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ABSTRACT 

Biodiesel portrays plenty of positive combustion properties, which presents 

itself as an essential alternative fuel to conventional fossil diesel. However, most of 

the reported works thus far are for automotive applications in internal combustion 

engines, with little being relevant for gas turbine applications. Therefore, in this study, 

biodiesel swirl flames are established using a model gas turbine swirl burner under 

atmospheric condition. The tested biodiesels are produced from palm, soybean, and 

coconut oils via transesterification process, while diesel is chosen as the baseline fuel. 

For neat biodiesel investigations, the flame spectroscopic analysis conducted shows 

that biodiesel swirl flames emit higher OH (Hydroxyl), CH (Carbyne), C2 (Diatomic 

Carbon) and CN (Cyanido) radical intensities when compared with baseline diesel. It 

is also observed that decreasing main air temperature results in substantial nitric oxide 

(NO) reduction at the expense of higher undesirable emissions of carbon monoxide 

(CO) for all types of fuels tested. The NO emissions from the tested biodiesels are also 

found to be approximately 20-60% higher than that of diesel from equivalence ratio 

() 0.65-0.9 at main air temperature of 250 °C. Besides this, the tested biodiesels 

showed higher CO emission than diesel at near stoichiometric combustion. Present 

research also unveils that biodiesels enhance flame stability as compared to diesel 

under lean combustion condition. Besides these, the study also investigated the 

potential use of biodiesels, being blended with natural gas (NG), under dual fuel 

combustion system. Introducing NG into palm biodiesel (PME) swirl flame at 90/10, 

80/20 and 70/30 PME/NG, the obtained input thermal power proportion using the gas 

turbine swirl burner results in spectroscopic characteristic that resembles neat PME. 

However, radical emission intensities from PME/NG swirl flames are found to be 

typically higher than that of neat PME. 70/30 PME/NG combustions are observed to 

lower NO emission by a factor of 2-3.5 as compared to diesel and neat PME. 

Nonetheless, it is also found that the addition of NG reduces flame extinction limit 

when compared with neat PME and diesel. Finally, the effects of swirl angle variation 

on PME and PME/NG combustion characteristics were also examined. Increasing 

swirl angle from 45° to 60° lowers the NO and CO emissions by a factor of roughly 4. 

Conversely, NO and CO emissions increase by a factor of averaging 1.5-2 as swirl 

angle reduces from 45° to 30°. Novel empirical models are proposed for estimating 

NO and CO emissions from PME and PME/NG combustion at different NG 

proportions and swirl angles. Through this study, it is observed that highly unsaturated 

biodiesels show NO emission that is averaging 3.1 g/kWh higher than saturated 

biodiesels. Biodiesel flames also generally exhibit bluish flames, whereas diesel 

contains aromatics rings that lead to the production of sooty luminous orange-yellow 

flame brush. The sooty flame brush, however, vanishes when swirl angle increases 

from 45° to 60°. This research shows that PME/NG combustion using swirl vane angle 

60° and 30% NG proportion is a promising way of reducing NO emission against neat 

PME. Biodiesels and biodiesel/NG can be viable alternative fuels for land-based gas 

turbine industrial applications, operating under lean combustion mode.  
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ABSTRAK 

Biodiesel menunjukkan banyak ciri-ciri pembakaran yang positif, ini 

menjadikannya sebagai bahan api alternatif yang penting bagi menggantikan fosil 

diesel. Namun kebanyakan penyelidikan biodiesel buat masa kini adalah untuk 

kegunaan enjin pembakaran dalam bidang automotif, di mana pemahaman untuk 

penggunaan biodiesel di dalam gas turbin masih lagi kurang. Dalam penyelidikan ini, 

api pusaran biodiesel dinyalakan dengan menggunakan pembakar pusaran model gas 

turbin pada keadaan atmosfera. Biodiesel dihasilkan daripada minyak sawit, kacang 

soya, dan kelapa melalui proses transesterifikasi. Diesel pula dipilih bagi tujuan 

perbandingan. Analisis spektroskopik api pusaran biodiesel menunjukkan intensiti 

radikal OH (Hidroksil), CH (Carbyne), C2 (Karbon Diatomik) and CN (Cyanido) yang 

lebih tinggi berbanding dengan diesel. Penurunan suhu angin pembakaran 

mengurangkan nitrik oksida (NO) tetapi meningkatkan perlepasan karbon monoksida 

(CO) disebaliknya bagi semua bahan api yang dikaji. Pada suhu angin pembakaran 

250 °C, biodiesel melepaskan NO kira-kira 20-60% lebih tinggi daripada diesel bagi 

