis, and Fourier-transform 

infrared (FTIR) spectroscopy. 

(d) Identifying the changes of crystallinity, surface and pore properties, as well as 

the thermal stability of POFA using X-ray diffraction (XRD) spectroscopy, 

Brunauer, Emmet and Teller (BET) analysis, and thermogravimetric analysis 

(TGA), respectively. 

For objective 2: 

(a) Determining the rheological behaviors of the ceramic suspensions prepared 

from the untreated POFA and POFA pre-treated at different temperatures 

(500–1,000˚C), as well as with different POFA loadings (40–60 wt%) through 

viscosity tests. 

(b) Fabricating CHFMs from the untreated POFA and POFA pre-treated at 

different temperatures (500–1,000˚C) via the phase inversion/sintering 

technique.  

(c) Manipulating the POFA loading (40–55 wt%), air gap distance (5–15 cm), bore 

fluid flow rate (6–20 mL/min), and sintering temperature (1,025–1,100˚C) 

during the membrane fabrication process.  
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(d) Investigating the morphology, bending strength, surface roughness, as well as 

the pore size distribution (PSD) and porosity of the POFA-derived CHFM 

through SEM, three-point bending test, atomic force microscopy (AFM), and 

mercury intrusion porosimetry (MIP), respectively. 

(e) Evaluating the water permeability of the POFA-derived CHFM using a 

crossflow filtration system at a pressure of 2 bar. 

For objective 3: 

(a) Preparing PMHS/TEOS hybrid solutions containing PMHS, TEOS, water 

(H2O), and ethanol. 

(b) Synthesizing SiO2 powder from the sol-gel solution containing TEOS, H2O, 

and ethanol 

(c) Characterizing the chemical properties of SiO2 and PMHS/TEOS hybrid 

powders via FTIR spectroscopy. 

(d) Identifying the thermal stability of PMHS/TEOS hybrid powder via TGA 

under nitrogen (N2) and air atmospheres 

(e) Modifying the surface of the POFA-derived CHFM by dip-coating with 

PMHS/TEOS hybrid solution 

(f) Evaluating the effects of PMHS/TEOS sol-gel compositions, such as 

TEOS/ethanol molar ratio (1:40–1:55) and PMHS/TEOS mass ratio (1:2–1:10) 

on the properties of the surface-modified POFA-derived CHFM 

(g) Studying the effects of coating procedures (with and without post-coating 

spinning) and the number of coating layer (1–4) on the structure of the coating 

layer of the POFA-derived CHFM 

(h) Characterizing the morphology, element distribution, surface topography, and 

apparent surface PSD, as well as the hydrophobicity of the surface-modified 

CHFM via SEM, energy-dispersive X-ray (EDX), AFM, and ImageJ analysis, 

as well as the WCA and LEPw tests, respectively 

(i) Determining the mechanical stability of the coating layer of the hydrophobic 

CHFM via ultrasonication followed by the WCA test and inductively coupled 

plasma optical emission spectroscopy (ICP-OES) 
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(j) Evaluating the gas permeability of the coated membranes using N2 gas at 

predetermined pressures (0–1 bar) 

(k) Assessing the desalination performance of the POFA-derived CHFMs coated 

with PMHS/TEOS solutions prepared with different PMHS/TEOS mass ratios 

(1:2–1:10) using 2,000-ppm synthetic saline solution (Operating conditions: 

feed temperature: 80˚C; coolant temperature: 10˚C; feed flow rate: 0.25 L/min; 

coolant flow rate: 0.2 L/min) 

(l) Evaluating the desalination performance of the surface-modified CHFMs using 

synthetic saline solutions of different salt concentrations (2,000, 10,000, and 

35,000 ppm) (Operating conditions: feed temperature: 80˚C; coolant 

temperature: 10˚C; feed flow rate: 0.25 L/min; coolant flow rate: 0.2 L/min) 

(m) Analyzing and comparing the costs of the POFA-derived CHFM and the 

PMHS/TEOS hybrid with other materials reported in the literature   

1.5 Research Significance 

This research contributes to the development of low-cost hydrophobic ceramic 

membranes from alternative green ceramic materials. This would make ceramic 

membranes more economically sensible for MD applications. In addition, this research 

also embraces the waste-to-wealth concept through the utilization of industrial waste, 

POFA, for the fabrication of ceramic membranes. This initiative is in accordance with 

the 11th Malaysia Plan (RMK11) which steps up the focus of our country towards green 

growth. Moreover, the research on the surface modification of ceramic membrane 

using PMHS/TEOS hybrid material also helps to expand the frontier of knowledge in 

the development of hydrophobic ceramic surface with cheap and environmentally 

friendly non-fluorinated materials. As mentioned earlier, the development of MD 

desalination is relatively slow as compared to that of RO technology. Regarding this 

concern, we believe that the outcomes of this research can give significant impacts on 

the development of MD desalination in the efforts to realize the commercialization of 

MD technology in the near future. The implementation of MD in desalination will also 

contribute to achieving the United Nations’ Sustainable Development Goal 6 which 

focuses on the sustainable management of clean water and sanitation. 
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1.6 Thesis Organization 

This thesis reports a novel approach for the development of hydrophobic 

POFA-derived CHFMs via the phase inversion/sintering technique and surface 

modification with PMHS/TEOS hybrid for MD desalination. This thesis is organized 

into seven chapters. Chapter 1 provides a brief introduction concerning conventional 

desalination technologies, MD desalination, challenges with ceramic MD membranes, 

and the new approaches of this research for tackling these challenges. Besides, the 

problem statements, objectives, scopes, and significance of this research have also 

been addressed in the chapter. Chapter 2 presents a review of the important literature 

related to the topic of this research. This chapter contains the discussions on 

conventional desalination technologies, MD as emerging desalination technology, 

development of ceramic membranes, and surface modification of ceramic membranes 

for MD applications. Meanwhile, Chapter 3 gives a comprehensive description of the 

materials, experimental procedures, and characterization techniques used in this 

research.  

The results and discussion of the research are addressed in Chapters 4 to 6. 

Chapter 4 describes the effect of pre-treatment temperature on the chemical and 

physical properties of POFA. In the chapter, the chemical composition, morphology, 

surface and pore properties, thermal behaviors, and crystallinity of the untreated and 

pre-treated POFA are discussed in detail. Meanwhile, Chapter 5 provides an in-depth 

discussion on the effects of several parameters, including the pre-treatment 

temperature of POFA, POFA loading, phase inversion parameters, and sintering 

temperature towards the fabrication of the POFA-derived CHFMs. In Chapter 6, a 

thorough discussion of the effects of PMHS/TEOS sol-gel compositions, the number 

of coating layer, and coating procedures on the morphological structure and 

hydrophobicity of the POFA-derived CHFM is provided. The desalination 

performance of the hydrophobic POFA-derived CHFM in DCMD and cost analysis of 

the developed hydrophobic CHFM are also covered in the chapter. Finally, Chapter 7 

provides conclusions based on the findings obtained in this research. Some 

recommendations are also addressed for subsequent studies to explore the gaps in this 

research.  
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