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ABSTRACT 

Previous research in the mathematical and physics fields has used 

computational or empirical approaches to analyse fluid flow problems. Therefore, in 

this thesis a hybrid numerical approach for non-Newtonian third- and fourth-grade 

fluid flow problems using the finite difference method and the asymptotic interpolation 

method are presented. The hybrid method is important for finding accurate results as 

the size of the problem domain increases to infinity. The finite difference method is 

used to discretize the nonlinear partial differential equation into a linear system. An 

asymptotic interpolation method is used to estimate nodal value as the size of the 

domain tends to infinity. The algorithm is coded using the MATLAB program. A 

polynomial function that fits the hybrid solution is used to calculate the error of the 

equation. Theoretical error analysis using truncation error in the finite difference 

method, right-hand side perturbation linear system, and right perturbation theorem is 

conducted to determine the norm and range of errors. An implicit numerical scheme 

of modified fluid problems with an exact solution has been achieved by adding an 

extra term to the partial differential equation. The norm of error between the hybrid 

method and exact solution is less than the norm of error between the finite difference 

method and exact solution. The theory of stability for third-grade fluid is carried out, 

and the numerical scheme is stable provided that the condition of modulus of the 

amplifier holds. The hybrid method is used to solve the constant acceleration of an 

unsteady magnetohydrodynamic third-grade fluid in a rotating frame. The analyses 

show that the increment of the magnetic and rotating parameters decreases the speed 

of motion and thus the velocity. The velocity increases with an increase in time. The 

unsteady magnetohydrodynamic fourth-grade fluid problem in the rotating frame is 

investigated. Increasing the elastic parameters increases the velocity of the fluid. The 

problem of heat transfer for third-grade non-Newtonian fluid flow with magnetic effect 

is addressed. The temperature drops by increasing the Prandtl number. It is noted that 

increasing the Grashof number increases the temperature and velocity. The obtained 

results have shown that the hybrid method is consistent, stable, and converges to the 

solution.  
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ABSTRAK 

Penyelidikan terdahulu dalam bidang matematik dan fizik telah menggunakan 

pendekatan pengiraan atau empirikal untuk menganalisis masalah aliran bendalir. Oleh 

itu, dalam tesis ini pendekatan berangka hibrid menggunakan kaedah perbezaan 

terhingga dan kaedah interpolasi asimtotik untuk masalah aliran bendalir gred ketiga 

dan keempat tak Newtonan dibentangkan. Kaedah hibrid adalah penting untuk mencari 

keputusan yang tepat apabila saiz domain permasalahan meningkat ke infiniti. Kaedah 

beza terhingga digunakan untuk mendiskritkan persamaan pembezaan separa tak 

linear kepada sistem linear. Kaedah interpolasi asimtotik digunakan untuk 

menganggar nilai yang tidak diketahui apabila saiz domain permasalahan cenderung 

ke arah infiniti. Algoritma dikod menggunakan program MATLAB. Fungsi polinomial 

yang sesuai dengan penyelesaian hibrid digunakan untuk mengira ralat persamaan. 

Analisis ralat teori menggunakan ralat pemotongan dalam kaedah beza terhingga, 

sistem linear gangguan sisi kanan dan teorem gangguan kanan dijalankan untuk 

menentukan norma dan julat ralat. Skim berangka tersirat masalah bendalir diubah suai 

dengan penyelesaian tepat telah dijalankan dengan menambah sebutan tambahan 

dalam persamaan pembezaan separa. Norma ralat antara kaedah hibrid dan 

penyelesaian tepat adalah kurang daripada norma ralat antara kaedah perbezaan 

terhingga dan penyelesaian tepat. Teori kestabilan bagi bendalir gred ketiga dijalankan 

dan skema berangka adalah stabil dengan syarat bahawa keadaan modulus penguat 

kekal. Kaedah hibrid digunakan untuk menyelesaikan pecutan berterusan bendalir 

gred ketiga hidrodinamik magnet yang tidak stabil dalam bingkai berputar. Analisis 