nisbah kesetaraan () 0.65-0.9. Pada keadaan hampir stoikiometri pula, biodiesel 

menghasilkan CO yang lebih tinggi daripada diesel. Kajian ini juga menunjukkan 

bahawa biodiesel meningkatkan kestabilan api pusaran berbanding dengan diesel pada 

campuran udara/bahan api miskin. Di samping itu, penyelidikan ini juga mengkaji 

sifat-sifat pembakaran campuran biodiesel sawit (PME) dan gas asli (NG) dengan 

menggunakan pembakar pusaran. Api pusaran PME/NG pada nisbah input tenaga haba 

90/10, 80/20 dan 70/30 menghasilkan ciri-ciri spektroskopik yang hampir sama 

dengan PME. Walaubagaimanapun, intensiti radikal PME/NG adalah lebih tinggi 

daripada PME. Pembakaran 70/30 PME/NG menurunkan pencemar NO sebanyak 2-

3.5 kali ganda berbanding dengan diesel dan PME. Namun demikian, penambahan NG 

didapati melemahkan kestabilan api pusaran PME. Kesan variasi sudut pusaran ke atas 

pembakaran PME and PME/NG turut dikaji. Pencemar NO and CO didapati menurun 

sebanyak 4 kali ganda apabila sudut pusaran meningkat daripada 45° ke 60°. 

Disebaliknya, pencemar-pencemar tersebut nenurun sebanyak 1.5-2 kali ganda apabila 

sudut pusaran dikurangkan daripada 45° ke 30°. Model empiric juga diperkenalkan 

dalam kajian ini untuk meramalkan pencemar NO dan CO yang dihasilkan daripada 

pembakaran PME and PME/NG bagi pelbagai nisbah NG dan sudut pusaran. Dalam 

penyelidikan ini, biodiesel ketepuan tinggi didapati menghasilkan NO lebih tinggi 

daripada biodiesel ketepuan rendah sebanyak 3.1 g/kWh secara purata. Biodiesel 

menghasilkan api berwarna biru manakala diesel menghasilkan api oren-kuning yang 

menandakan kewujudan jelaga. Walaubagaimanapun, jelaga tersebut didapati hilang 

apabila sudut pusaran meningkat daripada 45° ke 60°. Penyelidikan ini menunjukkan 

bahawa pembakaran PME/NG dengan sudut pusaran 60° dan nisbah NG 30% 

merupakan cara yang menjanjikan penurunan emisi NO terhadap PME. Biodiesel dan 

campuran PME/NG adalah bahan api gantian yang unggul untuk gas turbin kegunaan 

industri yang beroperasi pada campuran udara/bahan api miskin.  
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CHAPTER 1 

 

 

INTRODUCTION 

1.0 Background 

Stringent emission requirements along with finite fossil fuel reserves and 

global decarbonisation efforts have prompted many countries to look into biomass-

derived alternative fuels, owing to their potentially carbon neutral, cleaner emissions 

and sustainable feedstock supply [1, 2]. Figure 1.1 compares the carbon cycle of fossil 

fuels against that of biomass-derived alternative fuels. It can be observed that carbon 

dioxide (CO2) produced by alternative fuels from combustion could be recycled for 

use in plant growth, achieving a potentially carbon neutral cycle. On the other hand, 

CO2 produced from combustion of fossil fuels typically only ends up being expelled 

into the atmosphere, which undesirably elevates the CO2 concentration in the 

atmosphere. Aside from the difference in CO2 lifecycle, regulated emissions 

compounds, such as sulphur dioxide (SO2), particulate matter (PM) and CO, from 

combustion of biofuels are substantially lower than those of fossil fuels [3]. 

 

Figure 1.1 CO2 lifecycle comparisons between fossil fuels and alternative fuels. 
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In view of the advantages by moving towards biofuels, global bio-energy 

generation has been observed to exhibit an increasing trend from the year 2006 to the 

year 2016 throughout major continents in the world, as illustrated in Figure 1.2 [4]. 

European Union of 28 member states (EU-28) recorded a 115.38 TW-h increase in 

bio-energy generation over the decade, followed by Asia, South America and North 

America with 67.31 TW-h, 51.91 TW-h and 16.95 TW-h of escalation in bio-energy 

generation, respectively [4]. Despite distinct advantages and growing interests over 

such alternative fuels, the use of biofuels is still not yet as extensive as expected at the 

present stage. This is mainly due to the higher production cost as compared to the 

lower fossil fuel price.  

 

Figure 1.2 Global bio-power generation by regions from 2006 to 2016 (extracted 

from [4]). 

