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ABSTRACT 

Digital Light Processing (DLP) process is one of the additive manufacturing 

techniques and has been widely used to fabricate tissue engineering scaffold based on Poly 

(ethylene glycol) diacrylate (PEGDA) material. However, the existing PEGDA scaffold via 

DLP 3D printing commonly exhibits poor mechanical and biocompatible properties. The 

PEGDA 3D scaffolds also have low cells viability which can cause tissue engineering failure. 

Therefore, this study aims to develop a novel soft tissue engineering scaffold biomaterial, 

using PEGDA filled with Aramid nanofibers (ANFs), with enhanced mechanical strength and 

biocompatible properties via DLP 3D printing technique. ANFs was first synthesized from 

macro size Kevlar fibre (0.2 %wt.) prior to crosslinking with Diphenyl (2,4,6-

trimethylbenzoyl) phosphine oxide (TPO) photo initiator. The mixing ratio of PEGDA resin 

to ANFs was fixed to 9:1. During the mixing, the concentration of TPO was varied at 0.5, 1.0 

and 1.7% wt., while the resin concentration was fixed at 30% wt. to produce three sets of 

biomaterials. Preliminary study was conducted prior to the actual printing for the purpose of 

eliminating unprintable TPO concentration. The final scaffold was printed using a FEMTO3D 

DLP machine at two different curing times; 70s and 80s to obtain good shape and printable 

3D structure. It was found that 1.7%wt of TPO failed to produce a 3D profile shape. It was 

observed the printed 3D scaffold of 1%wt TPO at 70s curing time produced the most 

discernible shape of the compression specimen (ASTM D695).  Based on the printable photo 

initiator results, the experiments were expanded further by taking into account the PEGDA 

concentration, resin to ANFs ratio and DLP curing time. At this stage, both resin-PEGDA/TPO 

ratio and TPO concentration were fixed at 8:2 and 1.0 %wt. respectively.  A two level factorial 

design involving three factors was used to determine the feasible printing parameter where the 

response is the Young's Modulus. The resin to ANFs ratio (9:1, 8:2, 7:3), PEGDA 

concentrations (30, 40, 50 %wt.) and curing time (70, 80, 90s) were varied during the 

experiments. Response surface method was used to determine the optimum setting for 

maximizing the Young’s Modulus. The synthesized ANFs have shown a nano diameter size 

distributions ranging from 20 nm to 80 nm. The optimum condition was found at 7:3 resin to 

ANFs ratio, PEGDA concentration at 50 %wt. and at 100s curing time, which recorded the 

highest Young’s modulus (0.55 MPa). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium 

bromide assay showed a weak condition of the cells viability at a ratio of 10:0 (61.4 %) after 

3 days of incubation. Increased ratio of ANFs enhanced the cell viability where 81.6%, 89.3 

% and 96.3 % of cells viability were recorded at the ratios of 9:1, 8:2 and 7:3, respectively. 

Fourier Transform Infrared Spectroscopy and Diffraction Scanning Calorimetry analyses also 

proved that the presence of Aramid functional group in the printed PEGDA/ANFs scaffold. 

The optimized dried sample after freeze-drying process for 24 hours confirmed that their 

physical reliability with minimal volume shrinkage (30%) and 80% water content remained in 

the final scaffold with high interconnected internal porous structure. The mechanical strength 

of the optimized printed scaffold also increased at 69.1% (0.93 MPa) after the freeze dried. 

