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ABSTRACT 

Global warming is happening and human activities are the major causes of this 
issue. For instance, the burning of fossil fuels will release large amounts of carbon 
dioxide (CO2) into the air and finally trap heat in our atmosphere, causing global 
warming. Therefore, a clean fuel such as hydrogen (H2) is crucial for the environment. 
However, effective H2 storage remains a challenge since it is usually stored at -196 °C. 
Currently, H2 can be stored via adsorption in carbon-based material that has high 
surface area, is light-weight and chemically stable. Graphene is one of the common 
materials used to store H2 but pure carbon-based material is not practical for energy 
storage as it has low H2 storage capacity at ambient temperature. H2 storage in 
graphene can be further enhanced by some modifications. Addition of graphene into 
metal organic frameworks has been a promising approach to improve H2 storage 
capabilities as this material has excellent gas storage capacity at ambient temperature. 
In this study, rice husk is used as a biomass precursor to prepare rice husk derived 
graphene (GRHC) which was then added into zeolitic imidazolate framework-8 (ZIF-
8) to form a hybrid nanocomposite. Herein, the main objective of this study was to 
synthesize hybrid nanocomposites of ZIF-8/GRHC with an enhanced physicochemical 
property for a better H2 storage capacity at ambient temperature. The study was 
performed by varying several experimental and adsorption parameters including the 
type of activating agent to produce GRHC (potassium hydroxide, KOH and phosphoric 
acid, H3PO4), rice husk char (RHC) to activating agent ratio (1:1, 1:2, 1:3, 1:4 and 1:5), 
loading of GRHC in the hybrid nanocomposites (0.04, 0.08, 0.12, 0.16 and 0.20 g) and 
variation of H2 pressure (3, 6, 9 and 12 bar). The resultant hybrid nanocomposites with 
0.04 g (ZGK 0.04) of GRHC activated with KOH (GRHC-KOH) displayed the greatest 
improvement in their porous structure including largest specific surface area of up to 
1065.51 m2/g and highest micropore volume (0.4784 m3/g) which was higher than the 
value of pristine ZIF-8 (687.32 m2/g and 0.0419 m3/g). Additionally, the ZGK 0.04 
with pore diameter of 0.81 nm was obtained which was smaller than pure ZIF-8, 1.98 
nm. This was due to the addition of GRHC-KOH which was able to shrink the pore 
diameter of ZGK 0.04. The introduction of GRHC-KOH also enhanced the 
accessibility of hydrogen molecules to the open metal sites in the main structure of 
ZIF-8. These tailorable surface properties are superior factors for effective H2 
adsorption at ambient condition. ZGK 0.04 with the best porous structures and 
physicochemical properties illustrated the highest volume of H2 adsorbed at ambient 
temperature and 12 bar (1.82 wt. %) as compared to pristine ZIF-8 and GRHC-KOH 
which were around 0.41 wt. % and 0.74 wt. % respectively. Notably, the adsorption 
performance of H2 was directly proportional with the pressure increment. ZIF-8 
obeyed Langmuir adsorption isotherm model while ZGK 0.04 and GRHC-KOH 
obeying Freundlich adsorption isotherm model. At 3 bars, all the samples showed that 
pseudo-first order kinetic model (physisorption) was the fitted model but as the 
pressure increased, pseudo-second order kinetic model (chemisorption) was found to 
be the best fitted model. ZGK 0.04 exhibited the highest stability where the H2 
adsorption only dropped around 6.51 % after 5 complete cycles at -196 °C and 
atmospheric pressure. The optimization of H2 storage depicts that 0.5 g of ZGK 0.04 
at 15 bars of H2 pressure and 60 mins of reaction time was the best condition to achieve 
the highest adsorption at room temperature, 1.95 ± 2.50 wt. %.  
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ABSTRAK 

