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ABSTRACT 

Quadcopter unmanned aerial vehicle (UAV) systems are receiving remarkable 

attention from researchers due to their numerous applications, particularly at the 

current time in which the quadcopter unmanned aerial vehicles are playing a 

significant role in combating the COVID-19 pandemic. The quadcopter is a nonlinear 

and underactuated system, and such properties require an advanced control technique 

design to enable the quadcopter to achieve the assigned tasks precisely and 

successfully. The sliding mode control is among the best robust nonlinear control 

technique that can be implemented in the quadcopter to perform robust trajectory 

tracking. However, the drawback of the sliding mode control is the chattering 

phenomenon. Thus, this research aims to benefit the sliding mode control robust 

trajectory tracking meanwhile attenuating the unwanted chattering that creates critical 

problems such as the vibration in the quadcopter UAV mechanical parts and generating 

heat in the onboard electronic kits. The main objective of this work is to design a hybrid 

adaptive sliding mode control scheme for quadcopter systems considering the 

unwanted chattering attenuation induced by unbound parameter uncertainties and 

unknown disturbances meanwhile provide robust tracking. To implement the proposed 

control scheme, the dynamic equations of the quadcopter have been formulated and 

presented into two subsystems, the attitude, and the position dynamics subsystems. 

The hybrid proposed control scheme is composed of two controllers, an inner control 

loop and outer control loop. Firstly, the sliding mode controller has been proposed and 

assigned to act as an inner loop controller, where the improvement covered, the 

equivalent control, and the switching control terms in the sliding mode control law. 

The equivalent control term has been estimated and developed based on the Lyapunov 

approach. Essentially, the switching control term is a multiplication of a switching 

function and the switching gain. The switching function is approximated by an error 

function, while the switching gain is calculated based on an improved adaptive 

formula. Secondly, an interval type-2 fuzzy proportional integral derivative controller 

has been proposed and assigned to act as an outer loop controller to control the 

quadcopter position. The performance of the proposed hybrid adaptive sliding mode 

control scheme has been evaluated and investigated by Matlab/Simulink platform. The 

simulation results have been obtained in two different scenarios: Firstly, the 

performance of the proposed hybrid adaptive sliding mode control scheme has been 

evaluated considering only an ideal case where the parameter uncertainty and external 

disturbance are ignored. Secondly, the performance of the proposed hybrid adaptive 

sliding mode control scheme has been investigated in the presence of parameter 

uncertainty and external disturbance that influence the quadcopter operation. The 

simulation results have been performed for the quadcopter trajectory tracking in 6-

DOFs. The obtained results prove that the proposed hybrid adaptive sliding mode 

control scheme provided a robust trajectory tracking with integral square error in the 

attitude and position have been improved by 37%, and 26% respectively, compared to 

the benchmark adaptive sliding mode control, and significantly attenuating the 

chattering impact. 
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ABSTRAK 

Sistem kenderaan udara tanpa pemandu (UAV) kuadkopter mendapat 

perhatian yang luar biasa daripada para penyelidik kerana banyak aplikasinya, 

terutamanya pada masa semasa di mana UAV kuadkopter memainkan peranan penting 

dalam memerangi pandemik COVID-19. Kuadkopter ialah sistem tak linear dan 

underactuated, dan sifat sedemikian memerlukan reka bentuk teknik kawalan lanjutan 

untuk membolehkan kuadkopter mencapai tugas yang diberikan dengan tepat dan 

berjaya. Kawalan SMC adalah antara teknik kawalan tak linear teguh terbaik yang 

boleh dilaksanakan pada kuadkopter untuk melakukan pengesanan trajektori yang 

teguh. Walau bagaimanapun, kelemahan SMC adalah fenomena gelatuk. Oleh itu, 

penyelidikan ini bertujuan untuk memanfaatkan SMC mengawal penjejakan trajektori 

teguh sementara itu melemahkan gelatukan yang tidak diingini yang menimbulkan 

banyak masalah contohnya getaran dalam bahagian mekanikal UAV kuadkopter. 

Objektif utama kerja ini adalah untuk mereka bentuk skema kawalan SMC suai hibrid 

untuk sistem kuadkopter memandangkan pengecilan gelatukan yang tidak diingini 

disebabkan oleh ketidakpastian parameter yang tidak terikat dan gangguan yang tidak 

diketahui sementara itu menyediakan pengesanan yang mantap. Untuk melaksanakan 

skim kawalan yang dicadangkan, persamaan dinamik kuadkopter telah dirumus dan 

dibentangkan kepada dua subsistem, iaitu subsistem dinamik sikap dan kedudukan. 