Overall, the mechanical and biocompatibility properties of the fabricated PEGDA filled with 

ANFs exhibits significant improvement as compared to PEGDA without ANFs. It has proved 

that the newly developed PEGDA-ANFs scaffold has a great potential to be used as an articular 

cartilage in soft tissue engineering applications. 
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ABSTRAK 

Pemprosesan cahaya digital (DLP) adalah salah satu teknik pembuatan bahan 

tambahan yang semakin banyak digunakan untuk membuat perancah kejuruteraan tisu 

berdasarkan bahan Poly (ethylene glycol) diacrylate (PEGDA). Walau bagaimanapun, 

perancah 3D PEGDA yang di hasilkan melalui percetakan DLP biasanya menunjukkan sifat 

mekanik dan biokerasian yang lemah. Perancah 3D PEGDA juga mempunyai daya tahan sel 

yang rendah yang boleh menyebabkan kegagalan tisu kejuruteraan. Oleh itu, kajian ini di 

jalankan bertujuan untuk meningkatkan keupayaan bahan bio dalam pembuatan perancah 

kejuruteraan tisu lembut baru, menggunakan PEGDA yang diisi dengan gentian nano Aramid 

(ANFs) dengan kekuatan mekanikal dan sifat biokerasian yang dipertingkat melalui teknik 

percetakan 3D DLP. ANFs disintesis terlebih dahulu dari serat Kevlar bersaiz mikro (0.2 %wt.) 

sebelum dicampurkan dengan fotopemula Diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide 

(TPO). Nisbah campuran damar PEGDA ke ANFs ditetapkan pada 9:1. Pembolehubah 

kepekatan TPO ditetapkan pada kepekatan berat 0.5, 1.0 dan 1.7%, sementara kepekatan 

damar ditetapkan pada 30% untuk menghasilkan tiga set bahan bio. Kajian awal dilakukan 

sebelum percetakan sebenar bagi mengenal pasti kepekatan TPO yang dapat dicetak. Perancah 

terakhir dicetak menggunakan mesin percetakan FEMTO3D DLP pada dua masa percetakan 

yang berbeza iaitu pada 70 dan 80 saat untuk memperoleh bentuk dan struktur 3D yang baik. 

Didapati bahawa kepekatan TPO pada 1.7% gagal menghasilkan susuk 3D. Diperhatikan 

bahawa perancah 3D yang dicetak dengan kepekatan berat TPO pada 1% pada masa 70 saat 

telah menghasilkan bentuk susuk 3D mengikut saiz piawai ujian mampatan (ASTM D695). 

Berdasarkan hasil fotopemula yang dapat dicetak, ujikaji diperluas dengan 

mempertimbangkan kepekatan PEGDA, nisbah damar ke ANFs dan tempoh masa percetakan 

DLP. Pada tahap ini, kedua-dua nisbah damar PEGDA/TPO dan kepekatan TPO masing-

masing ditetapkan pada 1.0% dan 8:2. Satu reka bentuk ujikaji faktoran penuh dua tahap yang 

melibatkan tiga faktor telah digunakan untuk menentukan parameter percetakan yang boleh 

dimana tindak balasnya adalah Modulus Young. Nisbah damar kepada ANFs (9:1, 8:2, 7:3), 

kepekatan PEGDA (30, 40, 50%) dan masa cetakan (70, 80, 90 saat) telah dipelbagaikan 

semasa ujikaji. Kaedah permukaan tindakbalas telah digunakan bagi menentukan tetapan 

optimum bagi menghasilkan Modulus Young yang maksimum. ANFs yang disintesis 

menunjukkan taburan ukuran garis pusat bersaiz nano pada ukuran 20 nm hingga 80 nm. 

Keadaan optimum diperoleh dengan catatan Modulus Young tertinggi (0.55 MPa) adalah pada 

nisbah 7:3 damar ke ANFs, kepekatan PEGDA pada 50% dan percetakan pada 100 saat. Ujian 

ke atas 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide menunjukkan 

kebolehjayaan sel pada nisbah 10:0 adalah sebanyak 61.4% pada 3 hari pengeraman. 

Peningkatan nisbah ANFs telah meningkatkan perkembangan sel yang mana 81.6%, 89.3% 

dan 96.3% perkembangan sel masing-masing dicatatkan pada nisbah 9:1, 8:2 dan 7:3. 

