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ABSTRACT 

Rare-earth ions (REIs)-doped oxide glasses and glass-ceramics (GCs) became 
promising for various photonic applications. However, the inherent small emission 
cross-section of the REIs-doped systems for practical applications need substantial 
enhancement. Despite some studies on holmium ion (Ho3+) luminescence from 
different hosts, the radiative properties of Ho3+ in zinc-sulfo-boro-phosphate GCs for 
the miniaturized and inexpensive lasers development remains deficient. In addition, 
the lasing potency of Ho3+-doped phosphate-based GC nanocomposites (GCNCs) with 
silver nanoparticles (Ag NPs) sensitization has not widely been explored. Thus, the 
structural, microstructural, impedance, optical and radiative properties of some Ag 
NPs and Ho3+ co-doped zinc-sulfo-boro-phosphate GCNCs were evaluated. Three 
series of samples with the composition of (40–x)P2O5–30B2O3–30ZnSO4–xHo2O3, 
where x = 0.0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1.0 mol%; (39.5–y)P2O5–30B2O3–30ZnSO4–
0.5Ho2O3–yAg nanopowder, where y = 0.6, 0.7, 0.8 and 0.9 mol%; and (39.5–z)P2O5–
30B2O3–30ZnSO4–0.5Ho2O3–zAgCl, where z = 0.6, 0.7, 0.8 and 0.9 mol% were 
prepared using melt-quenching method. Structural characteristics of the samples were 
determined using X-ray diffraction (XRD), Fourier transform infrared (FTIR), Raman, 
energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and density 
measurements. Microstructures of the samples were analyzed using high-resolution 
transmission electron microscope (HRTEM) and impedance spectroscopy (IS). 
Optical properties of the samples were measured using ultraviolet-visible-near infrared 
(UV-Vis-NIR) and photoluminescence (PL) spectroscopy. The XRD analyses of the 
as-quenched samples verified their GC nature. The observed increase and decrease in 
the samples density was attributed to the formation of more bridging oxygen (BO) and 
non-bridging oxygen (NBO), respectively. The density results of these GCs and 
GCNCs were supported by the FTIR, Raman and XPS spectral data analyses. The 
HRTEM images reconfirmed the GC nature of the samples and the existence of the Ag 
NPs within the network structure. The optical energy band gap, refractive index and 
Urbach energy were calculated from the UV absorption spectra to get the information 
about the local structural surroundings. The GC doped with 0.5 mol% of Ho2O3 
exhibited the highest intensity of the red and green PL emissions. Furthermore, the 
GCNC doped with 0.8 mol% of Ag NPs (mean diameter of 20 nm) revealed the 
optimum PL intensity enhancement and strongest LSPR absorption band. The obtained 
larger values of the fluorescence branching ratio and emission cross-section compared 
to the existing state-of-the-art reports indicated the benefits of the studied samples for 
the construction of green and red wavelength lasers. A correlation between structural 
and optical properties was also established for the first time. The studied Ag NPs and 
Ho3+ co-doped phosphate-based GCNCs were asserted to be potential for the efficient 
photonic devices advancement. It is concluded that via the systematic composition 
optimization, these new types of GCNCs with customized lasing potency can be 
achieved. 
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ABSTRAK 

