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ABSTRACT 

Badminton games are based on footwork techniques. Among badminton 

players, 92% of leg injuries have been recorded. In preventing the injuries, insoles are 

widely used in sports where insole’s wall height, heel cup, arch-support height, 

thickness, and material properties will influence the stress, displacement, and rotation 

angle value of foot. Furthermore, the insoles are used to treat misalignment of foot and 

diabetes ulcers. However, there are still lacking in the analysis on insole during single-

leg landing. This study was conducted with the main aims to establish a static analysis 

on three different insoles of badminton athletes during single-leg landing and to 

modify the material of pre-fabricated insoles for better performance in terms of shock 

absorption during single-leg landing. Three-dimensional (3D) finite element models 

of ankle-foot complex consisted of skin, talus, calcaneus, navicular, three cuneiform, 

cuboid, five metatarsals, and five phalanges were segmented from computed 

tomography (CT) data. The midsole and outsole were designed using 3-Matic software 

and three pre-fabricated insoles; insole 1 (Yonex Active Pro Truactive), insole 2 (Li-

Ning L6200LA) and insole 3 (Victor VT-XD 8) were 3D scanned. In completing the 

ankle joint, a total of 21 ligaments were modelled. The single-leg landing was 

simulated with 2.95° of ankle plantar-flexion. On the superior surface of the skin, the 

load of 2.57 times bodyweight was applied, and the inferior surface of the outsole was 

fixed. The results showed the insole 3 is the most optimum in portraying the lowest 

peak stress on the metatarsals (3.807 MPa). Besides, the insole 3 recorded the least 

displacement value (10.81 mm) and acceptable bone rotation angle (3.29°). The insole 

3 with ethylene-vinyl acetate medium density (EVA MD) material perform better 

compared to polyvinyl chloride (PVC) and ethylene-vinyl acetate low density (EVA 

LD) the lowest metatarsals’ peak stress (3.554 MPa), displacement (13.08 mm), and 

bones rotation angle (2.93°) were recorded. Further design of the custom insole based 

on insole 3 and EVA MD material produced the lowest peak metatarsal stress (3.210 

MPa) and displacement (8.99 mm), and bones rotation angle of 1.80°. This study 

contributes to the better understanding on biomechanics during single-leg landing 

hence lead to better insole development.  
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ABSTRAK 

Permainan badminton adalah berdasarkan teknik gerak kaki. Dalam kalangan 

pemain badminton, 92% kecederaan kaki telah direkodkan. Bagi mencegah 

kecederaan, lapik dalam (LD) digunakan secara meluas dalam bidang sukan di mana 

ketinggian dinding LD, lengkungan tumit, ketinggian sokongan lengkung, ketebalan 

dan sifat bahan akan mempengaruhi tekanan, anjakan dan nilai sudut putaran kaki. 

Tambahan pula, LD digunakan untuk merawat salah jajaran kaki dan ulser kencing 

manis. Namun begitu, masih terdapat kekurangan dalam analisis ke atas LD semasa 

pendaratan satu kaki (PSK). Kajian ini dilakukan dengan tujuan utama untuk 

mewujudkan analisis statik pada tiga LD berbeza atlet badminton semasa PSK dan 

mengubah suai bahan LD pasang siap bagi menghasilkan prestasi yang lebih baik 

dalam menyerap hentakan semasa PSK. Model elemen terhingga tiga dimensi (3D) 

bagi kompleks pergelangan kaki yang terdiri daripada kulit, talus, tumit, navikular, 

tiga kuneiform, kuboid, lima metatarsal dan lima jari telah disegmen daripada data 

Tomografi Komputeran (CT). Lapik tengah dan luar direka menggunakan perisian 3-

Matic dan tiga LD pasang siap; LD 1 (Yonex Active Pro Truactive), LD 2 (Li-Ning 

L6200LA) dan LD 3 (Victor VT-XD 8) telah diimbas secara 3D. Dalam melengkapkan 

sendi buku lali, sejumlah 21 ligamen telah dimodelkan. PSK disimulasikan dengan 

kaki dibengkokkan secara fleksi-plantar sebanyak 2.95°. Pada permukaan atas kulit, 