Pemanasan global sedang berlaku dan aktiviti manusia adalah penyumbang 
utama kepada hal ini. Contohnya, pembakaran bahan api fosil akan mengeluarkan 
jumlah karbon dioksida (CO2) yang banyak dan terperangkap di atmosfera, 
menyebabkan pemanasan global. Justeru, bahan bakar bersih seperti hidrogen (H2) 
penting untuk persekitaran. Namun, penyimpanan H2 yang berkesan menjadi cabaran 
kerana ia biasanya disimpan pada suhu -196 ° C. H2 boleh disimpan melalui penjerapan 
dalam bahan berasaskan karbon yang mempunyai luas permukaan yang tinggi, ringan 
dan stabil secara kimia. Grafin adalah bahan yang digunakan untuk menyimpan H2 
tetapi bahan berasaskan karbon tulen tidak praktikal kerana ia mempunyai kapasiti 
penyimpanan H2 rendah pada suhu persekitaran. Penyimpanan H2 dalam grafin dapat 
ditingkatkan dengan beberapa pengubahsuaian. Penambahan grafin dalam kerangka 
organik logam menjadi pendekatan yang menjanjikan peningkatan keupayaan 
penyimpanan H2 yang baik pada suhu persekitaran. Sekam padi digunakan sebagai 
prapenanda biojisim untuk menghasilkan grafin (GRHC) dan ditambah ke dalam 
kerangka imidazolat-8 zeolitik (ZIF-8) untuk membentuk nanokomposit hibrid. 
Objektif utama kajian ini adalah mensintesis nanokomposit hibrid ZIF-8/GRHC 
dengan sifat fizikokimia yang ditingkatkan untuk kapasiti penyimpanan H2 pada suhu 
persekitaran. Kajian ini dilakukan dengan mempelbagaikan beberapa parameter dan 
penjerapan termasuk jenis agen pengaktif untuk menghasilkan GRHC (kalium 
hidroksida, KOH dan asid fosforik, H3PO4), bahan bakar sekam padi (RHC) pada 
nisbah agen pengaktif (1:1, 1:2, 1:3, 1:4 dan 1:5), muatan GRHC ke dalam 
nanokomposit hibrid (0.04, 0.08, 0.12, 0.16 dan 0.20 g) dan variasi tekanan H2 (3, 6, 9 
dan 12 bar). Nanokomposit hibrid yang dihasilkan dengan 0.04 g (ZGK 0.04) GRHC 
diaktifkan dengan KOH (GRHC-KOH) menunjukkan peningkatan terbesar dalam 
struktur berliang mereka termasuk luas permukaan spesifik terbesar hingga 1065.51 
m2/g dan isipadu mikropori tertinggi (0.4784 m3/g) yang lebih tinggi daripada nilai 
ZIF-8 tulen (687.32 m2/g dan 0.0419 m3/g). Selain itu, ZGK 0.04 mempunyai diameter 
pori 0.81 nm iaitu lebih kecil daripada ZIF-8 tulen, 1.98 nm. Ini disebabkan oleh 
penambahan GRHC-KOH yang dapat mengecilkan diameter liang ZGK 0.04. 
Pengenalan GRHC-KOH meningkatkan kebolehcapaian molekul hidrogen ke tapak 
logam terbuka di struktur utama ZIF-8. Sifat permukaan yang sesuai ini adalah faktor 
unggul untuk penjerapan H2 yang berkesan pada keadaan persekitaran. Dengan sifat 
fizikokimia dan struktur berpori terbaik, ZGK 0.04 menunjukkan jumlah penyerapan 
H2 tertinggi pada suhu persekitaran dan 12 bar, 1.82 wt. % berbanding ZIF-8 dan 
GRHC-KOH sekitar 0.41 wt. % dan 0.74 wt. %. Prestasi penjerapan H2 berkadar 
langsung dengan kenaikan tekanan. ZIF-8 mematuhi model isoterma penjerapan 
Langmuir sementara ZGK 0.04 dan GRHC-KOH mematuhi model isoterma 
penjerapan Freundlich. Pada 3 bar, semua sampel menunjukkan bahawa model kinetik 
pseudo-tertib pertama (penjerapan fizikal) adalah model yang sesuai tetapi ketika 
tekanan meningkat, model kinetik pseudo-tertib kedua (penjerapan kimia) adalah 
model yang terbaik. ZGK 0.04 menunjukkan kestabilan tertinggi di mana penjerapan 
H2 turun sekitar 6.51% setelah 5 kitaran lengkap pada suhu -196 ° C dan tekanan 
atmosfera. Pengoptimuman penyimpanan H2 menggambarkan bahawa 0.5 g ZGK 0.04 
pada tekanan 15 bar H2 dan 60 min masa tindak balas adalah keadaan terbaik untuk 
mencapai penjerapan tertinggi pada suhu bilik, 1.95 ± 2.50 wt. %.  
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Background of Study 