Kaca oksida dan kaca seramik (GC) terdop ion nadir bumi (REI) menjadi sangat 
berpotensi untuk pelbagai aplikasi fotonik. Walau bagaimanapun, keratan rentas 
pancaran yang kecil dalam sistem terdop-REI untuk kegunaan praktikal memerlukan 
peningkatan yang besar. Walaupun terdapat beberapa kajian mengenai pendarcahaya 
ion holmium (Ho3+) daripada hos yang berbeza, kajian terhadap sifat pancaran Ho3+ 
dalam sistem GC zink-sulfo-boro-fosfat untuk pembangunan laser bersaiz mini dan 
murah masih kurang. Tambahan pula, keupayaan untuk laser komposit nano GC 
berasaskan fosfat terdop Ho3+ dengan pemekaan zarah nano perak (Ag NP) masih 
belum diterokai sepenuhnya. Oleh itu, struktur, struktur mikro, impedans, sifat-sifat 
optik dan pancaran beberapa GCNC zink-sulfo-boro-fosfat ko-dop Ag NP dan Ho3+ 
telah dinilai. Tiga siri sampel dengan komposisi kimia (40–x)P2O5 –30B2O3–
30ZnSO4–xHo2O3 di mana x = 0.0, 0.2, 0.4, 0.5, 0.6, 0.8 dan 1.0 mol%, (39.5–y)P2O5–
30B2O3–30ZnSO4–0.5Ho2O3–yAg serbuk nano di mana y = 0.6, 0.7, 0.8 dan 0.9 mol%, 
dan (39.5–z)P2O5–30B2O3–30ZnSO4–0.5Ho2O3–zAgCl di mana z = 0.6, 0.7, 0.8 and 
0.9 mol% telah disediakan dengan menggunakan kaedah lindap-kejut leburan. Ciri-
ciri struktur sampel telah ditentukan menggunakan pembelauan sinar-X (XRD), 
spektroskopi inframerah transformasi Fourier (FTIR), Raman, sinar-X sebaran tenaga 
(EDX), fotoelektron sinar-X (XPS) dan pengukuran ketumpatan. Struktur mikro 
sampel telah dianalisa dengan menggunakan mikroskop elektron penghantaran 
resolusi tinggi (HRTEM) dan spektroskopi impedans (IS). Sifat-sifat optik sampel 
telah diukur dengan menggunakan spektroskopi ultra ungu-cahaya nampak-
inframerah hampir (UV-Vis-NIR) dan kefotopendarcahayaan (PL). Analisis XRD 
terhadap sampel lindap-kejut yang terhasil mengesahkan sifat semula jadi GC. 
Peningkatan dan penurunan ketumpatan sampel yang dicerap masing-masing 
dikaitkan kepada pembentukan lebih banyak oksigen berangkai (BO) dan oksigen tak 
berangkai (NBO). Keputusan ketumpatan GC dan GCNC ini disokong oleh hasil 
analisis data spektra FTIR, Raman dan XPS. Imej HRTEM mengesahkan sifat 
semulajadi GC sampel dan kewujudan Ag NP dalam struktur rangkaian. Jurang jalur 
tenaga optik, indeks biasan dan tenaga Urbach dikira dari spektra penyerapan UV 
untuk mendapatkan maklumat mengenai persekitaran struktur setempat. Sampel GC 
didop dengan 0.5 mol% Ho2O3 menunjukkan keamatan pancaran PL merah dan hijau 
yang tertinggi. Seterusnya, GCNC didop dengan 0.8 mol% Ag NP dengan diameter 
min 20 nm, menunjukkan peningkatan keamatan PL yang optimum dan jalur 
penyerapan LSPR yang kuat. Nilai nisbah cabang pendarfluor dan keratan rentas 
pancaran yang diperolehi adalah lebih tinggi berbanding dengan nilai terkini yang 
telah dilaporkan, menunjukkan keberkesanan sampel yang dikaji untuk pembangunan 
laser panjang gelombang hijau dan merah. Korelasi antara sifat-sifat struktur dan optik 
juga telah diperolehi untuk pertama kalinya dalam kajian ini. GCNC berasaskan fosfat 
ko-dop Ag NP dan Ho3+ yang dikaji adalah sangat berpotensi untuk kemajuan peranti 
fotonik yang cekap. Adalah disimpulkan bahawa melalui keadah pengoptimuman 
komposisi yang sistematik, satu jenis GCNC yang baharu, sesuai dengan keupayaan 
laser yang dikehendaki boleh dicapai. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

The main feature that distinguishes rare-earth elements from other elements is 

an incompletely filled 4f subshell that is screened by the completely filled outer 5s and 

5p subshells [1]. Thus, when they are incorporated into any host material, rare-earth 

ions (REIs) gives rise to major absorption and emission actions responsible for a wide 

range of applications including lasers, light emitting diodes (LEDs), and amplifiers [2–

4]. Absorption and emission cross-section of REIs are critical parameters deciding the 

REI’s lasing potency. Therefore, the efforts have continually been made to improve 

the stimulated emission cross-section of REIs via the selection of appropriate host 

materials, suitable modifiers, and sensitizers (e.g., metal nanoparticles and 

nanostructures) [5–7]. 