beban sebanyak 2.57 kali berat badan telah dikenakan, dan permukaan bawah lapik 

luar telah ditahan. Keputusan menunjukkan LD 3 adalah yang paling optimum dalam 

menunjukkan tekanan puncak terendah pada metatarsal (3.807 MPa). Disamping itu, 

LD 3 menunjukkan nilai anjakan paling sedikit (10.81 mm) dan sudut putaran tulang 

yang boleh diterima (3.29°). LD 3 dengan bahan EVA MD mempunyai prestasi yang 

lebih baik berbanding PVC dan EVA LD di mana tekanan puncak metatarsal (3.554 

MPa), anjakan (13.08 mm), dan sudut putaran (2.93°) telah direkodkan. Rekaan LD 

seterusnya berasaskan reka bentuk LD 3 dan bahan EVA MD mengahsilkan tekanan 

metatarsal puncak (3.210 MPa),anjakan (8.99 mm) terendah, dan sudut putaran tulang 

(1.80°) terendah. Kajian ini menyumbang kepada pemahaman yang lebih baik dalam 

biomekanik semasa PSK justeru mengarah kepada rekaan LD yang lebih baik.  

  



vi 

 

TABLE OF CONTENTS 

 TITLE PAGE 

 

DECLARATION i 

DEDICATION ii 

ACKNOWLEDGEMENT iii 

ABSTRACT iv 

ABSTRAK iv 

TABLE OF CONTENTS vi 

LIST OF TABLES ix 

LIST OF FIGURES x 

LIST OF ABBREVIATIONS xiv 

LIST OF SYMBOLS xv 

LIST OF APPENDICES xvi 

CHAPTER 1 INTRODUCTION 1 

1.1 Background of Study 1 

1.2 Problem Statement 2 

1.3 Objectives 4 

1.4 Scope of the Study 4 

1.5 Significance of the Study 4 

CHAPTER 2 LITERATURE REVIEW 7 

2.0 Chapter Overview 7 

2.1 Overview of Foot Structure 7 

2.1.1 Anatomy of Foot 7 

2.1.2 Foot Ligaments 8 

2.1.3 Types of Foot Arch 10 

2.2 Type of Insole 10 

2.2.1 General-Purpose Insole 10 

2.2.2 Sports Insole 12 



vii 

2.2.3 Therapeutic Insole 14 

2.3 Sports-Related Injuries 16 

2.3.1 Ligament Injuries 17 

2.3.2 Metatarsal Injuries 18 

2.4 Badminton 21 

2.4.1 Badminton footwear 27 

2.5 Landing Mechanics 29 

2.6 Finite Element Analysis 31 

2.6.1 Principal Stress 34 

2.6.2 Mises Yield Criterion 35 

2.6.3 Mesh Size 35 

2.6.4 Previous FE Analysis Study 37 

2.7 Summary 41 

CHAPTER 3 METHODOLOGY 43 

3.0 Chapter Overview 43 

3.1 Flowchart 43 

3.2 Model Development 45 

3.2.1 Bone and Skin 45 

3.2.2 Insole Designs 47 

3.2.3 Meshing 52 

3.2.4 Convergence Studies 52 

3.2.4.1 Bone Convergence Studies 52 

3.2.4.2 Skin Convergence Studies 57 

3.2.4.3 Insole Convergence Studies 62 

3.3 Assigning Material Properties 67 

3.4 Verification of FE Models 69 

3.5 FE Analysis of Three Different Design Insoles 71 

3.6 Insole Modification 73 

3.6.1 Effect of Different Insole Materials 73 

3.6.2 Effect of Custom Insole 73 

3.7 Chapter Summary 75 



viii 

 

CHAPTER 4 RESULTS & DISCUSSION 77 

4.0 Chapter Overview 77 

4.1 Effect of three insoles design 77 

4.1.1 Stress Distribution 77 

4.1.2 Displacement and Rotation Angle 80 

4.1.3 Discussion of The Stress Distribution, 

Displacement and Rotation Angle 83 

4.2 Insole Modification 85 

4.2.1 Effects of Different Insole Material 85 

4.2.1.1 Stress Distribution 85 

4.2.1.2 Displacement and Rotation Angle 87 

4.2.1.3 Discussion of The Stress 

Distribution, Displacement and 

Rotation Angle 91 

4.2.2 Effect of Custom Insole 93 

4.2.2.1 Stress Distribution 93 

4.2.2.2 Displacement and Rotation Angle 95 

4.2.2.3 Discussion of The Stress 

Distribution, Displacement and 

Rotation Angle 96 

4.3 Chapter Summary 98 

CHAPTER 5 CONCLUSION 101 

5.1 Conclusion 101 

5.2 Research Contribution 101 

5.3 Future Recommendation 102 

REFERENCES 105 

LIST OF PUBLICATIONS 119 
 

  