Skin kawalan hibrid yang dicadangkan terdiri daripada dua pengawal, gelung kawalan 

dalam dan gelung kawalan luar. Pertama, pengawal SMC telah dicadangkan dan 

ditugaskan untuk bertindak sebagai pengawal gelung dalaman, di mana 

penambahbaikan diliputi, kawalan setara, dan syarat kawalan pensuisan dalam 

undang-undang kawalan SMC. Istilah kawalan yang setara telah dianggarkan dan 

dibangunkan berdasarkan pendekatan Lyapunov. Pada asasnya, istilah kawalan 

pensuisan ialah pendaraban fungsi pensuisan dan keuntungan pensuisan. Fungsi 

pensuisan dianggarkan oleh fungsi ralat, manakala keuntungan pensuisan dikira 

berdasarkan formula penyesuaian yang lebih baik. Kedua, pengawal selang T2-FPID 

telah dicadangkan dan ditugaskan untuk bertindak sebagai pengawal gelung luar untuk 

mengawal kedudukan kuadkopter. Prestasi skim kawalan SMC suai hibrid yang 

dicadangkan telah dinilai dan dianalisa oleh platform Matlab/Simulink. Keputusan 

simulasi telah diperolehi dalam  dua senario berbeza: Pertama, prestasi skema kawalan 

SMC suai hibrid yang dicadangkan telah dinilai hanya dengan mengambil kira kes 

ideal di mana ketidakpastian parameter dan gangguan luaran diabaikan. Kedua, 

prestasi skim kawalan SMC suai hibrid yang dicadangkan telah dianalisa dengan 

kehadiran ketidakpastian parameter dan gangguan luaran yang mempengaruhi operasi 

kuadkopter. Keputusan simulasi untuk kedua-dua senario ini telah dilakukan 

berdasarkan penjejakan trajektori kuadkopter dalam 6-DOF. Keputusan yang 

diperolehi membuktikan bahawa skim kawalan SMC suai hibrid yang dicadangkan 

menyediakan pengesanan trajektori yang mantap dengan integral ralat kuasa dua 

dalam sikap dan kedudukan suai telah meningkat masing-masing sebanyak 37%, dan 

26%, berbanding penanda aras. SMC suai, dan mengurangkan kesan gelatukan dengan 

ketara.   
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CHAPTER 1  

 

 

 

INTRODUCTION 

 

1.1 Problem Background 

Basically, the UAV is an aircraft operated without a human pilot on board. 

The UAV is an umbrella that contains three major branches fixed-wing, helicopter, 

and multirotor as depicted in Figure 1.1 (Kim et al., 2019; Abdelmaksoud et al., 

2020). The quadcopter UAV is a most popular family member of the multirotor UAVs 

shown in Figure 1.2. The advantages and disadvantages of the quadcopter against the 

fixed wind UAVs and helicopters are summarized and listed in Table 1.1. For 

instance, the multirotor UAVs have an advantage over the fixed-wing type because 

of Vertical Take-off and Landing. The disadvantage of the multirotor is energy 

consumption due to the four motors which restrict the flying time of the UAV. In the 

past, the UAVs came up with large size which was very expensive. However, the 

recent technologies in lithium batteries, electronics kits, and mechatronics result in 

small size and cheap UAVs which can be used for outdoor and indoor applications 

with high maneuverability as shown in Figure 1.3 and Figure 1.4, respectively.  

In recent years, especially the quadcopter UAV is getting remarkable interest 

and focus from researchers, and it has been involved in numerous applications in both 

military and civil sectors (Shakhatreh et al., 2019). Although in the past the 

quadcopter was mainly used for military purposes, however over time it gradually 

involved in civilian applications such as traffic surveillance, photography, delivery, 

rescue, etc. From a structural point of view, the quadcopter UAV is a mechatronic 

system with a simple structure and consists of the main body include power source 

and control hardware along with four brushless dc motor which is fixed in a cross 

configuration as shown in Figure 1.2.  
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The quadcopter is an underactuated system with high nonlinear dynamics. 

Consequently, advanced and robust control techniques have been used in the 

literature, such as sliding mode, backstepping, and adaptive control, etc. to ensure 

smooth and robust trajectory taking navigation. 