Nowadays, demand on fuels which mainly originate from non-renewable fossil 

fuels are rising tremendously (Parambhath et al., 2012). Fossil resources are usually 

organic compounds which causes the emission of carbon dioxide (CO2) gas to the 

atmosphere when it is burnt (Kunowsky, 2013). Interestingly, the aforementioned 

problem has triggered the awareness of researchers to find a better source of energy 

such as green energy (Parambhath et al., 2012). As an alternative, hydrogen (H2) 

energy and fuel cell technology has shown a great promise to overcome the 

environmental issues. This is due to the fact that, H2 emits water vapour when it is 

combusted in air (Kunowsky et al., 2013). 

H2 is chosen as a green source of energy due to several advantages such as, it 

is produced by renewable energy sources, can be stored in large amount and it can be 

used to generate electricity and heat (Kunowsky et al., 2013). On top of that, H2 

provide a clean combustion as it does not release any harmful by-products to the 

atmosphere (Singh et al., 2015). In addition, H2 can be generated centrally and locally 

from numerous sources like wind, water, wave, solar as well as biomass. (Kunowsky 

et al., 2013). For example, by using electricity in an electrolyser device, water 

molecules can be divided into hydrogen and oxygen molecules via electrolysis process. 

Usually, this process is carried out in the presence of potassium hydroxide electrolyte 

and solid polymer membrane electrolyte (Singh et al., 2015). On the other hand, 

biomass resources can be converted into hydrogen via several methods which include 

gasification, steam reforming of bio-oils and pyrolysis. Briefly, fast pyrolysis at high 

temperatures is favourable because it require a shorter time as compared to slow  
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pyrolysis. During fast pyrolysis, the biomass feedstock is heated to produce vapor and 

condense into bio-liquid. The end product of fast pyrolysis will be gaseous products 

(H2, CH4, CO2), liquid products (tar and oil) and solid products (char and pure carbon) 

(Ehsan and Wahid, 2016). 

However, the main concern regarding with H2 energy is difficulties that arise 

with its storage. For practical applications, the storage of H2 need high gravimetric and 

volumetric density, fast reaction kinetic, low H2 sorption temperature, good 

reversibility and low cost (Xia et al., 2013). Fortunately, H2 can be effectively stored 

by using carbon-based materials which are light-weight, chemically stable and have 

high surface area (Roszak et al., 2016). The carbon-based materials that can be used 

include activated carbon, carbon nanofibers, carbon nanotubes (CNTs) and graphene. 

Specifically, graphene has received much scientific and technological interest with 

great application potentials in various fields, such as energy storage, bioscience and 

biotechnologies (Shao et al., 2010). Micromechanical cleavage, epitaxial growth on 

silicon carbide and chemical exfoliation are the current method that have been used 

widely to prepare graphene sheets (Zhang et al., 2009).  

Nevertheless, the chemical process for the production of graphene from 

exfoliation of graphite oxide involves hazardous and toxic reagents even it shows a 

route for scalable synthesis (Purkait et al., 2017). Currently, bio-waste materials have 

been a great source for production of carbon. Rice husk is one of the precursors that 

can be used to produce carbon materials. Annually, about 1.5 million tonnes of rice 

husk are produced in Malaysia. This waste will be disposed by open burning which 

can lead to environmental problem such as haze and the release of CO2 (Rosmiza et 

al., 2014). Due to the massive production of rice husk and the disposal issue, it received 

wide attention as a starting material to generate high value added materials such as 

silica and porous carbon (Liou, 2010). Moreover, with an optimum pore volume, pore 

size and surface area, biomass derived carbons exhibit outstanding hydrogen 

adsorption at room temperature and moderate pressure (Czakkel et al., 2019). 