Figure 1.3 compares the prices between diesel and compressed natural gas 

(CNG) against biodiesel (B99/B100) and 85/15 ethanol/gasoline blends (E85) from 

the year 2000 until the year 2017 in U.S. [5]. It is shown that biodiesel and bioethanol 

are consistently more expensive than diesel. Hence, owing to the fuel price deficit, this 

leaves the utilisation of biofuels at the present stage to be mainly driven only by 

environmental policy, through blending mandate with fossil fuels at low percentage 
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[4]. In the European Union, blending legislations are implemented in countries such 

as Latvia (B7, 7/93 biodiesel/diesel blends) Finland (B5.75), Italy (B5), Norway (B3.5) 

and the Netherlands (B4) [6, 7]. Among South East Asian countries, blending 

mandates are implemented in Malaysia, Indonesia and Thailand with emphasis on B7, 

B20 and B7 blends, respectively [8]. Meanwhile, America, Argentina, Brazil, Canada 

and Colombia each has current biodiesel mandates of B10, B8, B2 and B10, 

respectively [8].  

 

Figure 1.3 Fuels price of various fuels from year 2000 to 2017 in U.S. [5]. 

In December 2015, utilisation of alternative fuels was pushed forward by the 

United Nation’s Conference on Climate Change in Paris. The conference gathered 

governments and business leaders from nearly 200 nations where an ambitious goal 

was set to keep global temperature rise well below 2 ºC. The decision concurrently 

marked the end of the fossil fuel era and encouraged more investment in renewable 

energy [9]. Investments in developing production technologies to increase alternative 

fuels uptake will encourage the development of more environmental friendly 

production processes and subsequently reduce the production cost through economy 

of scales [10].  
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The drive to increase the utilization of alternative fuels also affects the use of 

gas turbine as the power plant in engineering applications. Gas turbine was originally 

started exclusively for use in the aviation industry in 1960s. The invention is a 

combined cycle power plant that merges gas and steam turbines together. It has 

effectively elevated energy conversion efficiency up to 60% [11, 12], making the cycle 

power plant into an important power generation system. Figure 1.4 shows that the 

capacity factor of combined cycle plants powered by NG has increased by an average 

of 21% from the year 2005 to the year 2015 [13]. The increase in gas turbine usage 

capacity also implicitly gives rise to greenhouse gases production. Considering the 

downside of massive greenhouse gases escalation, recent gas turbine development has 

also began to focus on fuel-flexible technologies, enabling the usage of clean and 

sustainable biofuels in gas turbines [14, 15], in-line with the direction set during United 

Nation’s Conference on Climate Change in Paris. This also ensures that the current 

gas turbine could be accommodated to the present rigorous emissions legislations.  

 

Figure 1.4 Annual capacity factor comparison for NG combined-cycle plants in 

U.S. (adapted from [13]). 
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At present, one of the most researched on alternative fuels come in the form of 

biodiesel. Recent forecast by International Energy Agency (IEA) has also unveiled 

that the demand on biodiesels is expected to grow by a factor of approximately seven 

in the year 2035 [16]. This alternative fuel is mainly produced via transesterification 

process, where alcohol and catalyst are used to convert triglycerides into glycerol and 

biodiesel at elevated temperature condition. In the automotive industry, biodiesel has 

been deemed a viable alternative fuel option for compression ignition engine usage to 

meet future energy demand and stringent emissions requirements [17]. This is because 

even though the lower heating value (LHV) of biodiesel is approximately 11% lower 

than that of fossil diesel (see Figure 1.5), the density of biodiesel is still roughly 3% 

higher than that of diesel, making it a potentially useful alternative fuel to be blended 

with diesel for compression ignition engines. However, as highlighted in Figure 1.6, 

due to the lower calorific value and higher fuel density against typical jet fuel 

requirements, biodiesel currently has a restricted usage in aviation gas turbine [18]. On 

the contrary, land-based gas turbine for industrial application is fuel-robust in nature, 

which potentially enables the use of biodiesel in such power plants [19].  

 

Figure 1.5 Comparison of fuel properties between biodiesel, diesel and Jet A-1 

(adapted from [19]).  
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Figure 1.6 Relationship between LHV and density for range of liquid fuels 

showing limits jet fuel specification (adapted from [18, 19]). 

In view of the potential benefits of adopting biodiesel as an alternative fuel, the 

present study aims to ascertain the combustion characteristics of biodiesel under 

momentum-controlled swirl flame condition, typically encountered in a gas turbine 

system. Besides this, considering economic advantages and cleaner emissions of NG, 

the study will also examine the fundamental combustion characteristics of biodiesel 

when blended with NG.  
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1.1 Problem statements 

1. How would variation in biodiesel physio-chemical properties and burner 

operating parameters affect its combustion characteristics under reacting swirl 

spray condition?  

2. How would NG addition affect combustion characteristics of biodiesel swirl 

flame?  

3. How would variation in swirl vane angle affect combustion characteristics of 

biodiesel and biodiesel/NG swirl flame? 