Spektroskopi Infra-merah Jelmaan Fourier dan Analisis Permeteran Kalori Pengimbasan 

Kebezaan juga membuktikan kewujudan kumpulan berangkap Aramid dalam perancah 

PEGDA/ANFs yang telah dicetak. Sampel optimum yang telah di sejuk-beku setelah proses 

pengeringan selama 24 jam telah menunjukkan kebolehpercayaan fizikal dengan pengecutan 

isipadu minimum (30%) dan kandungan air 80% kekal dalam perancah serta mempunyai 

struktur berliang yang saling terhubung. Kekuatan mekanikal optimum perancah juga 

meningkat pada 69.1% (0.93 MPa) selepas process pengeringan beku. Secara keseluruhan, 

sifat mekanikal dan biokerasian PEGDA yang diisi dengan gentian ANFs menunjukkan 

peningkatan yang ketara berbanding dengan PEGDA tanpa ANFs. Dibuktikan bahawa, 

perancah PEGDA-ANF yang baru berpotensi besar untuk digunakan sebagai tulang rawan 

bersendi dalam aplikasi kejuruteraan tisu lembut. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

This chapter discusses the background of study, research problems, objectives, 

scopes, and significance of research. Its ends with outline of thesis.  

1.2 Background of Problem 

The failure of organs or tissues due to trauma or ageing is a primary concern 

in healthcare as they are costly and result in devastating problems. This has led to the 

development of tissue engineering (TE), which aims to create biological substitutes to 

repair or replace the failing organs and tissues (Hassanajili et al., 2019). One of the 

best approaches in tissue engineering is by growing biodegradable scaffold cells, 

which attempts to imitate the natural extracellular matrix function and provide a 

temporary tissue growth template (Mondschein et al., 2017).  

Tissue engineering scaffolds are unique in a way; as they are able to establish 

three-dimensional environments for propagated cells and provides specific recognition 

molecules which capable of mimicking the environment of natural tissues.  The 

scaffolds can be either natural, synthetic or hybrid (Annabi et al., 2016). Tissue 

engineering scaffold should fulfil the biological and mechanical target tissue 

requirements. The scaffolds should have an appropriate microstructure to support cell 

proliferation, contained with open-porous geometry with a highly porous surface 

enabling cell growth, appropriate surface morphology and a predictable degradation 

rate of non-toxic material (Miri et al., 2019).  
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Tissue regeneration in scaffolds through cell implantation relies primarily on 

the scaffold structure and the nature of the biomaterials (Heljak et al., 2020). The 

interaction between biomaterials and surrounding tissues is a crucial concern when 

choosing the proper material for scaffolds. Although the specific material requirements 

depend on the nature of the application, all biomaterials must be evaluated for their 

biocompatibility (Bil et al., 2010). The biomaterial scaffolds allow cells containment 

and signalization of molecules as a transplant,  to enable functional tissue regeneration 

in the host as an alternative to common organ transplantation and tissue reconstruction 

practices (Annabi et al., 2016). Essentially, an optimal biomaterial scaffold could 

mimic the natural structure and process tissue regeneration (Lim et al., 2017).  

Fat, skin, tendon, muscle, articular cartilage, nerves, fascia, intervertebral disc, 

synovium, joint capsule, and blood vessels are all included in the category of soft 

tissues. These tissues generally surround, support, or connect the body's structure and 

organs. Currently, autologous implantation has been the major way of treating the 

defects or illnesses of soft tissue. However, autologous tissue is easily absorbed and 

rapidly lost in volume, leaving just 40–60 percent of soft tissue cells alive. Other than 

that, autologous transplantation is also limited by donor site allogeneic response and 

morbidity. Therefore, tissue engineering has been used to produce novel biological 

replacements for healing and regenerating injured soft tissues, overcoming the 

limitations of current clinical treatments (Pei et al., 2017). 