ix 

LIST OF TABLES 

TABLE NO. TITLE PAGE 

Table 2.1  Insoles Specifications [76]. 15 

Table 3.1  Details of five models of the bones for convergence study. 54 

Table 3.2  Percentage Difference of VMS with Different Mesh Sizes 55 

Table 3.3  Details of five models of the skin for convergence study. 59 

Table 3.4  Percentage Difference of VMS Values with Different Mesh 

Sizes 59 

Table 3.5  Details of five models of the insole for convergence study. 64 

Table 3.6  Percentage Difference of VMS with Different Mesh Sizes 64 

Table 3.7  Stiffness of ligaments. 68 

Table 3.8  Material properties of the insoles. 73 

Table 4.1  Peak Stress Values at Metatarsals 92 

Table 4.2  Percentage Difference of Peak Stress 93 

Table 4.3  Percentage Difference of Peak Stress 97 

 

  



x 

 

LIST OF FIGURES 

FIGURE NO. TITLE PAGE 

Figure 2.1  Foot Bones [51]. 8 

Figure 2.2  Lateral view of foot joints [55]. 9 

Figure 2.3  Medial view of foot joints [55]. 9 

Figure 2.4  Flat (a) and custom-moulded (b) insoles stress graph [65]. 11 

Figure 2.5  Components of footwear that was coupled with the foot. 

(Bottom) Coupled model of foot and footwear [67]. 13 

Figure 2.6  FE analysis Configuration with simplified metatarsals 

(green) [77]. 16 

Figure 2.7  (a) Grade I ankle sprain, (b) Grade II ankle sprain, (c) Grade 

III ankle sprain [83]. 17 

Figure 2.8  Dorsiflexion cast [85]. 18 

Figure 2.9  Shaft fracture of metatarsal [93]. 19 

Figure 2.10  Reduction method in treatment metatarsal fracture [93]. 20 

Figure 2.11  Pressure mapping during take-off [20] 22 

Figure 2.12  Pressure during touch-down [20] 22 

Figure 2.13  Detailed action diagram of manoeuvre conducted [3]. 23 

Figure 2.14 Contact area in cm2 unit of professional players(a) and 

amateur players(b) [3]. 24 

Figure 2.15  The sequence of single-leg landing after an overhead 

stroke: (A) a player takes an overhead stroke, (B and C) and 

lands with the body weight on the opposite side to racket-

hand leg [108]. 25 

Figure 2.16  (a) Right-forward lunge, (b) Left-forward lunge, (c) Right-

backward lunge and (d) Left-backward lunge. The open 

foot marks represent the foot placements of the right foot, 

whereas the solid foot marks represent the foot placements 

of the left foot. The numbers represent the step sequences 

[10] 26 

Figure 2.17  Alteration of the stiffness of shoes [23]. 27 



xi 

Figure 2.18  Badminton shoe conditions. (a) The original Li Ning 

badminton shoe model (b) Rounded heel shoe (c) Standard 

heel shoe (d) Flat heel shoe [121]. 28 

Figure 2.19  Peak pressure comparison between insole and barefoot 

[122]. 29 

Figure 2.20  Discretisation of 3D model [138]. 31 

Figure 2.21  Polynomial Approximation in One Dimension  [139] 32 

Figure 2.22  Pascal Triangle [139] 33 

Figure 2.23  Pascal Tetrahedron [139] 34 

Figure 2.24 VMS acting from all directions [143]. 36 

Figure 2.25  Refinement of mesh sizes [147]. 37 

Figure 2.26  FE models developed. (A) Skeleton + fascia. (B) Skeleton 

+ muscle/tendons. (C) Skeleton + soft tissue + ground [149]

 39 

Figure 2.27  The FE models constructed using magnetic resonance 

image data [150] 40 

Figure 2.28  VMS distribution on different lattice structures 41 

Figure 3.1  Flowchart of the study. 44 

Figure 3.2  The FE models of bones, skin, and ligaments 46 

Figure 3.3  The steps to reconstruct FE models of skin and bones. 48 

Figure 3.4  Three insoles that were chosen. From left; 1) Yonex 

TruActive, 2) LiNing L6200LA, 3) Victor VT-XD 8. 49 

Figure 3.5  Boundary condition of the FEA. 53 

Figure 3.6  Five FE models with different meshes sizes; (a) 4.5 mm 

(Pink), (b) 4.0mm (Red), (c) 3.5 mm (Green), (d) 3.0 mm 

(Purple), (e) 2.5 mm (Yellow). 54 

Figure 3.7  Location of five nodes at the skin for observation of VMS. 

