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ABSTRACT 

Cellulase, xylanase and pectinase contribute almost 20% to the world enzyme 

market. The growing demand for cellulases and xylanases in lignocellulosic degradation 

and reutilization has instigated the need for their improved production at a low cost. This 

study, therefore, evaluated oil palm frond leaves (OPFL) as a cheap and sustainable growth 

substrate for two novel fungi species to produce cellulase and xylanase under solid-state 

fermentation (SSF). Morphology, 18S rRNA, phylogeny and BIOLOG® analyses 

identified the cellulase and xylanase-producing fungal strains as Trichoderma asperellum 

UC1 and Rhizopus oryzae UC2. While UC2 is robust and fast-growing, its enzyme 

production rate is slower and sustained; in contrast, strain UC1 showed a higher production 

rate of the same enzymes. Using the one variable at a time (OVAT) method, optimised 

fermentation parameters for strain UC1  (30 °C, 60-80 % moisture content, 2.5 × 106 

spores/g inoculum size, 6.0-12.0 pH) and strain UC2 (30 °C, 40 % moisture content, 2.0 

× 108 spores/g inoculum size, 6.0-12.0 pH) resulted in a corresponding 2.7, 2.6, 1.1, 1.7 

(strain UC1) and a 2.3, 3.3, 1.2 and 1.0 (UC2)-fold  increase in CMCase, FPase, β-

glucosidase and xylanase maximum activities. Cellulases and xylanase were produced 

within a broad pH range between pH 4.0−12.0. Proteome analysis using SDS-PAGE, of 

the enzyme complexes from in situ hydrolysis of raw OPFL under SSF by strain UC1 and 

UC2 revealed existence of four endo-β-1,4-xylanases and endoglucanases, as well as one 

exoglucanase and β-glucosidase each for strain UC1 and one endo-β-1,4-xylanase, 

endoglucanase, exoglucanase as well as three β-glucosidases for strain UC2. 

Compositional and structural analysis (FESEM) of OPFL before and after in situ 

hydrolysis confirmed their degradation, that resulted in 31.16 % and 75.5 % hydrolysis 

efficiency for strain UC1 and UC2 enzymes. Furthermore, the enzyme complexes from 

both strains showed thermophilic and acidophilic characteristics at 50−60 °C and pH 

3.0−5.0. Glucose (16.87 and 26.74 mg/g) and fructose (18.09 and 50.83 mg/g) were among 

the dominant fermentable sugar products from the hydrolysis of OPFL, aside from 

cellobiose (105.92 and 58.31mg/g) and xylose (1.08 and 1.44 mg/g), by strain UC1 and 

UC2 respectively. Thermal and pH stability tests for their enzyme cocktails revealed half-

lives for UC1 CMCase, FPase, β-glucosidase and xylanase to be 15.18, 4.06, 17.47, 15.16 

h at 60 °C, as well as 64.59, 25.14, 68.59 and 19.20 h at pH 4.0; UC2 - 5.13, 1.48, 18.81, 

9.23 h when incubated at 60 °C and  27.55, 12.23, 18.26, 4.43 h at pH 4.0. Optimisation 

using response surface methodology resulted in maximum activities of CMCase (126.87 

U/g), FPase (85.53 U/g) and xylanase (215.42 U/g) under optimised SSF conditions (30 

°C, 2.0 × 107 spores/g, 75 % moisture content, pH 6.0) and β-glucosidase (131.76 U/g) at 

32 °C, 2.0 × 107 spores/g, 50 % moisture content at pH 12.0. Enzymatic saccharification 

on ultrasonicated OPFL yielded 1240 mg/g of total reducing sugar as well as 56.21, 72.68 

and 43.83 mg/g of glucose, xylose and cellobiose. The enzymes also enhanced the 

clarification of orange juice and rising of dough by 82−88 % and 1.7−2.0-fold. Based on 

the findings, it was apparent that T. asperellum UC1 and R. oryzae UC2 are robust 

producers of cellulolytic and xylanolytic enzymes using OPFL as the main SSF substrate 

for the production of large quantities of reducing sugars.  
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ABSTRAK 