1.2 Objectives 

To answer these questions, three objectives have been identified:   

1. To determine spectroscopic, emissions and lean blowout characteristics of 

various degree of freedom (DOU) biodiesel under reacting swirl flame 

condition. 

2. To assess the biodiesel swirl flame characteristic of biodiesel when blended 

with NG under atmospheric condition.   

3. To ascertain the effect of swirl vane angle on biodiesel and biodiesel/NG 

combustion characteristic.  

By the end of the study, it is expected that the findings obtained could be applied in 

determining the optimum usage of biodiesel and biodiesel/NG fuel under reacting 

swirl flame conditions. Based on this, suitable application could also be proposed 

accordingly. 
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1.3 Research scope 

This research contains three objectives. The first objective examines biodiesel 

reacting swirl spray characteristics using a model gas turbine swirl burner. A lab-scale 

swirl burner is chosen due to its capability of simulating reacting flow in the gas turbine. 

This also enables the use of spectrometer through optical accessible quartz glass. 

Biodiesel derived from coconut, palm and soybean vegetable oils are chosen for this 

research. The DOU for these vegetable oils vary from 0.12 to 1.59, enabling the present 

study to examine the effect of DOU on biodiesel combustion characteristics. The 

biodiesels are produced in-house via alkaline-catalysed transesterification. The No. 2 

type diesel fuel, which is typically used in truck, is chosen as the baseline fuel. The 

study on biodiesel swirl flame includes flame imaging, spectroscopic quantification 

and analysis of combustion intermediate species, specific emissions quantification and 

lean blowout analysis.  

The same framework is subsequently extended to study biodiesel/NG dual fuel 

combustion, which is the second objective of this research. NG is chosen as secondary 

fuel due to its economic advantage and cleaner emissions when compared with that of 

diesel [20, 21]. Three biodiesel/NG blending proportions are examined in this study, 

namely 90/10, 80/20 and 70/30. The blending proportions are based on the input 

thermal power, where contributions of NG to total input thermal power is varied from 

10-30% [22]. The method is chosen in such a manner since both fuels are of different 

phases, whereas density of NG is approximately three orders of magnitude lower than 

that of biodiesel. This lowers the NG flow rate beyond the minimum flow range of the 

regulator.   

The third objective of this research is to examine the effect of swirl vane angle 

variation on biodiesel and biodiesel/NG combustion characteristics. Swirl vane angle 

30°, 45° and 60° are chosen for this study, representing low, medium and high swirling 

air flow, respectively. Flame appearance, radical intensities, and emissions produced 

under different swirl vane angles are analysed. Furthermore, empirical models are 

proposed to estimate emissions from biodiesel and biodiesel/NG swirl flames.  
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1.4 Thesis structure 

This thesis consists of six chapters. Chapter 1 introduces biomass-derived 

alternative fuels, objectives and scopes for this research. Chapter 2 reviews relevant 

and significant studies on biodiesels spray combustion in gas turbine and model swirl 

burner. Previous studies examined the effect of swirl vane angle are also reviewed. 

Chapter 3 describes the experimental setup for establishing reacting swirl flame. 

Furthermore, fuel preparation, measurement techniques and operating conditions are 

also delineated in Chapter 3. Chapter 4 and 5 present results, analysis and discussions 

from the experimental investigations of biodiesels and biodiesel/NG combustions, 

respectively. Chapter 6 presents the findings from swirl vane angle investigations. 

Finally, conclusions and suggestions for future research based on the present findings 

are provided in Chapter 7.  

1.5 Research contributions 

This research will contribute towards improving the fundamental 

understandings on: 

1. The effects of biodiesel DOU, main air temperature, global flame equivalence 

ratio and air-to-liquid ratio (ALR) on biodiesel flame appearance, combustion 

intermediate species, post-combustion emissions and lean blowout limit under 

the reacting swirl spray conditions. 

2. The effects of NG proportions, global flame equivalence ratio and ALR on 

fundamentals combustion characteristics of a biodiesel/NG swirl flame. 

3. The effects of swirl vane angle variation on biodiesel and biodiesel/NG 

combustion characteristics under atmospheric conditions.      

 



 

10 

 

1.6 Research hypothesis 

1. Variation in biodiesel physio-chemical properties, such as degree of 

unsaturation (DOU), volatility and viscosity will affect its combustion 

characteristics.  

2. Burner operating parameter, such as global flame equivalence ratio, atomiser 

air-to-liquid ratio (ALR) and main air temperature, will alter biodiesel and 

biodiesel/NG combustion characteristics. 

3. NG addition into biodiesel swirl flame, at optimum blending proportion and 

swirl vane angle, will improve the combustion characteristics of the dual fuel 

combination. 
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