menunjukkan bahawa kenaikan parameter-parameter magnetik dan berputar 

mengurangkan kelajuan gerakan dan dengan itu halaju berkurangan. Halaju bertambah 

dengan pertambahan masa. Masalah bendalir gred empat hidrodinamik magnet tidak 

stabil dalam bingkai berputar dikaji. Meningkatkan parameter elastik telah 

meningkatkan halaju bendalir. Masalah pemindahan haba untuk aliran bendalir tak 

Newtonan gred ketiga dengan kesan magnet ditangani. Suhu menurun dengan 

meningkatkan nombor Prandtl. Diperhatikan bahawa peningkatan nombor Grashof 

meningkatkan suhu dan halaju. Hasil kajian yang diperoleh telah menunjukkan 

bahawa kaedah hibrid adalah konsisten, stabil dan menumpu kepada penyelesaian. 
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xxi 

�⃗�  - a unit length direction vector 

‖𝐴‖‖𝐴−1‖ - Cond(𝐴) 

∇ ⋅ - Divergence 

ℑ - Imaginary part 

‖⋅‖ - Matrix norm 

ℜ - Real part 

ℎ, ∆𝑥, ∆𝜂, ∆𝜉 - Space grid/ step size at 𝑥 −axis 

𝑘, ∆𝑦, Δ𝑡, Δ𝜏 - Space grid/ step size at 𝑦 −axis 

 

 

𝜌𝑏 - Body force 

𝜕

𝜕𝑡
 

- Material derivatives 

𝛿𝑏 - Perturbation of 𝑏 

𝛿𝑥 - Perturbation of 𝑥 

𝜀𝑖 - Residual (prediction errors) 

𝜇 - Viscosity 

𝜇Φ - Viscous dissipation 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Problem Background  

 Fluid is a substance that includes liquid, gas or plasma that flows under an 

application of shear stress. Shear stress is a stress state where the force is subjected to 

a cross-sectional area of a substance. Fluid mechanics is a study of the physics of 

continual materials which deform when subjected to a force. Fluid dynamics is one of 

the branches of fluid mechanics concerning fluid movements such as gas or liquid, 

while fluid statics is the study of fluid at rest. Technological applications of fluid 

dynamics are like the rocket engine, wind turbine and air conditioning system. Besides 

that, fluid dynamics provides methods to study ocean currents, weather patterns, plate 

tectonics and even blood circulation. 

 

1.1.1 Newtonian and non-Newtonian Fluid  

Scientists from different fields have studied fluid flow behaviour. There are 

two types of fluids, namely Newtonian fluids and non-Newtonian fluids. Water and air 

are examples of Newtonian fluids where the stress is directly proportional to the rate 

of strain (deformation of material with respect to time). Non-Newtonian fluid, on the 

other hand, has different characteristics due to constitutive equations. It refers to a fluid 

in which the viscosity changes depending on the gradient’s inflow speed or stress. It 

is not proportional to the rate of strain, its higher power and derivatives. It also depends 

on the kinematics history of the fluid element itself (Chhabra, 2010).  

Figure 1.1 shows the physical properties of Newtonian and non-Newtonian 

fluid with power-law index 𝑛 from shear stress equation 𝜏 = 𝜇 (
𝜕𝑢

𝜕𝑦
)
𝑛

. The fluid is 
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Newtonian if 𝑛 = 1. If 𝑛 < 1, the fluid is called pseudo-plastic fluids (or shear-

thinning fluids), and if 𝑛 > 1, the fluid is called dilatant (shear-thickening fluids).  

  

 

 

 

Figure 1.1 Physical properties of the fluid.  

The problem in non-Newtonian fluid arises when there is no presence of a 

single equation that completes the equation to define such fluid. Non-Newtonian fluid 

has different characteristics in terms of velocity and acceleration. The existence of 

additional factors such as magnetic fields also offers different effects on the fluid flow. 

