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ABSTRACT 

Levulinic acid has received significant attention as a platform chemical for 

synthesizing a broad range of bio-based fuels. In this study, a series of hydrogen form 
of Y zeolite (HY-zeolite) supported ionic liquid (HY-IL) catalysts: HY-IL-1. HY-IL-
2 and HY-IL-3 were synthesized, characterized and explored for catalytic conversion 
of glucose to levulinic acid. The synthesized ionic liquid, 1,4-methylsulfonic acid 

imidazolium tetrachloroaluminate was characterized using elemental analysis. 
Meanwhile, the HY-IL catalysts and the parent HY zeolite were characterized using 
x-ray diffraction, field emission scanning electron microscopy, nitrogen physisorption, 
Fourier-transform infrared, thermogravimetric analysis, ammonia temperature-

programmed desorption and infrared pyridine to determine the catalyst properties. The 
experimental result revealed that HY-IL-2 exhibited the highest catalytic performance 
with 62.2 % of levulinic acid yield from reaction conducted at 180 °C for 6 h using 0.4 
g of catalyst and 0.5 wt% of glucose concentration. High surface area, high 

concentration of acid sites and low Brønsted to Lewis acid ratio of HY-IL-2 were the 
reason for the high levulinic acid production from glucose. The optimization study of 
levulinic acid production from glucose and cellulose was conducted using response 
surface methodology with Box-Behnken design. At optimum condition, 60.6% and 

27.2% of levulinic acid yields were obtained from glucose and cellulose, respectively. 
Meanwhile, when the testing was done on the biomass, oil palm frond (OPF) and 
empty fruit bunch (EFB), 21.0% and 22.4% of levulinic acid yield were obtained 
respectively at reaction temperature of 170 °C, reaction time of 4 h, 0.6 g of HY-IL-2 

and 0.4 wt% of feedstock concentration. The process efficiency for OPF and EFB for 
levulinic acid production was 65.4% and 77.0%, respectively. Kinetic study of glucose 
conversion to levulinic acid was derived using the first-order model pseudo-
homogeneous. The study was done at various temperature and time ranges of 120–200 

°C and 1–6 h, respectively. The kinetic model consists of 4 key steps: 1) glucose 
dehydration to 5-hydroxymethylfurfural (5-HMF), 2) glucose degradation to produce 
humin, 3) 5-HMF rehydration to produce levulinic acid, and 4) 5-HMF degradation to 
form humin. The kinetic study revealed that the reaction rate for every step increased 

with the increase of the temperature. The activation energy for glucose conversion to 
5-HMF and 5-HMF conversion to levulinic acid was 36.1 and 26.1 kJ/mol, 
respectively. The activation energy obtained was lower and comparable with the 
previous catalysts employed for glucose conversion to levulinic acid. The finding of 

this study demonstrated the potential of zeolite-supported ionic liquid as a catalyst for 
biomass transformation to platform chemicals under mild process conditions. 
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ABSTRAK 

Asid levulinik telah menjadi perhatian utama sebagai bahan kimia platform 

untuk sintesis pelbagai bahan api berasaskan bio. Dalam kajian ini, satu siri mangkin 
zeolit Y bentuk H (HY) yang disokong oleh cecair ionik (HY-IL): HY-IL-1, HY-IL-2 
dan HY-IL-3 disintesis, diciri dan dikaji untuk mangkin penukaran glukosa kepada 
asid levulinik. Cecair ionik, 1,4 metilsulfonik imidazolium tetrakloroaluminat yang 

telah disintesis dicirikan dengan menggunakan analisis unsur. Sementara itu, mangkin 
HY-IL dan zeolit HY asal dicirikan dengan menggunakan belauan sinar-x, pancaran 
medan mikroskopi imbasan elektron, penjerapan fizik nitrogen, inframerah 
transformasi Fourier, analisis termogravimetri, penyaherapan berprogram suhu 

ammonia dan inframerah piridina untuk menentukan sifat mangkin. Keputusan 
eksperimen mendedahkan bahawa HY-IL-2 mempamerkan prestasi tertinggi mangkin 
dengan 62.2% hasil asid levulinik daripada tindak balas yang dijalankan pada suhu 
180 °C selama 6 j menggunakan 0.4 g mangkin dan 0.5wt% kepekatan glukosa.  