Among the ternary and quaternary oxide hosts, the phosphate-based glass and 

glass-ceramic (GC) systems are potential because of their high thermal expansion 

coefficient, low phonon energy, large intake of REIs and low glass transition 

temperature [7–10]. Phosphate-based GCs have been acknowledged for better REIs 

luminescence features than glasses [11,12]. However, phosphate-based systems tend 

to absorb moisture, leading to the inclusion of OH− impurities in the network structure 

which induce the undesirable non-radiative mechanisms in the system [13]. To 

overcome this limitation, the incorporating of some network modifiers was proved to 

be prospective to improve the chemical durability of phosphate glasses. 

 The combination of the phosphate and borate units enhance both the glass 

forming ability and the chemical durability of phosphate glasses by cross-linking 

phosphate chains [14]. The chemical durability and structural stability of phosphate 

glass can further be improved by adding Zn2+ ions in the network structures [15,16]. It 
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has also been argued that the interactions between the phosphate and sulfate ions can 

enhance the chemical durability and create a good environment for the intake of large 

number of REIs, allowing the fabrication of the miniaturized lasers with the improved 

features [17–19]. It is worth mentioning that the zinc-sulfo-boro-phosphate 

composition is a new promising host for the REIs doping. 

The holmium ions (Ho3+) among various REIs have been used in diverse 

technologies including lasers [20]. They exhibit unique emissions in the ultraviolet 

(UV), visible (Vis), and infrared (IR) regions, however, the intensities of these 

emissions still need to be improved for glass lasers and nanophotonic devices [6]. To 

evaluate the Ho3+ radiative properties, calculations based on Judd-Ofelt theory have 

been widely used [2,3,5,7,21,22] over last few decades. Through these calculations, 

some essential parameters can be estimated including the stimulated emission cross-

section (𝜎 ). However, Ho3+ alike other REIs has small emission cross-section in 

amorphous hosts, causing high laser threshold and low gain [8]. Therefore, more 

studies to improve the Ho3+ emission cross-section are required. In this regard, some 

strategies have been used in order to enhanced the 𝜎 of  Ho3+ such as the rightly 

selection of the host material, the co-doped with another REIs [5], and insertion of 

metallic nanoparticles (NPs) [7]. However, the exploration of the lasing potency of 

Ho3+ inside Ag NPs-sensitized phosphate-based GCNCs remain deficient. 

Recently, a combination of the metal NPs with REIs in various host matrices 

has been proven to be advantageous for achieving the significant enhancement in the 

emission cross-section of the REIs. The Ag NPs being the common plasmonic 

metamaterial with abundance, strong biocompatibility, high chemical stability and 

resistant against oxidation has been used as the sensitizing agent in many systems to 

amplify the REIs lasing action [7,23–25]. The localized surface plasmon resonance 

(LSPR) effect of metal NPs has been demonstrated to be responsible for such 

significant enhancement of the optical properties [26,27]. Ag NPs size dependent 

improvement of LSPR field plays a vital role in enhancing the REIs 

photoluminescence (PL) emission intensity. The size can be controlled by means of 

altering the temperature and duration of thermal processing. In regard to this fact, 

controlling and exploring all the stages of Ag NPs formation including the starting 
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stage is required. Furthermore, the relative permittivity between the host material and 

the surface of the NP (dielectric-metal interface) play a significant role to achieve an 

enhancement in the PL intensity through the LSPR mediation. 