Non-Newtonian fluid flow can be seen in biological fluids such as mucus, saliva and 

blood.  

Furthermore, it can be observed from the engineering and industry such as 

petroleum, paper production, personal care products like nail polish, and food products 

such as honey, ketchup, whipped cream, butter, and yoghurt. It also includes natural 

substances such as lava and magma and other industrial products that have viscoelastic 

behaviour in their motion. On the other hand, understanding the behaviour of non-

Newtonian fluid in landslides is important to prevent disasters (Xiu et al., 2021). 

Moreover, non-Newtonian fluid is also used in designing body vests for police or the 

military (Seshagiri et al., 2015).  
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Normal stress effects that demonstrate fluid elasticity are caused by 

viscoelastic fluids. Due to the complexity of fluids, it is difficult to characterise non-

Newtonian fluids, and there is no single constitutive equation accessible that covers 

the physical behaviour and properties of all non-Newtonian fluids. As a result, 

numerous models and constitutive equations have been presented and developed to 

analyse and examine all non-Newtonian fluid properties.  

1.1.2 Differential Types of non-Newtonian Fluid  

The mathematical fluid models are classified into differential type, rate type 

and integral type (Gul et al., 2015; Khan et al., 2015; Khandelwal and Mathur, 2015). 

Differential type is determined by the derivatives of the local deformation tensor with 

respect to time. A rate type model is used to describe materials with little memory, 

such as dilute polymeric solutions. Meanwhile, materials with high memory, such as 

polymeric melts, are considered integral types (Nazari, 2014).  

Differential type is divided into three subclasses which are second-grade, third-

grade and fourth-grade. Second-grade fluid is the most basic subclass of non-

Newtonian fluid, and it can only describe the normal stress differences. The governing 

equations for third- and fourth-grade fluids, on the other hand, are substantially more 

complex, and these fluids can predict shear thickening (viscosity increases with 

increased stress) or thin (viscosity reduces with increased stress). The constitutive 

equation for the differential type of non-Newtonian fluid can be seen in Chapter 2, 

where it shows the relationship between stress and local properties of the fluid. 

1.1.3 Magnetohydrodynamics 

Magnetohydrodynamics (MHDs), also known as magnetic field fluid dynamics 

or hydromagnetic, is the study of the dynamics of electrically conducting fluids in the 

presence of a magnetic field, such as saltwater and electrolytes (Makhiji, 2012). The 

term MHD is based on magneto, which means magnetic, hydro, which means water or 

liquid, and dynamics, which refers to the movement of an object caused by forces 

(Dorch, 2007). MHD is used in various engineering and technological fields, including 
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MHD power generators, MHD pumps and the petroleum industry. Interactions exist 

between the motion of the fluid flow, where electric current is generated when fluid 

flows across magnetic lines and the transverse magnetic lines of forces that contribute 

to other forces on fluid.   

MHD has wide applications; for example, MHD power generating converts 

thermal and kinetic energy straight to electricity in terms of power generation. This 

could replace conventional power generation, which typically uses high conversion 

potential energy to transfer thermal energy to mechanical energy and electrical energy, 

resulting in increased capital and maintenance costs (Ajith Krishnan and Jinshah, 

2013).  

 MHD laser-powered generators act as a solution to the problem of power 

generation in space. In addition, it has the potential as a converter to convert space-

based lasers to electrical power (Jalufka, 1986). Concerning fluid flow, the problem of 

high and low rates of velocity while using conventional pumps has led to the 

development of several types of MHD pumps. This includes seawater pumping, 

molten metal pumping, molten salt pumping and nanofluid pumping (Al-Habahbeh et 

al., 2016).  

 

1.1.4 Rotating Frame and Porous Medium 

 A rotating frame is one that rotates in relation to an inertial reference frame. 