Nanoscale fibrous structures have gained much interest in tissue engineering 

field application such as musculoskeletal tissues (including bone, cartilage, ligament, 

and skeletal muscle), skin tissue engineering, neural tissue engineering, vascular tissue 

engineering, and controlled delivery drug, protein, and DNA (Stocco et al., 2018). 

Nanofiber has emerged as promising biomimetic candidates of scaffold due to their 

small size (1–100 nm), which is comparable with peptides and small proteins. The high 

surface-to-volume ratio of nanofibers for tissue engineering applications is extremely 

desired due to quickly spread through membranes (Xue et al., 2019). This nano-

environment allows for cells grow and it has potential to promote cell adherence, 

proliferation, migration and cell differentiation, which similar to natural extracellular 

matrices (ECM) of tissues and organs (Rasouli et al., 2019). Nanoparticles are also 
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extremely mobile when in a free state, which results in incredibly slow sedimentation 

rates (Hasan et al., 2018).  Therefore, the use of the right type of nanofibers in tissue 

engineering can significantly improve the biological and mechanical properties of 

scaffolds, depending on the application.  

There are two main methods of fabricating scaffold, viz. through the use of 

conventional and additive manufacturing processes. Conventional fabrication methods 

include electrospinning, phase separation, freeze drying, self-assembly, solvent 

casting, textile technologies, and material injections. Additive manufacturing, 

commonly referred to as 3D printing, includes stereolithography 

(photopolymerization), inkjet printing, bioprinting, fused deposition modeling (FDM), 

extrusion, laser beam melting, selective laser sintering (SLS), digital light processing 

(DLP), electron beam melting, and polyjet (Roseti et al., 2017).  Even though these 

method are commonly used in manufacturing industries, however, they become a new 

technique in biomedical industries due to their several advantages including the ability 

to create complex geometries, multiple materials, and a wide range of biomaterials can 

be used compare to conventional technique (Jammalamadaka and Tappa, 2018). 

1.3 Problem Statement 

Current research is tremendously focused on the development of light-curable 

and highly biocompatible resin under Digital Light Processing (DLP) 3D printing. The 

resin used in DLP printing process is usually composed of photoinitiator, 

polymerizable oligomers, and additives (Ronca and Ambrosio, 2017). To date, 

common biocompatible photopolymers, such as poly(ethylene glycol) diacrylate 

(PEGDA) (Eshel et al., 2016), poly(ethylene glycol) dimethacrylate (Burke et al., 

2019), gelatin methacrylate (Na et al., 2018), and poly(propylene fumarate) (Mishra et 

al., 2016) have been successfully used in DLP printing. 

Among them, poly(ethylene glycol) diacrylate (PEGDA) hydrogel polymer has 

been extensively used as tissue engineering scaffold in comparison to other 

biopolymers due to its excellent performance in biocompatibility and hydrophilicity 
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properties (Gigli et al., 2016; Palaganas et al., 2017; Scaffaro et al., 2016). Even though 

various 3D printed PEGDA scaffolds were reported, none of them fulfill all the 

requirements for tissue engineering applications (Kotturi et al., 2017). The existing 3D 

printed PEGDA scaffolds show low cell’s viability and exhibit poor mechanical 

properties due to the weakness in their physical and mechanical stability, which 

becomes the main shortcoming for it to be used as tissue engineering scaffolds 

(Naahidi et al., 2017; Park et al., 2017; Sivashankari and Prabaharan, 2016; Turnbull 

et al., 2018).  

In order to enhance the performance of PEGDA scaffold, some researchers 

added PEGDA hydrogels polymers using different types of nanofiller such as carbon 

nanotube (CNT), nano-silica, laponite nanoparticle, and others (Mishra et al., 2015; 

Palaganas et al., 2017; Vashist et al., 2018). It has been revealed that nanofibers are 

capable of enhancing cell adhesion,  increase cell proliferation, and improve 

mechanical properties of tissue engineering scaffold (Barhoum et al., 2019). 