There are also the example of different models with meshes 

sizes of 4.0 mm, 3.5 mm, and 3.0 mm. 55 

Figure 3.8  Nodal magnitude of VMS at selected nodes. 56 

Figure 3.9  Boundary condition of the FEA. 58 

Figure 3.10  Five meshes sizes of FE models; (a) 7 mm (Pink), (b) 6 mm 

(Red), (c) 5 mm (Green), (d) 4 mm (Purple), (e) 3 mm 

(Yellow). 58 



xii 

 

Figure 3.11  Location of five nodes at the skin for observation of VMS. 

There are also the example of different models with meshes 

sizes of 5 mm, 4 mm, and 3 mm. 60 

Figure 3.12  Nodal magnitude of VMS at selected nodes. 61 

Figure 3.13  Boundary condition of the FEA. 63 

Figure 3.14  Five meshes sizes of FE models; (a) 7 mm (Pink), (b) 6 mm 

(Red), (c) 5 mm (Green), (d) 4 mm (Purple), (e) 3 mm 

(Yellow). 63 

Figure 3.15  Location of five nodes at the skin for observation of VMS. 

There are also the example of different models with mesh 

sizes of 5 mm, 4 mm and 3 mm. 65 

Figure 3.16  Nodal magnitude of VMS at selected nodes. 66 

Figure 3.17  FE models of human foot bones with structure and location 

of ligaments. 67 

Figure 3.18  Fixed Displacement (Pink) and Load Direction (Red). 69 

Figure 3.19  Comparison of peak plantar pressure. 70 

Figure 3.20  Fixed Displacement (Pink) and Load Direction (Red). 72 

Figure 3.21  Custom-fit insole development stages. 74 

Figure 3.22  Prefabricated insole (Top) and custom insole (Bottom). 74 

Figure 4.1  VMS distribution of insole 1, 2 and 3. 78 

Figure 4.2  VMS distribution of (a) metatarsals and (b) calcaneus for 

insole 1, 2 and 3. 79 

Figure 4.3  Displacement contour of bones on insole 1, 2 and 3. 81 

Figure 4.4  Rotation angles of the bones for insole 1, 2 and 3. 82 

Figure 4.5  VMS distribution of insole with three materials; EVA LD, 

PVC, and EVA MD. 86 

Figure 4.6  VMS distribution of (a) metatarsals and (b) calcaneus for 

an insole with three materials; EVA LD, PVC, and EVA 

MD. 87 

Figure 4.7  Displacements contour of bones of the insole with three 

materials; EVA LD, PVC, and EVA MD. 89 

Figure 4.8  Rotation angles of the bones for an insole with three 

materials; EVA LD, PVC, and EVA MD. 90 

Figure 4.9  VMS distribution of two types of insoles; Prefabricated 

Insole and Custom Insole. 94 



xiii 

Figure 4.10  VMS distribution of (a) metatarsals and (b) calcaneus for 

both insoles; Prefabricated Insole and Custom Insole. 94 

Figure 4.11  Displacement contour of bones of two types of insoles; 

Prefabricated Insole and Custom Insole. 95 

Figure 4.12  Rotation angles of the bones for two types of insoles; 

Prefabricated Insole and Custom Insole. 96 

 

  



xiv 

 

LIST OF ABBREVIATIONS 

Three-Dimensional - 3D 

Computed Tomography - CT 

Finite Element - FE 

Two-Dimensional - 2D 

Left Front-Court Lunge Steps - LFLS 

Right Front-Court Lunge Steps - RFLS 

Rear-court Revolve to Jump - RRJ 

Range of Motion - ROM 

von Mises stress - VMS 

Digital Imaging and Communications in Medicine - DICOM 

Computer-Aided Design - CAD 

Polyvinyl Chloride - PVC 

EVA Low Density - EVA LD 

EVA Medium Density  EVA MD 

   