Interestingly, Muramatsu and his teammates (2014) has successfully produced 

graphene from rice husk. Since graphene can be synthesized from rice husk, it is 

expected that H2 can be stored in these materials either by sorption of molecular H2 or 
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atomic H2. However, at ambient condition pure carbon based material are not practical 

for energy storage system as it has low H2 storage capacity at ambient pressure and 

moderate pressure (Parambhath et al., 2012). Its low binding energy, heterogenity 

surface, mesoporosity and poor volumetric packing made H2 storage at ambient 

condition become ineffective (Roszak et al., 2016). This is because, carbon atoms 

interact with H2 molecule via weak van der Waals forces (Íniguez, 2008).  

Hence, modification is needed to overcome the problem (Parambhath et al., 

2012) in order to enhance the surface area and pore size that serve as an adsorbent site 

for H2 molecule via physisorption (Xia et al., 2013). Incorporation of graphene in 

metal-organic frameworks (MOFs) have drawn tremendous attention due to its unique 

properties (Huang et al., 2014) such as increasing the crystallization rate, development 

of new pores (Langmi et al., 2017), enhancement of electrical, optical and adsorption 

properties (Kim et al., 2016) which significantly improve the gas adsorption as 

compared to pristine MOFs (Zhou et al., 2016). These materials have been utilized for 

various applications such as sensors, supercapacitors, battery, gas storage and catalysis 

(Kim et al., 2016). 

MOFs or porous coordination networks are classified as an advanced material 

designed by engaging several metal ions and organic linkers (Gangu et al., 2016). 

MOFs appear as an extensive class of crystalline materials with ultrahigh porosity (up 

to 90% free volume) (Zhou et al., 2012). In addition, MOFs promised several 

advantages such as it is thermally stable, discrete ordered structure, ultra-low densities 

(0.13 g/cm3), large surface area (6000 m2/g) and ease of synthesis (Zhou et al., 2012; 

Gangu et al., 2016). Due to excellent gas storage capacity at ambient temperature 

(which include hydrogen and methane), MOFs have driven a large number of new 

adsorbents with potential uses in vehicle gas tanks, fuel cell and stationary power 

facilities (Wang et al., 2017). Zeolitic imidazolate frameworks (ZIFs) which is a sub-

family of MOFs (Wu et al., 2007) possess zeolite-like topologies (Bao et al., 2013) is 

suitable to be applied in various applications which include gas storage (Lee et al., 

2015b). One of the most widely used ZIFs is ZIF-8 which is made from zinc (Zn) and 

2-methylimidazole (Hmim) (Hai‐xia et al., 2014). ZIF-8 is a known material that 

consist of high porosity and large surface area (Fairen-Jimenez et al., 2011). 
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1.2 Problem Statement 

Graphene, is commonly used for hydrogen storage as it has large surface area 

and chemically stable. Besides that, graphene can also help in efficient binding with 

hydrogen atoms due to its structure (sp2 hybridized and covalent bonded honeycomb 

arrangement). This unique characteristics of graphene lead to an easy adsorption of 

hydrogen either via physisorption or chemisorption. Unfortunately, at ambient 

condition pure carbon based material are not practical for energy storage system as it 

has low H2 storage capacity (Parambhath et al., 2012). To overcome this problem, 

modification of graphene is required to further enhance the hydrogen storage 

capabilities (Kaur and Pal, 2019). Based on recent study, the synergistic effect on 

porosity and chemistry of graphene oxide (GO)/MOF resulted in an obvious 

improvement in H2 uptakes (Zhou et al., 2015b). GO shows a potential platform as a 

structure-directing agent for the growth and stabilization of ZIF-8, where coordination 

modulation occurs through the different functional groups on the surface of the 

material (Kumar et al., 2013b). However, the produced GO sheets suffer from several 

structural damage which is then reflected to the physicochemical properties of the 

material that is contrast from graphene (Tsoufis et al., 2015).  