Incorporation of certain types of nanofibers into scaffolds can significantly increase 

scaffold's surface area and surface wettability. These hydrophilicity behavior provide 

favorable conditions for cell adhesion and the same time enhanced the cellular 

behavior which result in enrichment of proliferation rate and cells formation 

(Udomluck et al., 2020; Zhu et al., 2020). The mechanical strength and decreasing 

degradation rate of scaffold can be enhanced by crosslinking the nanofibers with the 

biomaterial (Nemati et al., 2019). Thus, the use of nanofibers can produce new tissue 

engineering scaffolds that possess optimal mechanical and biological features. 

Unfortunately, the current types of nanofiller used have several limitations. For 

example, bioceramic and bioglass nanofillers appear to have brittle properties, fragile 

and low fracture strength (Munir et al., 2019). These materials are also challenging to 

fabricate due to poor flexibility properties. Low fatigue strength behavior also makes 

them incompatible with being used in the formulation of tissue engineering hydrogels 

(Mondschein et al., 2017).  Other than that, the use of carbon nanotube (CNTs) as a 

filler also faced limitation due to lack in their biodegradability properties. CNTs are 

nonbiodegradable and may remain in an organism as reported by researchers (Gao et 

al., 2017; Raphey et al., 2019). High concentration of CNT used will also contribute 
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to negative effect for cell proliferation (Peng et al., 2020). On the other hand, one of 

obvious limitation of CNTs application in tissue engineering is their high stiffness 

properties, which never be able to mimic the mechanical properties of tissues and 

considered to be critical for the proliferation of cell (Newman, 2016). 

Though a lot of works on application of PEGDA as tissue engineering scaffold 

has been published, but there is still no literature reported on the development of 

PEGDA hydrogels biomaterials filled with Aramid nanofibers (ANFs) as a tissue 

engineering scaffold. Previous studies only discussed issues related to kinetic 

crystallization and morphology of PEGDA hydrogel with Kevlar fibers in a macro 

scale. Aramid nanofibers (ANFs) offer an excellence biodegradable properties, good 

mechanical strength and relatively favorable hydrophilicity (Wang et al., 2018; Yang 

et al., 2019). ANFs are also light, strong, resistance to fatigue, and stress rupture which 

make it suitable for tissue engineering scaffold applications (Rho et al., 1998; Yang et 

al., 2019). However, the application of PEGDA filled with ANFs as a tissue 

engineering scaffold also has not been reported elsewhere, and therefore their 

mechanical and biodegradable properties remain unknown. In addition, the capability 

to print PEGDA/ANFs scaffold via DLP 3D printing process also has not been 

reported in any literature to date. Thus, the present work is aimed to close the gap.  

In practice, conventional methods such as molding, solvent casting, and 

particulate leaching, gas foaming, and electrospinning are used to construct tissue 

engineering scaffolds. Although many traditional fabrication methods can be used to 

produce scaffold, unfortunately, each method has their own limitations precisely the 

internal topology and architecture. Based on the reviewed literature, none of the 

traditional methods are able to produce scaffolds satisfactory with fine control 

architecture dimensions, porosity, and face the difficulty to mimic the biological 

function of natural tissue (Mondschein et al., 2017; Osama and Darwish, 2011; Wei et 

al., 2016).  
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As an alternative to conventional scaffold fabrication methods, additive 

manufacturing techniques have been developed in tissue engineering such as rapid 

prototyping by which a 3D scaffold is fabricated by laying down multiple, precisely 

formed layers in series. Subia et al. (2010) has claimed that the rapid prototyping 

technique (RP) has drawn tremendous attention with its potential to overcome most of 

the limitations faced by conventional technique for the fabrication 3D scaffolds (Subia 

et al., 2010). Even though there are numerous additive manufacturing processes, DLP 

3D printing (photopolymerization) technology has become the easiest method with 

lowest cost and fast printing speed compared to other additive manufacturing 

techniques such as Selective Laser Sintering (SLS) and Fused Deposition Modelling 

(FDM) (Geng and Shan, 2015; Stansbury and Idacavage, 2016).  