Penghasilan asid levulinik yang tinggi daripada glukosa disebabkan oleh luas 
permukaan yang besar, kepekatan yang tinggi bagi tapak asid dan nisbah rendah asid 
Brønsted kepada Lewis dari mangkin HY-IL-2. Kajian pengoptimuman terhadap 
penghasilan asid levulinik daripada glukosa dan selulosa telah dijalankan dengan 

menggunakan kaedah sambutan permukaan dengan reka bentuk Box-Behnken. Pada 
keadaan optimum, 60.6% and 27.2% hasil asid levulinik masing-masing telah 
diperoleh daripada glukosa dan selulosa. Manakala, apabila ujian dilakukan terhadap 
biojisim, pelepah sawit (OPF) and tandan buah kosong (EFB), 21.0% dan 22.4 % hasil 

asid levulinik masing-masing diperoleh pada suhu tindak balas 170 °C, masa tindak 
balas 4 j, 0.6 g HY-IL-2 dan 0.4 wt% kepekatan stok suapan. Kecekapan proses untuk 
penukaran OPF and EFB kepada asid levulinik masing-masing adalah 65.4% dan 
77.0%. Kajian kinetik penukaran glukosa kepada asid levulinik diterbitkan dengan 

menggunakan model tertib pertama pseudo-homogen. Kajian ini dilakukan pada 
pelbagai suhu dan masa masing-masing dengan julat 120–200 °C dan 1–6 jam. Model 
kinetik ini terdiri daripada 4 langkah utama: 1) penyahhidratan glukosa kepada 5-
hidroksimetilfurfural (5-HMF), 2) penurunan glukosa untuk menghasilkan humin, 3) 

penghidratan semula 5-HMF untuk menghasilkan asid levulinik, dan 4) penurunan 5-
HMF untuk membentuk humin. Kajian kinetik mendedahkan bahawa kadar tindak 
balas bagi setiap langkah meningkat dengan peningkatan suhu. Tenaga pengaktifan 
bagi penukaran glukosa kepada 5-HMF dan penukaran 5-HMF kepada asid levulinik 

adalah masing-masing 36.1 dan 26.1 kJ/mol. Tenaga pengaktifan yang diperoleh 
adalah lebih rendah dan setanding dengan mangkin sebelumnya yang digunakan untuk 
penukaran glukosa kepada asid levulinik. Kajian ini menunjukkan potensi zeolit yang 
disokong cecair ionik sebagai mangkin untuk transformasi biojisim kepada bahan 

kimia platform di bawah keadaan proses sederhana.   
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background 

The search for alternatives resources for chemical and fuel production is 

progressing because petroleum or fossil resources are estimated to deplete in the near 

future. Apart from that, the increase in consumption and supply of petroleum resources 

also hikes the fuel price. According to (Satari et al., 2019), fossil resources are often 

related to gas pollution issues due to greenhouse gas releases to the environment. 

Therefore, it is high time that research been done to find alternatives for petroleum 

resources replacement.   

Among all the resources available, biomass utilization to produce chemical 

substances is preferable due to its sustainability, renewability , and natural carbon 

dioxide resources. These advantages caused the utilization of biomass to produce 

chemicals and fuel to receive significant attention among researchers and industry. 

Among the application of biomass, hydrolysis of biomass to produce levulinic acid has 

been extensively studied. Figure 1.1 shows the top building chemical blocks that can 

be derived from biomass as listed by the National Renewable Energy Laboratory. 

These building blocks were listed for their potential in the market, and levulinic acid 

is among the potential building blocks that can be prepared via acid hydrolysis of 

lignocellulosic biomass.  