Meanwhile, Kim and research group (2016a) have reported that, reduced 

graphene oxide (RGO)/ZIF-8 shows a higher surface area and gas storage as compared 

to GO/ZIF-8 because of the improved porosity. Musyoka and team mates (2017) stated 

that, their hybrid nanocomposites RGO/Zr-MOF which produced via in-situ also 

shows a great enhancement in terms of surface area and hydrogen storage. Though few 

studies have demonstrated that incorporation of graphene in MOFs will greatly 

enhanced the properties of the composites, however, the use of biomass derived 

graphene in the hybrid is still need a vital attention. The presence of lignocellulose in 

the biomass such as rice husk able to form a high surface area of graphene (Chai et al., 

2019). Usually, inert gas like nitrogen (N2) is used to prepare graphene from biomass. 

Interestingly, some researchers have successfully produced biomass derived graphene 

using double crucible method in the absence of inert gas. However, the research is still 

in bottleneck. Typically, potassium hydroxide (KOH) (Muramatsu et al., 2014) and 

phosphoric acid (H3PO4) (Sych et al., 2012) are chosen to activate the agricultural 
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waste via chemical activation and/or physical activation. These activating agents able 

to produce graphene with high porosity that is very much favoured for gas adsorption 

applications (Sych et al., 2012). Currently, the study of these activating agents towards 

the properties on rice husk derived graphene is still in its premature stages and needed 

special attention especially in the application of gas storage. Reports on ratio of 

activating agent are also limited. Thus, it is crucial to develop a study on how the types 

and ratio of activating agent will affect the properties of rice husk derived graphene 

especially in terms of porosity and surface area for H2 storage.  

On top of that, this study will be the first attempt to incorporate rice husk 

derived graphene-like material (GRHC) which have mesopores structure (Kim et al., 

2016) with ZIF-8 to improve the physicochemical properties as well as hydrogen gas 

adsorption of the hybrid nanocomposites. This is due to the fact that, addition of GRHC 

in ZIF-8 will form a synergistic effect that will improve the surface area and porosity 

on the nanocomposites and thus, enhance hydrogen storage (Jiang et al., 2018; Tsou 

et al., 2018). Additionally, response surface methodology (RSM) is used to evaluate 

the optimum conditions namely mass of sample, pressure of hydrogen gas and reaction 

time towards the hydrogen storage at room temperature. It is notable that good physical 

properties of the hybrid nanocomposites are vital for hydrogen storage. However, 

several external factors such as amount of sample, pressure of gas, and reaction time 

might affect the performance of the hybrid nanocomposites towards hydrogen storage 

at ambient temperature. 

1.3 Objectives of Study 

The major aim of this work is to produce hybrid nanocomposites of ZIF-

8/GRHC via aqueous room temperature with improved surface area and porosity for 

H2 gas adsorption. Therefore, based on the above challenges and issues, the specific 

objectives of this study were as follows: 



 

6 

1. To examine the effects of different ratio and activation agent (KOH and H3PO4) 

in the absence of inert gas on the physicochemical properties of rice husk 

derived graphene (GRHC) to be added in the hybrid nanocomposites. 

2. To formulate ZIF-8/GRHC hybrid nanocomposites and study the effects of 

different loading of GRHC on the physicochemical properties of the hybrid 

nanocomposites for H2 gas adsorption. 

3. To elucidate the H2 gas adsorption capabilities of ZIF-8/GRHC hybrid 

nanocomposites via static volumetric test. 

4. To optimize its H2 gas adsorption capabilities at room temperature via 

Response Surface Methodology (RSM) analysis. 

 
 
1.4 Scope of Study 

In order achieve the aim and objective of this study, the scopes of this work 

were outlined as below: 

1. Preparation of rice husk derived graphene. 

(a) Carbonization of rice husk at 350 °C to obtain rice husk char (RHC). 