 

Figure 1.1 Unmanned Aerial Vehicles (UAVs) Hierarchical. 

Table 1.1 summarizes the advantages and disadvantages of the quadcopter 

UAV compared to other UAV families such as helicopter and fixed-wing UAVs. 

Table 1.1 The advantages and disadvantages of the UAVs. 

Summary comparison 

   

Maneuverability 
   

Take-off/ landing 
   

Payload capacity  
   

Power consumption    
Price  

   
Portability/size  

   
Safety     
Remote control distance     
Stability     
Complex engine parts 
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Figure 1.2 The quadcopter UAV system. 

1.1.1 Indoor Quadcopter Applications 

Indoor quadcopters (mini and Nano quadcopters) as depicted in Figure 1.3 can 

move in a limited area only such as closed houses or offices, and they have concise 

control distances determined by the manufacturer. The advantage of the indoor 

quadcopter is the absence of wind-gust disturbance compared to the outdoor space. 

There are numerous applications of indoor quadcopters, such as military applications, 

inspections, and photography.  

 

Figure 1.3 Small size of quadcopter UAV. 
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1.1.2 Outdoor Quadcopter Applications  

The outdoor quadcopter is manufactured in a strong physical shape to 

overcome the harshness of the outdoor environment as depicted in Figure 1.4. The 

outdoor quadcopters have long remote-control distances and can fly longer compared 

to the indoor quadcopters. The disadvantage of the outdoor area is the wind-gust 

disturbance. The outdoor quadcopters are involved in many applications such as 

military applications and most civilian applications, for instance, lifting a payload, 

outdoor inspections, and agriculture care. 

 

Figure 1.4 Example of the quadcopter UAV application. 

1.2 Quadcopter Setup  

The quadcopter has four fixed-pitch propellers in a cross configuration (Idrissi 

et al., 2022; Gupte et al., 2012), the two pairs (1,3) and (2,4) of propellers turn in 

opposite directions to remove the need for a tail rotor as shown in Figure 1.5. 
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Figure 1.5 The quadcopter Setup. 

1.3 Motivation 

Recently, the quadcopter UAV is earning more focus from researchers, 

engineers, and hobby, due to the wide range of applications in which the quadcopter 

is involved, including military and civilian applications. The rapid progress in lithium 

batteries and electronics kits technologies reflected in the quadcopter UAV design 

and manufacturing with different small sizes such as mini and nano quadcopter UAV, 

as a result, the quadcopter UAV becomes highly demanded commercially. The 

quadcopter UAV is classified as a complex system in terms of nonlinearity, coupled 

dynamics, unmodeled dynamics, and under-actuated system, all these challenges 

make the quadcopter is one of the best choices for the researcher and engineers to 

design and develop robust control algorithms. Furthermore, the harsh environment 

surrounds the quadcopter during the operation, such as the system parameters 

uncertainties, and the wind guest disturbances are another challenge and must be 

considered in the control design stage. The design of an autonomous flight control 

system for small-scale quadcopter UAVs in the presence of uncertainty and wind 

guest disturbances is a challenging task due to its high nonlinearity in the dynamical 

model, underactuated property, and external wind gest disturbances (S Islam et al., 

2015). Therefore, this work is motivated by the control problem design for the 

quadcopter UAV in the presence of parameter uncertainties, unmodeled dynamics, 

and external wind gest disturbances. 
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Numerous research studies have investigated the quadcopter UAV control 

design, and the attempts are reported as follows. Firstly, linear control designs for the 

quadcopter; in this approach, the quadcopter UAV nonlinear dynamics equations are 

linearized with some assumptions around the equilibrium points and conditions, then 

the proposed linear control algorithm can be applied (Mokhtari et al., 2006; Grau et 

al., 2018; Bouaiss et al., 2020; Wu and Liu, 2018). The main drawback of this 

approach is that the designed control system will become unstable when the 

quadcopter model deviates from these selected equilibrium points which may be 

accrued due to either parameter uncertainty or external disturbances. While the other 

approach is to design the proposed control algorithm for the quadcopter UAV model 

in the form of the nonlinear dynamic equations (Walid et al., 2018; Idrissi and Annaz, 

2020), concerning parameter uncertainty and the external disturbances (Mofid and 

Mobayen, 2018a; Xu et al., 2017; Liao et al., 2018). Furthermore, the nonlinear 

dynamic equations of the quadcopter contain DC motors dynamics, aerodynamics, 

gyro, and unmodeled dynamics (Patel et al., 2017; Zuo, 2013; Ryll et al., 2015; Bo et 

al., 2016). In addition to the model parameters uncertainty and external wind-gust 

disturbances (Fernández et al., 2017; Huang et al., 2019). All these challenges must 

be taken into consideration in the control design stage, and the performance and 

robustness of the proposed control strategy are evaluated and verified against these 

prior mentioned challenges. 