Because of its significant applications in nature, such as spiral galaxies and 

atmospheric circulation, the study of fluid flow in a rotating frame has grown 

tremendously. There are some works in this area concentrating on rotating frames, 

such as MHD’s fourth-grade rotating flow between two parallel infinite plates (Rana 

et al., 2012), constant accelerated flow for third-grade fluid in a rotating frame (Aziz 

et al., 2012) and Stokes’ first problem for third-grade fluid rotating flow (Shahzad et 

al., 2008).  

 

A porous medium is a substance that has pores, and fluid flow, which has 

recently emerged as an interesting study area. Because of the wide range of 
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applications in geophysics and engineering, for example, monitoring the subsurface 

spread of chemical wastes and toxins, the study of MHD flows in porous media with 

a rotating effect has increased prominently (Imran et al., 2014). Fluid flow in porous 

media can also be observed in the human body system, like the blood flow via arteries 

(Eldosky, 2012). Imran et al. (2014), Anita (2015), Garg et al. (2015), Ghani et al. 

(2016), Parida and Padhy (2018) and Arifuzzaman et al. (2019) previously investigated 

fluid flow movement through the porous medium.  

 The study of MHD flow through porous medium with rotational effect has 

grown in popularity due to various applications in geophysics and engineering, for 

example controlling the subsurface spread of chemical wastes and pollutants (Imran et 

al., 2014, Salah et al., 2011, Hayat et al., 2008, Abelman et al., 2009, Hayat and Hutter, 

2004, Salah et al., 2013, Hayat and Wang, 2003, and Imran et al., 2014) are some of 

the studies that deal with the porous medium and rotation.    

 

1.1.5 Heat Transfer   

There have been extensive scientific experiments on heat transfer phenomena 

in non-Newtonian fluid flow due to its significance in many fields, for instance, 

metallurgical process, production of polymer film, colloidal ceramics processing and 

plastic manufacture. Furthermore, heat transfer determines the highest and lowest 

temperature in a system like the in-car radiator or food oven.  

Heat transfer modes are classified into three types, namely: conduction, 

convection, and radiation. The spread of heat caused by temperature gradients is 

referred to as conduction. Heat conduction (thermal conduction) is a process in which 

heat is transferred within a body because of particle collision. For example, when the 

car engine is turned on, the hood warms up due to heat conduction from the engine to 

the hood. Next, boiling water is an example of heat convection, which refers to the 

heat transfer through moving fluid and can only occur in fluids and gases. Finally, 

radiative heat transfer is heat transport by electromagnetic waves such as microwaves. 

However, in most real situations, these modes will coexist, such as an electric oven.  
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 Previous researchers have investigated many models of heat transfer in fluid 

flow. For example, Arifuzzaman et al. (2019) examined the heat transfer flow of a 

fourth-grade radiative. Their research concludes that as the parameters of the second-

, third-, and fourth-grades grow, the temperature will rise. Moreover, Uddin et al. 

(2019) examined heat transfer-induced natural convection in a vertical oscillating 

cylinder. According to their findings, fluid temperature is reduced because of the 

thickening of the thermal boundary layer. Furthermore, heat transfer analyses on MHD 

third-grade fluid could be found in Baoku et al. (2013), Aiyesami et al. (2012) and 

Sajid et al. (2007).  

 

1.1.6 Numerical Methods    

Non-Newtonian fluid equations are mostly complex, demanding and need 

appropriate methodologies for problem-solving. In this case, an analytical method of 

homotopy analysis methods (HAM) can be used to address the fluid flow problem 

(Sajid et al., 2006; Hayat et al., 2011; Aziz et al., 2012; Shafiq et al., 2013). In addition, 

other studies applied the Fourier sine transform and the Laplace transform to obtain an 

exact solution (Salah et al., 2013; Tan and Masuoka, 2005; Hayat et al., 2008; Hayat 

and Hutter, 2004; Salah et al., 2011; Khan et al., 2011, Ali et al., 2012; Eldesoky, 

2012). However, the analytical method is ineffective if the problem system is more 

complex (Loredo et al., 2016). 