RHC was then activated using KOH and H3PO4 where the activation 

ratio was varied from 1:1, 1:2, 1:3, 1:4 and 1:5. The RHC was then 

calcined at optimum activation temperature (900 °C for KOH 

activation) and (700 °C for H3PO4 activation) to produce graphene. 

(b) The produced GRHC was characterized using Fourier-transform 

infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), 

Raman spectroscopy, Thermogravimetric analysis (TGA), Brunauer-

Emmett-Teller (BET), Field Scanning Electron Microscopy (FESEM), 

and Transmission Electron Microscopy (TEM).  

(c) The best GRHC sample was chosen to be added in ZIF-8 to form hybrid 

nanocomposites.  
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2. Preparation of ZIF-8/GRHC hybrid nanocomposites. 

(a) ZIF-8 was synthesized via aqueous room temperature method and it 

was then incorporated with various loading of GRHC starting with 0.04, 

0.08, 0.12, 0.16 and 0.20 g. 

(b) ZIF-8/GRHC hybrid nanocomposites were characterized using Fourier-

transform infrared spectroscopy (FT-IR), X-ray diffraction analysis 

(XRD), Raman spectroscopy, Thermo gravimetric analysis (TGA), 

Brunauer-Emmett-Teller (BET), Field Scanning Electron Microscopy 

(FESEM), and Transmission Electron Microscopy (TEM).  

(c) ZIF-8/GRHC hybrid nanocomposites with the best physicochemical 

properties was evaluated for hydrogen adsorption.  

3. Performance study of ZIF-8, GRHC and ZIF-8/GRHC hybrid nanocomposites. 

(a) H2 gas adsorption via static volumetric test was carried out to elucidate 

the capabilities GRHC and ZIF-8/GRHC hybrid nanocomposites.  

(b) The performance test was carried out under different pressure (3, 6, 9, 

and 12 bar) at room temperature. 

(c) All the adsorption data was transferred in kinetic adsorption plot to 

evaluate the amount of gas adsorbed in each sample.  

(d) To justify the adsorption mechanism, adsorption isotherm was studied 

using Freundlich and Langmuir plot. The kinetics of hydrogen 

adsorption was evaluated using pseudo-first order and pseudo-second 

order. 

4. Optimization study of ZIF-8/GRHC hybrid nanocomposites. 

(a) The optimization of hydrogen adsorption at room temperature in ZIF-

8/GRHC hybrid nanocomposites was carried out by varying three types 

of factors namely mass of sample used (A), pressure of hydrogen gas 

(B) and reaction time (C). 
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(b) The confirmatory test was carried out for three times to evaluate the 

developed model by comparing the response equations and the 

suggested predicted values to that of actual values obtained by the 

experiments. 

 
 
1.5 Significance of Study 

The main focus of this study was to produce ZIF-8/GRHC hybrid 

nanocomposites for hydrogen adsorption that works well both in cryogenic 

temperature and room temperature condition. Besides that, the importance of this study 

also includes the production of graphene using rice husk which then can help to reduce 

the problem of rice husk’s disposal. The RHC was activated using KOH and H3PO4 

respectively in order to produce a good quality of graphene. The incorporation of 

GRHC with ZIF-8 was hypothesized to greatly enhance the performance of the hybrid 

nanocomposites in terms of hydrogen adsorption. Apart from that, the kinetics model 

that developed in this study justified the type of adsorption mechanism either physical 

or chemical adsorption. Thus, it was hoped that this research will benefit the people as 

a new material can be used to store hydrogen to replace fossil fuels and the 

environmental issue can be reduced.  

1.6 Limitations of Study 

Due to time constrain and restriction of several equipment, the limitations of 

this study were described as follow:  

1. The stability study of ZIF-8, GRHC and ZIF-8/GRHC nanocomposites were 

repeated for only five cycles.  
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2. Studies on kinetic modelling and equilibrium isotherms for adsorption studies 

only limited to two different models namely pseudo-first order and pseudo-

second order kinetics model and Langmuir and Freundlich models. 

3. The hydrogen adsorption at cryogenic temperature (77 K) was carried out at 

atmospheric pressure due to limitation of the equipment. 
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