Selulase, xilanase dan pektinase menyumbang hampir 20% kepada pasaran enzim 

dunia. Permintaan yang tinggi terhadap selulase dan xilanase dalam degradasi dan 

pengggunaan semula lignoselulosa telah mendorong kepada keperluan bagi 

penghasilannya yang lebih baik pada kos yang rendah. Oleh itu, kajian ini telah 

mengenalpasti daun pelepah kelapa sawit (OPFL) sebagai substrat pertumbuhan yang 

murah dan mudah didapati untuk dua spesies kulat bagi menghasilkan selulase dan 

xilanase di bawah fermentasi bentuk pepejal (SSF). Analisa morfologi, 18S rRNA, 

filogeni dan BIOLOG® mengenalpasti strain kulat penghasil selulase dan xilanase sebagai 

Trichoderma asperellum UC1 dan Rhizopus oryzae UC2. Walaupun UC2 merupakan 

strain yang lasak dan tumbuh cepat, kadar pengeluaran enzimnya lebih lambat dan lama; 

sebaliknya, strain UC1 menunjukkan pengeluaran yang lebih tinggi untuk enzim yang 

sama. Menggunakan kaedah satu pemboleh ubah pada satu waktu (OVAT), parameter 

fermentasi yang optimum untuk strain UC1 (30 °C, 60−80 %, kadar kelembapan,  2.5 × 

106 spora/g berat inokulum, pH 6.0−12.0) dan strain UC2 (30 °C, 40 % kadar kelembapan, 

2.0 × 108 spora/g berat inokulum, pH 6.0-12.0) menghasilkan 2.7, 2.6, 1.1, 1.7 (strain 

UC1) dan masing-masing 2.3, 3.3, 1.2, dan 1.0 (UC2) kali ganda peningkatan  aktiviti 

maksimum CMCase, FPase, β-glukosidase dan xilanase. Selain itu, selulase dan xilanase 

dihasilkan dalam sela pH yang luas iaitu antara pH 4.0−12.0. Analisis protein SDS-PAGE 

ke atas kompleks enzim mendapati dari hidrolisis in situ OPFL mentah oleh strain UC1 

dan UC2 di bawah SSF menunjukkan kehadiran empat endo-β-1,4-xilanase dan 

endoglukanase, serta satu exoglukanase dan β-glukosidase untuk strain UC1 dan satu 

endo-β-1,4-xylanase, endoglukanase, exoglukanase serta tiga β-glukosidase untuk strain 

UC2. Analisis komposisi dan struktur (FESEM) OPFL sebelum dan selepas hidrolisis in 

situ mengesahkan degradasi tersebut menghasilkan 31.16 % dan 75.5 % efisiensi hidrolisis 

untuk strain UC1 dan UC2. Selain itu, kompleks enzim dari kedua-dua strain menunjukkan 

ciri-ciri termofilik dan asidofilik pada suhu 50−60 °C dan pH 3.0−5.0. Glukosa (16.87 dan 

26.74 mg/g) dan fruktosa (18.09 dan 50.83 mg/g) adalah di antara produk gula fermentasi 

dominan dari hidrolisis OPFL, selain dari selobiosa (105.92 dan 58.31 mg/g) dan xylosa 

(1.08 dan 1.44 mg/g) oleh strain UC1 dan UC2. Ujian stabiliti termal dan pH untuk koktail 

enzim mendedahkan separuh-hayat untuk UC1 CMCase, FPase, β-glukosidase dan 

xilanase adalah 15.18, 4.06, 17.47, 15.16 jam pada 60 °C, serta 64.59, 25.14, 68.59 dan 

19.20 jam pada pH 4.0; UC2 - 5.13, 1.48, 18.81, 9.23 jam apabila dieram pada 60 °C dan 