The SMC control technique can be classified as one of the nonlinear control 

strategies that has deserved much focus from the researchers. The attractive advantage 

of selecting the SMC-based control design method compares to the other control 

techniques lies in its ability to overcome the system parameter uncertainty, external 

disturbance, and simplicity in the design and implementation. However, the main 

drawback of the SMC control is the chattering phenomena that occur due to the 

unknown or unmodeled system dynamic and the external disturbances. Since the 

mathematical dynamics model does not represent the exact physical system as in 

reality. Therefore, the presence of unmodeled dynamics exists; as a result, the 

chattering is occurring depends on the obtained mathematical dynamic model and 

how it is accurate and close to the physical system. Therefore, the motivation of this 

work is to enhance the performance of the SMC control algorithm in terms of 
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chattering reduction and robust trajectory tracking considering the presence of 

parameter uncertainties and wind-gust external disturbance.  

As per the reported works in the literature [17], where the adaptive SMC has 

been developed to control the quadcopter attitude and altitude in which the switching 

gain is constant and selected manually to overcome the changes in the parameters 

uncertainties, and external disturbance influences. Thus, a robust trajectory tracking 

may achieve; but the designed adaptive SMC does not consider the chattering 

attenuation, especially when the parameters uncertainties rabidly change. An adaptive 

SMC control algorithm is designed in such way to combine adaptive law with the 

SMC term to handle the parametric uncertainties associated with, mass, inertia, and 

aerodynamic force (Shafiqul Islam et al., 2015). However, the proposed work did not 

study and investigate the impact of the unwanted chattering. While work reported in 

(Cibiraj and Varatharajan, 2017) is proposed based on adaptive neural gain 

scheduling SMC control to handle the unwanted chattering problem, nonetheless the 

designed adaptive switching gain is kept with limitation that governed by the selected 

membership function and rule which may handle the paramedic uncertainties and 

external disturbances within the restricted bounds. 

An adaptive control law has been proposed in (Baek et al., 2016) whereas a 

fast adaptation in the switching gain has been achieved and chattering attenuation 

have been attained. The adaptive SMC control law used an adaptive formula to 

calculate the switching gain adaptively against the changes in the parameter 

uncertainties to keep robust trajectory tracking meanwhile attenuating the unwanted 

chattering. However, the behaviour of the generated adaptive switching gain can be 

furtherly enhanced to better performance. 

Therefore, motivated by the feasibility of applying adaptive SMC-based 

control to the quadcopter nonlinear system to achieve robust trajectory tracking and 

handling the unwanted chattering, a hybrid adaptive SMC control scheme has been 

proposed in this study. 
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1.4 Problem Statement 

As well known, the uncertainties occur in the quadcopter UAV dynamics. 

Furthermore, the quadcopter UAV is very susceptible to external disturbances. 

Therefore, all these influences may result in a critical deviation of the predefined 

quadcopter UAV trajectory tracking. The system uncertainties generated by the 

parameter variations and the external disturbances are commonly unknown.  

Therefore, a high robust control design is required for quadcopter UAV to overcome 

these challenges, the parameters uncertainties, and external disturbances.  

The conventional SMC control is not recommended to be implemented in 

some applications due to the chattering phenomenon, which may lead to serious 

problems, for instance, a vibration in the quadcopter UAV mechanical parts and 

heating in electronics kits which results in fast battery consumption. The chattering 

phenomena associated with SMC is remaining as an open problem in the field of 

SMC, and many research concepts can be implemented. 