In many engineering applications, numerical methods can handle massive 

systems, nonlinear equations and intricate geometries. Therefore, numerical methods 

have been widely used, including the finite difference method (FDM) (Islam et al., 

2011), the finite difference with successive under relaxation (Hayat and Wang, 2003; 

Rana et al., 2012), FDM on a 3D-staggered grid (Tomé et al., 2002; Tomé et al., 2004; 

Tomé et al., 2008), Newton method (Shahzad et al., 2008), finite element method 

(Sajid et al., 2008), generalised finite difference method (GFDM) (Muelas et al., 2019) 

and implicit finite difference of the Keller-Box method (Rawi et al., 2020).  

The FDM is the oldest method that divides space and time coordinates into a 

rectangular grid and could represent the model’s accuracy. This method is suitable for 
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solving partial differential equations (PDEs), including linear or nonlinear, dependent 

and time-dependent problems, and different boundary conditions (BCs). Many 

numerical solution techniques to solve PDEs have appeared with the emergence of 

high-speed computers with large-scale storage capacity. However, because of its ease 

of use, the FDM remains a valuable technique for solving these problems. Some of the 

advantages and disadvantages of the FDM are summarised in Table 1.1.  

Table 1.1 Advantages and disadvantages of FDM. 

Advantages Disadvantages References 

Simple to use and 

implement 

Difficulties in representing 

irregular boundaries could 

be solved by the GFDM. 

Loredo et al. (2016) 

Muelas et al. (2019) 

Harish et al. (2021) 

Converges faster and 

more accurate 

The large-sparse linear 

system of equations and 

sophisticated algorithms 

are required, but they are 

relatively difficult to code. 

Fadugba et al. (2012) 

 

 

Interpolation is a method in numerical analysis that can be used to construct or 

estimate new data points using known (previous) data. Interpolation can also be 

defined as the process of finding a formula whose graph will pass through a set of 

points. There are many types of interpolation methods, such as piecewise constant 

interpolation, linear interpolation, polynomial interpolation, spline interpolation, 

interpolation via Gaussian process, rational interpolation, trigonometric interpolation, 

and multivariate interpolation.  

The asymptotic interpolation method (AIM) is a method that can be used to 

estimate an unknown value as the sample size of a problem goes to infinity. This 

method uses different asymptotic functions, which have enough parameters to capture 

the behaviour of a problem, as in Table 2.1 (Vyaz’min et al., 2001). Table 1.2 shows 

the advantages and disadvantages of the AIM. 
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Table 1.2 Advantages and disadvantages of the AIM. 

Advantages Disadvantages References 

Highly accurate 

approximations are obtained in 

only a few iterations 

 Süleyman Cengizci 

(2017) 

 

Give accurate predictions at 

infinity 

Must know the 

behaviour of fluid 

Yukalov et al. (2010) 

 

Based on the advantages of the FDM and AIM, the combination of these two 

methods could solve different models of nonlinear PDEs that have an infinite domain 

and provide an accurate result.     

1.2 Statement of the Problem  

Many studies have been conducted in an attempt to solve nonlinear PDEs that 

have been derived from modelling real-world issues. Accuracy, consistency, and 

stability are the major concerns in problem-solving. Over time, many numerical 

methods have been devised and proven to be quite effective for solving problems in 

physics and engineering. The FDM is one of the numerical methods most researchers 

use to discretise the nonlinear equation. It has been proved to provide accurate results 

and converge faster in a finite domain. 

The main problem in this research is to find an accurate result in an infinite 

domain that is close to asymptote, specifically for higher orders and higher degrees of 

nonlinear PDEs of fluid flow problems. Third-and fourth-grade non-Newtonian fluids 

are chosen due to their complicated mathematical formulation, which involves 

constitutive equations. 
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 An effective numerical method for solving infinite domains in a higher degree 

of the nonlinear PDE is required. A good algorithm in a numerical method could 

efficiently solve many problems in less time. 