Several routes of levulinic acid to fuel additive have been investigated ; for 

example, esterification of levulinic acid to levulinic ester (fuel additive) in the presence 

of alcohol (Lucas et al., 2019). Condensation of levulinic acid with phenol could 

produce diphenolic acid (DPA), a chemical intermediate in lubricant (Mthembu et al., 

2021a). γ-valerolactone (GVL), a flavoring agent, and 2-methyl tetrahydrofuran 

(MTHF), a fuel additive, can be obtained from the hydrogenation of levulinic acid (Liu 
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et al., 2019; Roa and Garcia, 2021). Levulinic acid also can be converted to resin, 

solvent, polymer, and other chemical intermediates. 
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Figure 1.1 Potential biobased derived products from biomass feedstock (Werpy 

and Petersen, 2004) 

The pathway of conversion lignocellulosic biomass to levulinic acid can be 

summarized as in Figure 1.2. Lignocellulosic biomass is composed of 3 major 

components, including cellulose, hemicellulose, and lignin. Production of levulinic 

acid can be divided into two routes which are cellulose and hemicellulose route. For 

the cellulose route, cellulose undergoes a hydrolysis process to become glucose. Then, 
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glucose dehydrates to 5-HMF and subsequently rehydrates to levulinic acid 

(Boonyakarn et al., 2019). In the hemicellulose route, hemicellulose dehydrates to 

furfural, and the furfural will undergo hydrogenation to become furfuryl alcohol. 

Finally, furfuryl alcohol will hydrolyze to levulinic acid (Kang et al., 2018). 

Biomass

Cellulose Hemicellulose Lignin

Glucose

5-HMF

Levulinic acid + Formic acid

Xylose

Furfural

Furfuryl alcohol

Acetic acid

Glycolic acid

Galacturonic 

acid

acid soluble 

product

Glucose

 

Figure 1.2  Pathway for the conversion of biomass to levulinic acid (Girisuta et al., 
2006b) 

Several methods have been introduced for levulinic acid production. Acid-

catalyzed dehydration and hydrolysis of biomass with acid were frequently used in 

levulinic acid production.  Other methods have also been applied, such as oxidation of 

ketones, acid hydrolysis of furfuryl alcohol, and alkylation of nitroalkanes (Bozell et 

al., 2000). However, these methods suffer drawbacks such as expensive feedstocks 

and the generation of large amounts of side products.  

Conversion of biomass to levulinic acid has been carried out by various 

catalysts such as mineral acid (Sweygers et al., 2018), zeolite (Li et al., 2019), metal 

chloride (Di Fidio et al., 2019; Wei and Wu, 2017), copper dopped niobium phosphate 

(Fang et al., 2019), mesoporous niobium catalyst (Liu et al., 2017) and acidic ionic 

liquid (Liu et al., 2019). 
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Among the catalysts used, ionic liquids received great intention due to their 

unique properties such as negligible volatility, high thermal stability , and easily 

separate from reaction (Tadesse and Luque, 2011). Various combinations of cation and 

anion in ionic liquids could be made to achieve different performances. For example, 

the addition of an acidic carboxylic group into ionic liquid was efficient for 

dehydration of carbohydrate to 5-HMF without the formation of by-products (Hu et 

al., 2013b). Whereas, the sulfonic acid-functionalized ionic liquid was effective for 

the conversion of cellulose to levulinic acid (Ren et al., 2013). 

Despite the excellent activity of ionic liquids, their application is limited due 

to high cost, complex separation, and ionic liquid toxicity (Sidhpuria et al., 2011). 

Therefore, to overcome these problems, the concept of supported ionic liquid catalysts 

(SILC) has been introduced. Generally, SILC requires a smaller amount of ionic liquid 

and consequently minimized the limitation related to ionic liquid in terms of economy, 

toxicity, and viscosity. SILC have been used as catalyst in various chemical reaction 

such as gas separation (Feng et al., 2018), oxidation (Restrepo et al., 2015), biodiesel 

production (Chang and Zhou, 2018), esterification (Han et al., 2019) and condensation 

reaction (Hierro et al., 2018). Few studies have reported the use of SILC for the 

conversion of carbohydrates to 5-HMF, an intermediate compound that undergoes ring 

cleavage to form levulinic acid and formic acid. Xu et al. applied ionic liquid-

supported silica gel to synthesize 5-HMF from various substrates such as fructose, 

glucose, xylose, and sucrose (Xu et al., 2015a). In terms of catalytic activity, SILC 

(IL-SO3H-HSO4/SiO2) performed quite similarly to its ionic liquid (IL-SO3H-HSO4) 

for fructose dehydration to 5-HMF (Xu et al., 2015a).  