It is noteworthy that photopolymerizable system in DLP 3D printing is usually 

composed of photopolymer, photoinitiator and additives (Yang et al., 2020). The 

addition of ANFs in photopolymerization system would affect the curing time printing 

parameter and the properties of printed scaffold. Therefore, further studies on their 

printability are necessary. The properties such as printing fidelity, internal structures, 

mechanical and biocompatibility properties of the produced scaffold also need to 

investigate. 

This research aimed to develop a novel biomaterial 3D printed PEGDA/ANFs 

scaffold via DLP 3D printing process. The experiment were designed thoroughly to 

evaluated the curing time printing parameter, mechanical and biocompatibility 

properties, stability and internal pores structures of 3D printed PEGDA/ANFs 

scaffold. 
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1.4 Research Objectives 

The objectives of the research were: 

(a) To develop a new biomaterial PEGDA/ANFs with enhanced mechanical and 

biocompatibility properties for soft tissue engineering scaffold. 

(b) To determine feasible curing time of DLP 3D printing for providing high 

Young’s modulus value of 3D printed PEGDA/ANFs scaffold. 

(c) To modify 3D printed PEGDA/ANFs scaffold with internal pores structure via 

freeze drying technique and investigate their shrinkage behavior and 

mechanical strength. 

1.5 Scopes of Research 

The scopes of research were as follow: 

i. Digital Light Processing (DLP) 3D printing process was used to develop 

Poly(ethylene glycol) diacrylate (PEGDA) filled with Aramid nanofibers (ANFs) 

for 3D soft tissue engineering scaffold  

ii. Preliminary study was carried out to identify the feasible printable curing setting. 

The testing were limited to 10:0, 9:1, 8:2, and 7:3 for resin to ANFs ratio while 

PEGDA concentration was limited to 30, 40 and 50% wt. 

iii. Investigation on the mechanical properties was limited to Young Modulus by 

compression technique. 

iv. Biocompatibility studies only involved biodegradation, swelling ratio and MTT 

assay tests. 

v. Freeze drying technique was carried in freeze drier machine at -58 °C within 24 

hours in order to enhance the internal porous structure of printed scaffold.  
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1.6 Significance of Research 

A novel combination of biomaterial PEGDA containing ANFs is useful in the 

fabrication of biodegradable tissue engineering scaffold. The PEGDA/ANFs scaffold 

developed has both the required mechanical strength and biocompatibility to function 

as a tissue engineering cartilage. In addition, the novel PEGDA/ANFs 3D tissue 

engineering scaffold also has the potential to minimize the frequency a patient has to 

undergo implant surgery and can minimize complications after surgery. Other than 

that, the information on the DLP 3D printing process parameters to produce optimum 

Young’s modulus value and biodegradation properties of 3D PEGDA/ANFs scaffold 

with porous structure has been disclosed. These findings can also improve time and 

cost of fabrication. 

1.7 Thesis Outline 

General information on research, objectives and scope is presented in the first 

chapter of this thesis. Chapter 2 summarizes the literature review on tissue engineering, 

including the previous analysis of the microstructure, function and mechanical 

properties of human tissue. Chapter 3 provides a research framework and a detailed 

description of each process to explain the methodology of the experiments performed. 

Chapter 4 presents the outcomes of this study. This chapter is divided into three main 

sections: preliminary discussion, DLP 3D Printing process optimization using Design 

of experiment (DOE) and Response surface measurement (RSM) analysis study, and 

the last part in Chapter 4 is material characterization and fabrication of 3D scaffold 

with internal porous structure. In Chapter 5, the conclusion was made according to the 

results obtained
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