This research will combine two methods, which are the FDM to discretize the 

nonlinear PDE and the interpolation method to estimate an unknown value. To show 

the infinite domain, three or more different lengths will be highlighted. A special 

asymptotic function that has parameters will be inserted into the system. More length 

will produce more data. Thus, the nonlinear least square curve fit will be used to find 

the best data fit for parameters.  

Error analysis and validation will be conducted to ensure the hybrid method 

can be used for many problems that involve an infinite domain. A theory of stability 

will be conducted to ensure the problem is stable with the numerical scheme.  

From the discussion, the problems are related to:  

(a) How to handle the problems involving infinite domains? 

(b) How can the hybrid method be generated or introduced for any problems 

related to MHD acceleration (constant or variable) flows for third- or fourth-

grade fluid? 

(c) To what extent can the hybrid method error be agreed upon to ensure the 

method is valuable and stable? 

(d) What are the advantages of the hybrid method? 

(e) What are the effects of the rotation parameter, magnetic parameter, third- and 

fourth-grade parameters, porous parameter, Prandtl number, and Grashof 

number on the velocity and temperature? 
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1.3 Objectives of the Study  

The main purpose of this study is to introduce a hybrid approach that combines 

the FDM with the AIM for third- and fourth-grade fluids. Other objectives of this study 

are as follows: 

(a) To determine the range of error and norm of error in error analysis, which 

includes perturbation systems, 

(b) To obtain the theory of stability for numerical method problems, 

(c) To obtain an approximate solution for the constant or variable acceleration of 

non-Newtonian fluid flow in a rotating frame for third- and fourth-grade fluids 

using the hybrid method, 

(d) To analyse the effects of parameters on the velocity and temperature 

distribution. 

 

1.4 Scope of the Study    

Third- and fourth-grade non-Newtonian fluids with the constant or variable 

acceleration of unsteady MHD flow in a rotating frame and porous medium are 

studied. The presence of heat transfer in the fluid flow problem is also investigated. A 

new hybrid, FDM and AIM, are used to obtain approximate numerical solutions. This 

study has the following assumptions:  

(a) The third- and fourth-grade fluids, 

(b) The fluid flow problem is in an unsteady state that varies with time,   

(c) The flow is in a rotating frame, 

(d) The fluid conducts electricity, 

(e) Heat transfer appears in fluid flow, and 
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(f) The fluid flow passes through a porous medium. 

 

1.5 Significance of the Study  

The study of fluid flow behaviour has grown in popularity as it exists in various 

technical and industrial domains, such as the manufacturing of plastic and food. The 

effects of MHD, rotation and heat transfer on fluid flow have inspired researchers to 

develop new machines like MHD generators and pumps. The complex system of non-

Newtonian fluids challenges applied mathematicians with hurdles in developing 

suitable and available algorithms for fluid flow problems. Several fluid flow models 

have been proposed in response to novel fluid behaviour problems. Many fluid flow 

problems have been solved analytically to generate a formula for an exact solution or 

numerically to obtain an approximation of the true solution. The findings of this study 

are noteworthy in the following ways:  

(a) Because of the existence of a semi-infinite fluid flow problem, the idea of 

developing a new hybrid numerical method has arisen, 

(b) It is hoped that the hybrid approach will spur further research into various types 

of non-Newtonian fluid flow problems, and 

(c) The approximate numerical solution obtained is valuable to determine the 

accuracy of the analytical solution.  

 

1.6 Outline of the Thesis  

This study is divided into five chapters. Chapter 1 is the introduction section 

that defines non-Newtonian fluids and discusses the differential fluid types, namely 

second-, third- and fourth-grades, MHD, rotating frame and porous medium. It also 

highlights previous research, particularly in terms of engineering and industrial 

applications. In addition, Chapter 1 outlines the study’s objectives. It is important to 

note that this study focuses on incompressible third- and fourth-grade fluids, constant 
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and variable accelerations, MHD, time-dependent, rotation, porous medium, heat 

transfer and numerical methods. 