The impedance spectroscopy has recently been proven to be a powerful tool to 

evaluate the complex permittivity and the microstructures [28]. This in turn provides 

a better understanding of the appropriate selection of the host matrix to improve the 

spectral attributes of REIs. In addition, most of the reported literatures [17,28,29] on 

the structural, and impedance correlation in phosphate-based systems free of REIs. 

However, by ascertaining such relationship in the REIs doped glasses or GCs an in-

depth understanding of the microscopic mechanisms can be developed.  

Based on this background, this thesis took an attempt to evaluate the structural, 

microstructural, impedance and optical characteristics of the Ag NPs (varied size) and 

Ho3+ co-doped zinc-sulfo-boro-phosphate GCs nanocomposites (GCNCs). The main 

goal is to determine the lasing potency of Ho3+ in the newly composed system.  

1.2 Problem Statement 

The more the change between the local surroundings of all Ho3+ distributed in 

the phosphate-based system, the broader the spectral peaks. This in turn lowers the 

stimulated emission cross-section that needs to be enhanced for high optical gain laser 

applications. The optimum composition with efficient lasing action is required and 

remains an open problem. Creating some crystalline domains within the glassy matrix 

is believed to attain strong optical response. Interestingly, the mechanism of Ag NPs 

(varying size and contents) that enables LSPR assisted lasing potency in phosphate-

based nanocomposites is critical to obtain the optimum composition. The composition 

optimization is pre-requisite to determine the modified overall properties. Therefore, 

the optimization of Ho3+ as well as Ag NPs concentration inside the phosphate-based 

nanocomposites need to be systematically carried out.  
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The lasing potency of Ho3+ doped various host materials are primarily 

determined by their surrounding structures and microstructures. Thus, detail analyses 

are required in order to understand these basic quantities. Over the years, although 

diverse studies have been carried out on Ho3+ -activated host matrices, seldom studies 

have focused on its structural, microstructural, impedance and optical properties in 

zinc-sulfo-boro-phosphate nanocomposite for the development of Ho3+ based 

inexpensive, visible and eye-safe laser. 

It is known that the Judd-Ofelt (J-O) analyses are important tools to understand 

the host material and the structural properties surrounding the REI as well as to 

determine the lasing potency via some radiative parameters. Stimulated emission cross 

section is the most critical parameter to decide the feasibility of achieving efficient 

lasing action. However, the J-O intensity and radiative parameters for Ho3+ -activated 

phosphate-based nanocomposite with Ag NPs sensitization has not yet been explored 

in-depth.   

Interestingly, Ho3+ has several close-lying excited energy levels over the 

visible spectral region responsible for intense visible spectral transitions. However, the 

non-radiative processes associated with various relaxational mechanisms of these 

excited states lead to energy loss often limit practical applications of holmium. To 

surmount such shortcomings, based on the fact that is the electrical field of the host 

environment plays a role in the 4f energy level splitting to several sublevels, a better 

understanding on the appropriate selection of the host matrix is necessary. To achieve 

this perspective, a basic knowledge on the structure and microstructure of the chosen 

host material is mandatory. In this spirit, the impedance analysis is often recommended 

to provide useful information about the network microstructure, alongside with some 

impedance properties. This in turn, can be used to elucidate the relaxation mechanisms 

concerning the carriers transport properties in the materials under study. Therefore, 

detail studies on the structural, microstructural, impedance and optical properties of 

Ho3+ -activated phosphate-based nanocomposites with and without the presence of Ag 

NPs need to be determined so that a possible correlation amid the abovementioned 

traits can be established. 
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1.3 Research Objectives 

Based on the above problem statement, the following objectives are set. 

(a) To optimize the composition of Ho3+ -activated zinc-sulfo-boro-phosphate GC 

system without and with Ag NPs sensitization. 

(b) To determine the influence of Ho3+ content on the structural, microstructural 

and optical properties of the proposed GCs and GCNCs. 