1.5 Research Gap 

Based on the literature concerned with the adaptive SMC-based control design 

approaches for the nonlinear quadcopter UAV systems, the research gap can be 

summarized as follows: 

 Essentially, the SMC control law consists of two terms, the equivalent 

control, and the switching control terms, and the switching control is 

a multiplication of the switching gain and the switching function. To 

the best of the author’s knowledge, several simulation-based works 

related to the adaptive SMC-based design for the attitude of the 

quadcopter system are reported in the literature in which the adaptive 

design approach performed to develop the equivalent control term 

and/or the switching gain. However, for better performance for 

achieving the robust trajectory tracking and attenuating the unwanted 
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chattering, simultaneously, against the parameter uncertainties and 

wind-gust disturbance, further improvement on the adaptive SMC-

based control design can be accomplished to enhance the development 

of the adaptation switching gain and approximating the switching 

function by hyperbolic tangent function which significantly contribute 

on the chattering attenuation. 

  Furthermore, the design of the outer loop controller to control the 

position of the quadcopter is significant where the outer loop controller supplies the 

inner loop controller with the generated desired attitude. Therefore, an interval type-

2 fuzzy PID controller can be designed as an outer loop controller, which is adaptively 

tuned to adapt to the variations in the parameter uncertainties, wind-gust disturbance, 

and arbitrary desired position as well, meanwhile generating an accurate desired 

attitude to be supplied to the inner loop improved adaptive SMC controller for an 

arbitrary desired attitude. Consequently, the overall proposed control scheme is a 

combination of an improved adaptive SMC control to control the attitude and an 

interval type-2 fuzzy PID control to control the position which is called hybrid 

adaptive SMC control for the quadcopter UAV. 

1.6 Research Objectives 

The objectives of the research are: 

i. To design a hybrid adaptive SMC control scheme for the quadcopter system 

considering the parameter uncertainties and wind-gust disturbance. 

ii. To improve the performance of the developed hybrid adaptive SMC control 

scheme for providing robust trajectory tracking and attenuate the unwanted 

chattering influences. 

iii. To implement the developed proposed hybrid adaptive SMC control scheme 

to the quadcopter model by simulation using MATLAB/SIMULINK platform 

and investigate the performance of the proposed control scheme considering 
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different operating scenarios with or without parameter uncertainty and wind-

gust disturbance.  

 

1.7 Research Scope and Limitations 

The scopes of work limitations for this research are outlined as follows: 

i. The work will cover the motion of the nonlinear quadcopter systems with the 

coupled dynamics in 6-DOFs. 

ii. The model of the quadcopter will be built and presented in Matlab/Simulink 

platform. 

iii. The proposed controller will be developed based on the adaptive sliding mode 

control technique. 

iv. The performance of the proposed control scheme will be tested and verified 

by the simulation. 

v. The performance of the proposed control scheme will be evaluated 

considering three different flying tests in two different scenarios for each: the 

nominal and uncertain parameters. 

vi. The wind-gust disturbance model is considered to be based on Dryden Wind-

Gust model (Wang, 2009), and has been assumed to act on x, y, and z 

directions to represent the effects of the outdoor environment. 

vii. The physical parameters of the quadcopter system are taken from 

(Koesdwiady, 2013). 

viii. The quadcopter structure is a rigid body (Grau et al., 2018). 

ix. The quadcopter frame is symmetric. 

x. The center of mass of the quadcopter and B-frame origin are identical. 

xi. The lift and the drag forces are proportional to the square of the rotor speed. 
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1.8 Thesis Organization 

The thesis consists of six chapters which are organized into the following 

pattern. 

CHAPTER 1 is dedicated to the introduction and presents the problem 

background of the quadcopter system, the quadcopter setup, motivation, problem 

statement, research objectives, the scope of work, and thesis organization. 

CHAPTER 2 reports some of the literature review on the quadcopter system 

modeling and recent control techniques implemented to quadcopter systems and 

identifying the research gap. 

CHAPTER 3 is mainly devoted for the research methodology and quadcopter 

modeling where the Newton-Euler method has been used to extract the quadcopter 

dynamic equations. 

CHAPTER 4 is dedicated for the proposed control scheme development of the 

quadcopter system. Where the improved adaptive SMC has been developed to control 

the quadcopter attitude, and the interval type-2 FPID has been developed to control 

the quadcopter position. Therefore, the overall developed controller called hybrid 

adaptive SMC control system. 

CHAPTER 5 shows various simulation flying tests of the proposed control 

scheme implemented to the quadcopter system. Including several simulation 

scenarios, with and without parameter uncertainty and wind-gust disturbance. 

CHAPTER 6 presents the conclusion of the research work. In addition to some 

possible recommendations for future works. 
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