Zeolite has been extensively studied as catalyst or catalyst support for various 

dehydration reactions due to its uniform pore size, high surface area, and high thermal 

stability (Li et al., 2019; Wang et al., 2019; Wei and Wu, 2018). However, low 

levulinic acid yield has been reported by (Wei and Wu, 2018) using zeolite alone as 

the catalyst for biomass conversion reaction. This condition occurred due to its low 

acid sites of the catalyst that could influence biomass conversion. Therefore, HY 

zeolite modification to increase acid sites is required to improve the catalytic properties 

of HY-zeolite and enhance levulinic acid production at adequate process conditions. 
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1.2 Problem Statement 

The utilization of biomass becomes important due to the production of second-

generation biofuels. This biofuel can overcome the competition problem between food 

and fuel, associated with the first-generation biofuel problems. However, biomass 

utilization for biofuel production was very challenging due to its complex structure in 

cellulose and lignin. The complex structure involves a hydrogen bond between 

cellulose that forms the crystalline structure and covalent bonds between lignin and 

hemicellulose. Their complex structure can hinder the chemical reaction. Therefore, 

many studies have been done to improve the hydrolysis process, such as homogeneous 

acidic hydrolysis (Kumar et al., 2018), hydrolysis in supercritical water (Jeong et al., 

2017b), and enzymatic hydrolysis (Chylenski et al., 2017). Despite the improvement 

efforts, there are still drawbacks to the hydrolysis approach. The acidic hydrolysis 

could result in corrosion of equipment and high energy utilization involving 

separation, recycling, and treatment of the acid. Hydrolysis in supercritical water 

involves severe conditions such as high temperature (i.e., 380°C) and high pressure 

(22 MPa), while enzymatic hydrolysis involves a slow process, the high price of 

enzyme, and difficult recovery of enzyme. 

Heterogeneous catalysts were used as an alternative to replacing homogenous 

catalysts. Among heterogeneous catalysts used, zeolite catalyst has received great 

interest from researchers due to its pore structure, thermal stability, and high surface 

area (Li et al., 2019; Wei and Wu, 2018). However, due to low acid density and lack 

of Lewis acid sites, zeolite as catalyst exhibit poor performance for the conversion of 

biomass to levulinic acid. Therefore, several works modify zeolite to improve the 

catalytic performance of the zeolite (Velaga et al., 2019; Wei and Wu, 2018). In this 

study, the zeolite was modified by adding an ionic liquid onto the zeolite. Taking the 

efficient performance shown by ionic liquid for levulinic acid production from various 

substrates, the addition of ionic liquid into HY-zeolite might promote LA production 

from biomass. 
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Levulinic acid production is influenced by the interaction between process 

variables during the reaction. The common manipulated process variables were 

reaction temperature, reaction time, catalyst dosage, and feedstock loading. The 

determination of the optimum process is important to give the best levulinic acid 

production. Moreover, with the optimization process, a more feasible process and 

better utilization of resources can be achieved. A conventional method can be costly 

and time-consuming since it evaluates the effect of a parameter one at a time. By 

applying the design of the experiment, multiple parameters can be evaluated within 

the same factorial experiment. As such, response surface methodology (RSM) can be 

used for optimizing the levulinic acid production process.  

Besides, a kinetic study is important to provide a foundation for the 

understanding of any chemical reaction. In previous work, many kinetic studies have 

been conducted on the conversion of  biomass to levulinic acid in various catalysts. 

Therefore, finding from the kinetic study can help in better understanding the glucose 

conversion to levulinic acid involving solid catalyst, especially for application in 

industrial processes. 

1.3 Research Objective 

The objectives of this research are: 

(a) To synthesize, characterize and screen a series of HY-ILs for glucose 

conversion to levulinic acid.  

(b) To optimize levulinic acid production from glucose and cellulose over 

selected HY-IL catalyst using RSM and apply the optimum condition on the 

OPF and EFB.  

(c) To perform kinetic studies for glucose conversion to levulinic acid over 

selected HY-IL catalyst.  