   

   

   

   

   

   

   

   

   

   

   

   

  



xv 

LIST OF SYMBOLS 

mm - Millimetre 

MPa - Megapascal 

kPa - Kilopascal 

F - Force 

k - Spring Constant 

x - Displacement 

𝜎 - Stress 

𝐸 - Young’s Modulus 

𝜀 - Strain 

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

  



xvi 

 

LIST OF APPENDICES 

APPENDIX TITLE PAGE 

Appendix A Contact table for contact modelling of FE models 118 

 

 

 

 



 

1 

CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

Badminton games require a player to make various movements because of 

rapid changes in direction that have been made [1, 2]. The badminton games also 

include a fundamental of arm movement which is forehand or overhead stroke. The 

strokes can be divided into three types of movements which are, drop, clear and smash, 

and net play [3, 4]. All these movements involved jumping and landing, which had put 

the lower limbs of players’ bodies under heavy loads [2, 5, 6]. These movements will 

be made within 40 m2 court [7]. The games are based on a basic technique called 

footwork [8, 9]. The correct footwork of badminton player enable them to minimize 

the workload hence can reduce the time to reach the shuttlecock [10]. There is 

fundamental and critical footwork that needs to be applied by a badminton player, 

which is right-forward, left-forward, right-backward, and left-backward [10].  

Footwear is one of the crucial accessories for athletes. Foot orthosis or insole 

is a device that allows the optimum functionality of a foot [11]. The insole is also a 

device that acts as a preventive and/or managing a wide range of lower limb injuries 

in sports [12, 13]. In the case of the development of calluses undersides head of second 

to the fourth metatarsals, insoles are expected to evenly distribute the pressure to 

reduce pain [14]. Insoles were also used for varus-type and valgus-type osteoarthritis 

treatment [15], where athletes or former athletes lower limb tend to bend towards 

medial or lateral from body midline. Development of wedge on the anterior and lateral 

or medial side of insoles provides better load distribution [16]. Bordelon et al. divided 

insole into three types of insoles; 1) Device to reduce cushion and impact [17], 2) 

Pressure-relieving device, 3) Device to correct the foot alignment [18]. Footwear 

consists of the upper part, insole, midsole, and outsole [19]. Insole is a part of the 
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footwear, which have direct contact with the foot and became the first medium acting 

on pressure distribution. 

There are previous studies that had been conducted which investigate on 

plantar pressure of badminton players during jumping in toe-off and touchdown phase 

[3, 20]. It was found that plantar pressure seems to be related to foot injuries [10, 21, 

22]. In conjunction with that, Zhao and Li suggested that footwear performance in 

terms of resistance needs to be improved at central and lateral sides, especially at the 

first metatarsal and forefoot area [3]. Fu reported toe-off phase during jumping 

recorded the highest plantar pressure at the first metatarsal area, which supported the 

suggestion of developing an outsole with suitable materials [20]. A study regarding 

the relationship between the stiffness of the shoe sole stiffness and the kinematics of 

lower limb during movements in badminton game reported that changes in the stiffness 

of the sole of the footwear might contribute to alteration in agilities of player, game 

strategies, and also kinematics of lower limb joints [23]. 

1.2 Problem Statement 

It was recorded about 92% of injuries that occurred in badminton games 

involving lower extremities [24]. Metatarsal fractures occurrence were recorded at 

35% out of all foot fractures and 6% out of all skeletal injuries. Based on a study 

conducted by Fu, during touch-down movements by badminton players after 

conducting a stroke showed that the peak of plantar pressure was recorded at the 

forefoot [20]. In conjunction with that, consuming inappropriate footwear was found 

as one of the factors that contributed to fatigue overstress injuries [25-27]. A study had 

been conducted by Yong et al. [28] on the effect of different footwear on the 

metatarsophalangeal joint which resulting in badminton designated footwear is more 

beneficial for the metatarsophalangeal joint.  

Moreover, landing from doing jumping smash will exert more load on the body as the 

landing is conducted using single-leg landing [29]. Insoles, part of the shoe, are widely 

used in sports to increase athlete’s performance and stabilization and to reduce the risk 
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of injury [30, 31]. Since single-leg landing is a stiffer landing technique compared to 

double-leg landing, the angle of ankle plantarflexion and hip flexion had reduced 

causing the decrease of the lower extremity’s capability to attenuate shock [32]. 