27.55, 12.23, 18.26, 4.43 jam pada pH 4.0. Pengoptimuman menggunakan kaedah respon 

permukaan menghasilkan aktiviti maksimum CMCase (126.87 U/g), FPase (85.53 U/g) 

dan xilanase (215.42 U/g) di bawah keadaan SSF optimum (30 °C, 2.0 × 107 spora/g, 75 

% kadar kelembapan, pH 6.0) dan β-glukosidase (131.76 U/g) pada 32 °C, 2.0 × 107 

spora/g, 50 % kadar kelembapan pada pH 12.0. Sakarifikasi enzimatik ke atas OPFL 

ultrasonikasi menghasilkan 1240 mg/g jumlah gula penurunan serta 56.21, 72.68 dan 

43.83 mg/g glukosa, xilosa dan selobiosa. Enzim-enzim turut meningkatkan klarifikasi jus 

oren dan kenaikan doh sebanyak 82−88 % dan 1.7−2.0 kali ganda. Berdasarkan penemuan 

tersebut, jelas menunjukkan T. asperellum UC1 and R. oryzae UC2 adalah pengeluar 

enzim selulolitik dan xilanolitik yang kuat dengan menggunakan OPFL sebagai substrat 

utama SSF bagi menghasilkan gula penurunan dalam jumlah yang besar.  
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INTRODUCTION 

 Background of Study 

The environmental inconvenience of post-harvest agricultural lignocellulosic 

biomass left behind to decompose naturally is a predicament faced by many nations 

throughout the globe (Fritsch et al., 2017). This is because the practice of passive 

biomass dumping is not just an eye sore to the local community but also an 

environmentally unfriendly practice. Certain nations resort to using methods of open 

burning and chemical treatments to eliminate post-harvest biomass from the 

environment, but in turn, created other problems such as acid rain and emissions of 

greenhouse gases that further exacerbated ecological pollution (Kumar et al., 2015; 

Zhang et al., 2017). The released gases are often toxic including carbon IV oxide, 

methane, nitrous oxide, polyaromatic hydrocarbons (PAHs), as well as fluorinated 

gases (Blasing, 2016), all of which ultimately contribute to the phenomenon of global 

warming.  

Regionally, the undesirable effects of pollution due to the open burning of 

agricultural biomass have impacted populations in the Southeast region of Asia viz. 

Indonesia, Malaysia, South Thailand, Brunei and the South Philippines (Thepnuan et 

al., 2019). Frequent occurrences of the ‘hazy season’ in these regions are testaments 

of the gravity of such practice. Worryingly, large scale open burning consequently 

releases large amounts of tiny particulates (diameter < 2.5 µm, PM2.5) as well as highly 

toxic and carcinogenic dioxins into the atmosphere (Thepnuan et al., 2019; 

Weidemann et al., 2016). These substances are harmful to all living beings particularly 

humans. Premature deaths of as many as 3.3 million people annually have been linked 

to open burning worldwide, most of which were in Asia (Beelen et al., 2015; Ostro, 

2016). In eastern USA, Europe and Russia, agricultural emissions make up the largest 

relative contribution to PM2.5 (Lelieveld et al., 2015). Apart from causing the depletion 
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of the ozone layer, it is one of the main causal agents to the escalation of respiratory 

diseases among humans. Studies have shown that short, as well as long term exposure 

of human beings to such hazards could adversely impact human health (Lelieveld et 

al., 2015). Among the reported increased incidences of respiratory diseases include 

acute bronchial asthma, chronic bronchitis, chronic obstructive pulmonary disease 

(COPD) and other acute respiratory infections (Xing et al., 2016). Other frequently 

used methods for pretreatment and removal of lignocellulosic biomass, for instance, 

physico-chemical, chemical and biological, are far from satisfactory and yield 

unsustainable results. 

It’s evidently clear that the current practice of many nations to get rid of excess 

agricultural biomass is unhealthy, unsustainable as well as wasteful. Not only that, 

such practice does not harness the full potential of the biopolymeric components viz. 

lignocellulose (cellulose, hemicellulose and lignin) in the various agricultural biomass. 