 



 

7 

1.4 Scope of Research 

Several steps were required to achieve all the research objectives. The first step 

is to synthesize ionic liquids: [MSIM][Cl] and [MSIM][AlCl4]. The synthesized ionic 

liquid was then characterized using elemental analysis. For the experiment, different 

ionic liquid to zeolite (HY) ratio (0.4, 0.5, and 0.6) was prepared and labeled as HY-

IL-1, HY-IL-2, and HY-IL-3, respectively. The synthesized HY-ILs were 

characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy 

(FTIR), nitrogen (N2) physisorption, temperature-programmed desorption (NH3-

TPD), thermal gravimetric analysis (TGA), field-emission scanning electron 

microscopy with energy dispersive X-ray (FESEM-EDX), and IR pyridine to examine 

the physical and chemical properties of all catalysts. The HY-ILs and HY zeolite 

catalyst were screened for levulinic acid production from glucose under the same 

condition. The selected catalyst was tested under 4 parameters to find the optimum 

condition that could produce the highest levulinic acid yield. 

The second research objective is to investigate optimum conditions for 

levulinic acid production from glucose and cellulose over selected catalysts using 

RSM. Four process variables selected for optimization studies were reaction 

temperature, reaction time, catalyst dosage, and feedstock concentration. These 

variables were selected based on their great influence on levulinic acid yield reported 

in previous works. The optimum condition obtained was then applied for OPF and 

EFB for the production of levulinic acid. 

For the third objective, the kinetic study of glucose conversion to levulinic acid 

over selected HY-IL was investigated to determine reaction rate constant, activation 

energy and pre-exponential factor. The kinetic study was performed using the first-

order kinetic model and Arrhenius plot equation.  
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1.5 Significances of the Research 

This study investigates the potential of OPF and EFB as starting materials for 

levulinic acid production. OPF and EFB are among the common biomass used in 

Malaysia as starting materials to produce chemicals and fuel. They can become the 

alternative to replace petroleum resources as they are readily available, abundant 

supply, renewable, and environmentally friendly. 

Modified zeolite is one of the methods that can be used to improve the catalytic 

performance of the zeolite. The catalyst was tested for a one-pot catalytic reaction, 

which can skip pretreatment, isomerization, dehydration, and rehydration process. 

Several biomasses and their derivatives were tested for levulinic acid production using 

this catalyst. Based on curent work, the zeolite-supported ionic liquid catalyst has 

potential for future work on catalytic conversion of biomass to levulinic acid under 

mild conditions.  

The main product, levulinic acid, has gained interest among researchers as a 

value-added chemical due to its potential utility to produce a wide range of chemicals 

and fuel. It can produce a flavoring agent, pharmaceutical, polymer, resin, and fuel 

additive. 

1.6 Thesis Outline  

This thesis consists of 7 chapters. Chapter 1 covers the introduction and 

research background, including several issues related to this research, research 

objectives, scopes, and significance.  

Chapter 2 discussed the previous research related to levulinic acid production, 

including starting material, applied catalyst, applications and conditions that can 

influence levulinic acid production. The optimization and kinetic studies related to 

levulinic acid production are also discussed in this chapter.  
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Chapter 3 presents in detail the experimental procedure, such as catalyst 

synthesis, catalyst characterization, catalyst testing on biomasses, and measurement 

for the efficiency of the catalysts used in this study. It also covers the analysis of 

several products such as glucose, 5-HMF, and levulinic acid. Optimization and kinetic 

study were also discussed ein this chapter.  

Chapter 4 discusses more on the characterization of catalysts, the relationship 

between catalyst`s chemical properties and product yield and testing of the catalyst 

toward several biomasses. It also discusses the proposed mechanism of the catalyst. 

Chapter 5 explains the optimization of levulinic acid production from several 

feedstocks over selected HY-IL catalysts using RSM. Two feedstocks applied in the 

experiment were glucose and cellulose. Then, the optimum condition obtained was 

used to testing the selected catalyst for the OPF and EPF conversion. 

In Chapter 6, the kinetic studies of glucose conversion to levulinic acid were 

carried out using the selected HY-IL catalyst and were compared with the previous 

studies. Finally, Chapter 7 concludes the research and proposes the recommendation 

for future works in this research area.   
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