Furthermore, it was reported that off-the-shelf insoles equipped with medial-arch 

support tend to increase the peak inversion angle of the ankle during landing. It had 

caused the elevation of the pressure on the fifth metatarsal which is the most common 

fractures experienced by young athletes [33]. Thus, a better insole design needs to be 

introduced in preventing metatarsals fracture occurrence among athletes. 

Many studies have been conducted on jumping movements in various activities 

such as basketball, walking, and running [9, 10, 34-36]. However, there are still 

lacking FE studies that involve jumping movements in badminton [9, 10]. Badminton 

also had received minimal attention in developing sports medical equipment for 

players [10, 37]. Jumping smash is one of lethal movements in badminton as it will 

help players to obtain points and playing with offensive gameplay. Jumping smash is 

also a very popular technique in badminton [38]. Hence, there is a need to conduct FE 

studies for badminton players to identify the localization of pressure exerted on the 

foot.  

Insoles with different material and density can also affect the shock absorption 

characteristics [39, 40]. Footwear with an additional cushion is also used to reduce 

shock [40]. Lam et al. [41] conducted a study on the effect of shoe design on badminton 

players. The study focused on the design of heel parts of the footwear since the 

manoeuvre conducted by the subject is the forward lunge, which involves a heel strike. 

However, the studies on insole design for single-leg landing movements in badminton 

athletes are still limited. In short, the problem statement of this study could be 

summarized as below: 

1. How does different types of insoles from different manufacturers affect pressure 

distribution on the insole, bones and skin? 

2. How does custom-fit insole and different insole material affect the pressure 

distribution on the insole, bones and skin? 
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1.3 Objectives 

1) To compute a static analysis on three different insoles of badminton 

athletes during single-leg landing. 

2) To modify the prefabricated insoles for better performance in terms of 

shock absorption during single-leg landing. 

1.4 Scope of the Study 

A dataset of Computed Tomography (CT) of a healthy 27-year-old man with 

169 cm height and 75kg weight was used to reconstruct bones. Three-Dimensional 

(3D) bones were developed from CT Scan data using the segmentation method through 

Mimics software. The first part of the project involved only three types of market-

ready insoles from three different models and brands: 1) Yonex Active Pro Truactive, 

2) Li-Ning L6200LA, 3) Victor VT-XD 8. The badminton insoles were 3D scanned 

using the Sense 3D Scanner. The 3-Matic (Materialise, Leuven, Belgium) software 

was used to conduct the post-processing of the insole. The region of interest involving 

17-foot bones which are, 5 phalanges, 5 metatarsals, 3 cuneiforms, cuboid, navicular, 

talus, and calcaneus. This study focused on analysing the pressure distribution on the 

insoles, skin, and bones during ground contact in the landing phase after a badminton 

player doing a stroke. Static finite element (FE) analysis using Marc. Mentat (MSC. 

Software, Santa Ana, CA) will be conducted on the insoles involving insoles, skin, and 

bones and von Misses Stress, displacement and rotation angle will be observed on the 

insoles and bones. 

1.5 Significance of the Study 

In badminton, most of the movements had been done using forefoot as reported 

by previous research [20]. Hence, developing a feature that can reduce the plantar 
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pressure in the forefoot area especially metatarsals heads is crucial. As reported by 

Lorentson, better badminton footwear in terms of shock absorption can be a medium 

in injury prevention [42]. An insole is crucial for sports footwear as it can increase the 

time of impact [43], hence reducing the impact force [44]. As badminton involves 

many braking and sudden changes of direction during the game [43], alternatives for 

reducing the risk of injury need to be developed [31]. The output of this study also can 

help further the development of sports medical equipment, especially in badminton. 

Shoes comfort is another level of important characteristics of badminton shoes.  

Since insole is part of badminton footwear, the development of better insole 

can also provide a higher level of comfort to the user [45, 46]. FE analysis is a common 

approach in determining the yield strength and pressure distribution of a structure. 

Through the FE analysis approach, local pressure distribution on bones, insole, and 

skin can also be beneficial for further biomechanical alteration [47]. Localization of 

pressure on the insole and the skin will contribute mainly to modification stages of 

insoles. FE analysis also benefits in providing internal stress of the ankle-foot complex 

[48].
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