In this context, the study believes that these plant wastes are good sources of renewable 

plant organic resource (Saini et al., 2015) e.g. carbohydrate polymers (cellulose and 

hemicellulose) and phenolic polymer (lignin). These renewable organic carbon 

sources can be broken down into smaller subunits i.e. simple sugars, useful as platform 

chemicals for manufacturing other functional materials. In fact, cellulose (30–50% of 

total dry matter) is a glucose polymer formed by the basic building block of glucose-

glucose dimers called cellobiose, linked by β–1,4 glycosidic bonds. In contrary, 

hemicellulose (20–40% of total dry matter) is constructed of relatively shorter polymer 

chains of highly branched five-carbon (C5) polymer and six-carbon (C6) sugars and 

finally, lignin (15–25% of total dry matter), a polyphenolic constituent of plants, which 

make up the largest non-carbohydrate fraction of lignocellulose (Chandel et al., 2018; 

Ravindran & Jaiswal, 2016). These freely available and renewable sugar polymers 

make ideal and cost-effective effective carbon source for various applications. 

For effective harvest and utilisation of sugars from complex carbohydrates, 

bioprospecting for exceptional microorganisms producing cellulases capable of 

‘benignly’ degrading such multifaceted plant composite without the liberation of 

harmful substance, may prove useful and more practical. Not only that, the obtained 

sugar products can be used as platform chemicals to produce other value-added 
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products. Specifically, focusing on isolating mesophilic (20−45 ˚C) cellulose and 

xylanase-producing fungi is a feasibly cleaner as well as more cost-effective approach 

to make full use of unwanted agricultural biomass. The high growth rate of fungi can 

effectively enhance metabolism and decomposition of the carbohydrate polymers 

(cellulose and hemicellulose) as well as phenolic polymers (lignin) into their basic 

subunits, even at ambient temperatures (Garg, 2016; Hooker et al., 2018; Shirkavand 

et al., 2016).  

The cellulase enzyme system is divided into three main sub-groups: 

endoglucanases (EG), exoglucanases (cellobiohydrolases, CBH) and β-glucosidase 

(BGL), which belong to the EC 3.2.1.X class, while xylanase is a single-component 

enzyme. Cellulases include endo-β-(1, 4)-glucanases (EC 3.2.1.4), Exo--β-(1, 4)-

glucanase (EC 3.2.1.91 and β-glucosidase (EC 3.2.1 21) (Kickenweiz et al., 2018; 

Shewale, 1982). Xylanase (endo-β-1,4-D-xylanohydrolase; EC 3.2.1.8) is an enzyme 

that catalyse the hydrolysis of β-1,4-D-xylosidic bonds in xylan, the major component 

of hemicellulose in plant cell walls. Highly prolific fungi producing such enzymes 

have been reported for the Trichoderma and Aspergillus species. Trichoderma 

asperellum and Rhizopus oryzae, being a traditional bio-control species and food 

fermenter respectively, have been biotechnologically explored for their enzyme-

producing abilities. This quality seems responsible for their exceptional environmental 

expedience stretching from saprotrophy to biotrophy (Kwon et al., 2014; Wang et al., 

2015). The study also believes the synergistic breakdown of agricultural biomass by 

the aforementioned fungal enzymes can be further enhanced using solid-state 

fermentation (SSF). The use of SSF is advantageous as the method: can ease enzyme 

recovery, cost effective, yields high concentrations of products and produces less 

effluent, thus less polluting (Behera & Ray, 2016). However, this process is presently 

faced with some limitations, especially in large scale applications, for instance, the 

build-up of heat, limited oxygen transfer, limited pH control, mass and heat transfer. 