(c) To evaluate the lasing potency of the optimum GCNC (sample with highest PL 

intensity from each series) via Judd-Ofelt intensity and radiative parameters 

for supporting the experimental optical data. 

(d) To correlate the structural, microstructural, impedance and optical properties 

of the proposed GCs and GCNCs. 

 

1.4 Scope of Research 

To achieve the set objectives, the following scopes are included. 

(a) Selection of appropriate amount of chemicals for every 20 gram batch in three 

series of samples. The first GCs series is composed with varying Ho2O3 content 

and without Ag NPs embedment, while the second and third GCNCs series are 

formulated with changing Ag NPs concentration (Ag NPs of different mean 

size) at fixed Ho3+ content. 

 (40–x) P2O5 – 30 B2O3 – 30 ZnSO4 – x Ho2O3, (x = 0.0, 0.2, 0.4, 0.5, 

0.6, 0.8 and 1.0 mol%). 

 (40–x–y) P2O5 – 30 B2O3 – 30 ZnSO4 – x Ho2O3 – y Ag nanopowder, 

(x = the best mol% selected from (1) with highest PL intensity in visible 

spectral region. y = 0.6, 0.7, 0.8 and 0.9 mol%). 
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 (40–x–z) P2O5 – 30 B2O3 – 30 ZnSO4 – x Ho2O3 – z AgCl, (z = 0.6, 0.7, 

0.8 and 0.9 mol%). 

(b) Preparation of the mentioned three series of samples using melt quenching 

method. 

(c) Determination of sample density by Archimedes method. 

(d) Characterization of the structural features using XRD measurement, FTIR, 

Raman, XPS, EDX spectroscopies. 

(e) Determination of the microstructure characteristics by: 

 HRTEM that further identifies the existence (and morphology) of the 

nanoparticles. 

 IS that provides the supportive impedance data. 

(f) Characterization of optical (absorption and emission) features using UV-Vis-

NIR and PL spectroscopies. 

(g) Assessment of the lasing potency of the synthesized optimum nanocomposites 

containing both Ho3+ and Ag NPs using J-O analysis (in terms of intensity and 

radiative parameters). 

 

1.5 Significance of Research  

(a) New nanocomposites with optimum composition have been produced as an 

alternative solid-state lasing media with relatively strong lasing potency that 

may be useful for the devolvement of various nanophotonic devices. 

 The obtained large values of the branching ratio and respective stimulated 

emission cross-section (73.88 % and 46.68×10−21 cm2 for the green; and 

83.97 % and 41.12×10−21 cm2 for the red) were greater than most of the 
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state–of-the-art reports indicated the effectiveness of the proposed samples 

for the construction of green and red lasers. 

 The attained strong lasing potency of the IR transition (branching ratio: 

71.40%; stimulated emission cross-section: 36.95×10−21 cm2) demanded 

for many photonic applications was greater than the existing one 

(comparative evaluations were given hereinafter in page 120). 

(b) New knowledge has been generated on the relationship among structural, 

impedance and optical properties in the studied nanocomposites. The optical 

properties can be modified by developing such correlations. For instance, the 

polarons that were responsible for the conduction mechanism might play a 

significant role in the ET mechanism. 

(c) The mechanism of the Ag NPs localized surface plasmon resonance and its 

influence on the enhancement of the radiative properties of Ho3+ in the titled 

system has been better understood where the impact of embedding Ag NPs 

with two different sizes on the Ho3+ transitions (while maintaining the local 

structure relatively fixed) was explored for the first time. 

 

1.6 Thesis Outline 

The thesis is organized as follows: Chapter 1 presents the background of the 

study, statement of the problems, research objectives, scope of the research and its 

significance. Chapter 2 provides an overview of the previous related literature. Chapter 

3 displays the research methodology. Chapter 4 represents and discusses the research 

results. Finally, chapter 5 summarizes the findings with respect to the set research 

objectives, as well as some future research suggestions. 
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