Chapter 2 is an overview of previous research on non-Newtonian fluid flow 

problems by focusing on second-, third- and fourth-grade fluids, numerical FDM, 

AIM, nonlinear least square curve fitting and hybrid technique. This study aims to 

address the research gap left by previous research. 

On the other hand, Chapter 3 explains in detail the research method. Figure 3.1 

depicts the flow chart of the research methodology, which is further divided into the 

following sections: information gathering, algorithm evaluation (finite difference, 

asymptotic interpolation and hybrid generalisation methods), algorithm 

implementation and validation. The principles of the FDM and the algorithms for 

solving nonlinear equations are covered.  

Furthermore, the concept of the AIM is described mathematically and 

graphically in Figure 3.3. Four steps are inferred in the hybrid method’s generalisation 

section. The concept of the nonlinear least square method is also explained in Step 4. 

Besides, a MATLAB coding algorithm is included in this chapter to discuss the AIM. 

Figure 3.4 depicts the flow diagram for the novel hybrid technique approach. This part 

also covers validation and error analysis.          

Four fluid problems are studied to validate the hybrid finite difference and 

asymptotic interpolation methods. The first problem is non-Newtonian third-grade 

fluid constant acceleration in a rotating frame. The governing equation is studied, and 

the hybrid numerical method is applied to the system. The results are then compared 

to those of prior studies using the HAM. Previously, there was no exact solution to this 

problem. Hence the numerical scheme of the modified third-grade fluid is constructed 

with an exact solution. Then, error analysis and stability tests are conducted. At the 

same time, the second validation is conducted by solving the problem of non-

Newtonian third-grade fluid flow with variable accelerations in a rotating frame.  
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Next, validation with the MHD third-grade fluid flow in a rotating frame and 

porous medium has been conducted in validation 3. The fourth validation is conducted 

by solving nonlinear second-order partial differential equations in third-grade fluid 

flow at the rotating cylinder. After that, the results of the hybrid numerical solution are 

compared against the exact solution from previous research.  

Moving on, Chapter 4 presents a new fluid flow problem related to the constant 

acceleration of unsteady third-grade MHD fluid in a rotating frame. The governing 

equations for this problem are presented. The problem is related to the unbounded BC. 

Therefore, this new approach to the hybrid method is applied. The results are validated 

by introducing an implicit numerical scheme of the modified third-grade fluid. An 

error analysis is used to calculate the exact difference and relative error between the 

hybrid approach and the exact solution. The analysis then continues by varying the 

parameter values to examine how fluid flow affects the velocity profile. 

An investigation into the new fourth-grade fluid problem has been conducted, 

which solves the variable acceleration of the unsteady fourth-grade MHD fluid in the 

rotating frame. Compared to the third-grade fluid, the fourth-grade fluid’s governing 

equations are more cumbersome and complex. Due to the time-dependent and complex 

equation appearing in this problem, the FDM is carefully done at this time 𝑡 = 1 and 

𝑡 = [2, 𝑁 − 1]. Next, the AIM is inserted into the process to satisfy infinite length 

conditions. The investigation continues by varying the parameter values to see how 

they affect the fluid flow’s velocity profile. This study continues to address the 

problem of heat transfer in fluid flow in MHD third-grade fluid flow in a rotating frame 

with and without the porous medium.           

 Finally, Chapter 5 discusses the conclusion and recommendation. The research 

findings include theoretical error analysis of the FDM and AIM, stability tests, the 

solution of three fluid flow problems for validation purposes, and four new fluid flow 

problems. The contributions of knowledge highlighted in this study are the 

introduction of a hybrid FD-AIM approach, the presentation of theoretical error 

analysis, the application of the 𝜃-method and a new solution to the fluid flow problems.   
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