Others include challenges include the accurate measurement of microbial growth and 

kinetics (Manan and Webb, 2017). These fungal enzymes synergistically catalyse the 

complete hydrolysis of plant biomass into their basic sugar components (Behera & 

Ray, 2016; Ryu & Mandels, 1980) or mineralization to H2O and CO2 (Metreveli et al., 
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2017) whose products can be used for manufacturing other important compounds 

(Alrumman, 2016).  

 Problem Statement 

Considering the unsustainable methods used to dispose or reutilise unwanted 

agricultural biomass, (Hassan et al., 2018), the high cost of lignocellulolytic enzymes 

due to the lack of sufficient and prolific fungal producers of cellulases and xylanases 

(da Silva et al., 2018), alongside limitations in current SSF technique to obtain large 

quantities of fungal enzymes, the quest for greener and cleaner alternative strategies 

to alleviate such issue merits global attention. Newly developed strategies should 

enable mankind to fully harvest and utilise the renewable organic carbon locked within 

the various lignocellulosic agricultural biomass worldwide. While lignocellulosic 

biomass is a renewable and abundant resource with great potential for bioconversion 

to value-added by-products, such an endeavour remained economically unfavourable 

due to the prohibitively high production costs of commercial cellulases and 

hemicellulases, essential for converting lignocellulosic biomass into valuable products 

such as fermentable sugars, biofuel etc., as well as the lack of robust cellulolytic and 

xylanolytic microbes (especially fungi) to produce these efficient enzymes (Saritha et 

al., 2015).  

Herein, the study proposes a strategy to bioprospect for cellulase and xylanase-

producing mesophilic fungal strains that can efficaciously degrade the carbohydrate 

polymers (cellulose and xylan) and subsequently permit the harvesting of valuable 

sugar components.  This study was focused on reducing the high production cost of 

producing fungal cellulase and xylanase by capitalizing on cheap and abundant 

renewable materials i.e. oil palm frond leaves (OPFL) (without the petioles) biomass 

as the substrate for SSF to cultivate the new isolated fungal strains to yield high 

quantities of cellulases. OPFL was chosen as Malaysia is the second largest producer 

of oil palm in the world, constantly generating large masses of oil palm wastes from 

pruning, replanting and milling activities (Awalludin et al., 2015; Loh, 2017). 
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The strategy of fermenting OPFL via the SSF technique may prove useful in 

maximising the usefulness of the biomass by harvesting their sugar components and 

for cultivation of beneficial fungi for their enzyme cocktail, as well as alleviating 

presence of surplus biomass in the environment. It is hypothesised that the use of 

fungal cellulase and xylanase may be a cleaner and more efficient means to degrade 

OPFL without contaminating the environment, as such enzymes catalyse more 

specifically than chemical processes (Souza, 2014). Moreover, the use of OPFL as the 

sole carbon source to cultivate novel fungal strains isolates to produce three cellulase 

enzymes (endoglucanase, exoglucanase, β-glucosidase) and xylanase under SSF is not 

available. This study also intends to develop an optimised protocol for the production 

of these enzymes using the abundantly generated OPFL waste, which could be 

employed in its cleanup at the oil palm plantations and the use of its basic sugar 

products for production of value-added products such as bioethanol and compost. 

Moreover, ultrasonication (acoustic bombardment) was chosen for the OPFL 

pretreatment as it is a cleaner method to increase the surface area of cellulose and xylan 

components in the cell wall. This was to allow effective binding and hydrolysis of the 

fungal cellulases and xylanases, thereby yielding a more effective degradation of the 

biomaterial into valuable sugar products.  

 Aim of Research 

The research was aimed in using the cellulase and xylanase-producing fungal 

isolates for effective production of cellulase and xylanase using OPFL as a cost-

effective fermentative substrate and in turn be degraded to its basic sugar subunits. 

 Research Objectives 

To achieve the aim the following objectives were set: 

1. To isolate and identify cellulase and xylanase-producing fungi.  
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2. To optimise parameters for cellulase and xylanase production under SSF for in 

situ hydrolysis of OPFL.  

3. To characterise the physicochemical properties of the two fungal enzyme 

cocktails produced under SSF. 

4. To statistically optimise the production of cellulase and xylanase for the 

enzymatic saccharification of OPFL.  

 Scopes of Study 

Several strains of fungi were isolated from a decaying oil palm empty fruit 

bunch and qualitatively screened for efficient cellulase and xylanase production. 

Screening was carried out on carboxymethyl cellulose (CMC)-agar and xylan-agar 

plates. Two fungal strains were selected for further identification through 

morphological, molecular (18S rRNA sequencing) and biochemical methods 

(BIOLOG, Gen II), and was subsequently identified as Trichoderma asperellum UC1 

and Rhizopus oryzae UC2.  Production and extraction of cellulase and xylanase by the 

fungal strains using ground OPFL as substrate was done under SSF. This was followed 

by assay for endoglucanase (CMCase), exoglucanase (FPase), β-glucosidase and 

xylanase activity at 24 h interval over 7 days.  

Next, chemical analysis of OPFL was done to establish the chemical 

composition of the major constituents of the plant. This was followed by optimisation 

of SSF parameters (fermentation temperature, pH, inoculum size, initial moisture 

content) for improved production of cellulase and xylanase using the one-variable-at-

a-time (OVAT) method for the two isolates. Subsequently, in situ saccharification of 

raw OPFL under SSF was done using the two fungal strains Trichoderma asperellum 

UC1 and Rhizopus oryzae UC2, individually. The next step involved the determination 

of total reducing sugar and individual monosaccharide sugars using the 3, 5- 

dinitrosalicylic acid (DNS) and high-performance liquid chromatography (HPLC) 

methods.  
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The crude enzyme cocktails extracted from the SSF batches were then 

subjected to physicochemical characterisation of the enzymes of interest. The tests 

performed were to ascertain the effects of pH and temperature on enzyme stability and 

the effects of pH and temperature on activities of enzymes. Qualitative proteome 

analysis and determination of total soluble protein in the crude enzyme cocktails were 

undertaken using sodium dodecyl-sulphate polyacrylamide gel electrophoresis (SDS-

PAGE) and Lowry-Folin method, respectively. Furthermore, composition and 

structural analysis of OPFL biomass before and after SSF using field emission 

scanning electron microscopy (FESEM) was done to assess the morphological changes 

due to depolymerization of the structural components. This helped with the subsequent 

determination of hydrolysis efficiency of OPFL by the enzymes after in situ 

saccharification using both fungal isolates.  

Finally, statistical optimisation of SSF parameters (fermentation temperature, 

pH, inoculum size, initial moisture content) to obtain polynomial models that could 

reliably predict the best SSF conditions was done. The response measured was for 

optimum activity of the fungal enzymes, and this part of the study aims to observe the 

effects of independent and dependent variables on the measured response. The 

Response surface methodology software was used in the optimisation work. Based on 

the initial findings, the statistical optimisation was done to specifically improve 

CMCase, FPase and xylanase production for strain Trichoderma asperellum UC1, 

while β-glucosidase activity was optimised for strain Rhizopus oryzae UC2 only. 

Afterwards, synergistic enzymatic hydrolysis of ultra-sonicated OPFL using crude 

enzyme cocktail mixture from strain UC1 and UC2 was undertaken.  This was 

followed by assessment of hydrolysed total reducing sugar and individual 

monosaccharide sugars using the DNS and HPLC methods, respectively. 

Biotechnological applications of the crude enzymes produced by the isolated fungi in 

the clarification of fresh orange juice and in dough rising were determined.  
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 Significance of Study 

The SSF protocol developed in this study is a cleaner and more efficient means 

to remove OPFL wastes that are abundantly generated in all oil palm plantations in 

Malaysia. The strategy highlighted here can also complement existing strategies to 

utilise oil palm wastes at large. Most importantly, it offers a more sustainable way of 

sustaining a greener way of life while converting “Wastes into Wealth”.   
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