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ABSTRACT 

Kidney failure patients rely on haemodialysis treatment to survive. However, 

unlike the kidney, this treatment cannot remove protein bound uremic toxins 

effectively and its long exposure to dialysis fluid poses risk of bacterial contamination. 

Hence, the main objective of this study is to develop a biocompatible, adsorptive and 

antibacterial polysulfone (PSf) based dual-layer hollow fibre (DLHF) membrane for 

efficient uremic toxins removal. In the first phase of the study, a silica nanoparticle 

with adsorption property was hybrid with α-mangostin via sol-gel technique, to 

enhance its biocompatibility. The synthesized nanoparticle had the Santa Barbara 

Amorphous-15 (SBA-15) mesoporous silica characteristic with particle size range of 

15-25 nm, as confirmed by Fourier transform infrared spectroscopy (FTIR), particle 

size analysis, X-ray powder diffraction (XRD) and transmission electron microscopy 

(TEM). An adsorption study of a protein bound uremic toxin, namely p-cresol, and an 

antioxidant activity study were conducted, where the effect of α-mangostin addition 

was investigated. Silica nanoparticle showed the highest p-cresol adsorption capacity 

of 198 mg/g, followed by silica nanoparticles containing 5 wt% α-mangostin (186 

mg/g) and 2 wt% α-mangostin (179 mg/g), respectively. Silica nanoparticle with 5 

wt% α-mangostin prolonged the blood clotting time by 21.5% and inhibited the 

formation of reactive oxygen species by 36% compared to silica nanoparticle. The 

addition of 5 wt% α-mangostin enhanced the antioxidant property and maintained the 

good p-cresol adsorption capacity of silica nanoparticle. In the second phase of the 

study, 2 wt% silica and 1-2 wt% silica/α-mangostin nanoparticles were incorporated 

into PSf membrane, individually, where their effects on the surface properties, the 

adsorption capacity and the biocompatibility of the membrane were determined. 

Results showed that the membrane incorporated with 2 wt% silica/α-mangostin 

nanoparticle had a reduced water contact angle by 12.5%, indicating its improved 

surface hydrophilicity. Besides, the incorporation of silica/α-mangostin nanoparticle 

enhanced the p-cresol adsorption capacity of the membrane by 20.9% with the value 

of 56 mg/g. The silica/α-mangostin also improved the scavenging activity of hydrogen 

peroxide and nitrogen oxide by 61.8% and 36%, respectively and inhibited the 

formation of human complement fragment 5a (C5a) by 27.3%. In the final phase of 

the study, DLHF membranes consisting different combinations of inner and outer 

layers were prepared. 2 wt% of silica and activated carbon (AC) was incorporated in 

the outer layer of the membrane, individually, to impart antibacterial property to the 

membrane. Compared to the single layer hollow fibre membrane, the DLHF 

membranes showed 6-8% improvement of bovine serum albumin (BSA) rejection. 

DLHF membrane with the combination of silica/α-mangostin nanoparticle in the inner 

layer and AC in the outer layer possessed the highest removal of urea and creatinine 

throughout the 4-hour filtration. The silica/α-mangostin nanoparticle promoted the 

membrane’s interaction with urea and creatinine via chemisorption. Moreover, the AC 

in the outer layer of DLHF membrane successfully filtered bacteria via bacteria 

entrapment. The membrane displayed the highest antibacterial capability against 

Escherichia coli and Staphylococcus aureus, by having an antibacterial rate of 68% 

and 75%, respectively. The biocompatible and adsorptive DLHF membrane was 

successfully developed for safe and effective removal of uremic toxins in 

haemodialysis application.  
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ABSTRAK 

Pesakit buah pinggang bergantung pada rawatan hemodialisis untuk terus 

hidup. Namun, tidak seperti buah pinggang, rawatan ini tidak dapat membuang toksin 

uremik terikat protein dengan berkesan dan pendedahannya yang lama terhadap cecair 

dialisis menimbulkan risiko pencemaran bakteria. Oleh itu, objektif utama kajian ini 

adalah untuk membangunkan membran gentian berongga dwi-lapisan (DLHF) 

berasaskan polisulfon (PSf) yang bioserasi dan menjerap untuk penyingkiran toksin 

uremik. Pada fasa pertama kajian, nanozarah silika ditambahkan dengan α-mangostin 

semasa sintesisnya melalui teknik sol-gel, untuk meningkatkan biokeserasiannya. 

Nanozarah yang disintesis mempunyai ciri silika berliang meso Santa Barbara 

Amorphous-15 (SBA-15) dengan julat saiz zarah sebanyak 15-25 nm, seperti yang 

disahkan oleh spektroskopi inframerah transformasi Fourier (FTIR), analisis saiz 

zarah, difraksi serbuk sinar-X (XRD) dan mikroskop elektron transmisi (TEM). Kajian 

penjerapan toksin uremik terikat protein, iaitu p-kresol, dan kajian aktiviti antioksidan 

dilakukan, dimana pengaruh penambahan α-mangostin diselidiki. Nanozarah silika 

menunjukkan muatan penjerapan p-kresol tertinggi sebanyak 198 mg/g, diikuti oleh 

nanozarah silika yang mengandung 5 wt% α-mangostin (186 mg/g) dan 2 wt% α-

mangostin (179 mg/g). Nanozarah silika dengan 5 wt% α-mangostin memanjangkan 

masa pembekuan darah sebanyak 21.5% dan menyekat pembentukan spesies oksigen 

reaktif sebanyak 36% berbanding dengan nanozarah silika. Penambahan α-mangostin 

meningkatkan sifat antioksidan dan mengekalkan keupayaan penjerapan p-kresol yang 

baik pada nanozarah silika. Pada fasa kedua kajian, nanozarah silika dan silika/α-

mangostin dimasukkan ke dalam membran PSf, secara individu, dimana kesannya 

terhadap sifat permukaan, muatan penjerapan dan biokeserasian membran ditentukan. 

Hasil kajian menunjukkan bahawa membran yang dimasukkan dengan 2 wt% 

nanozarah silika/α-mangostin mempunyai sudut sentuh air yang berkurang sebanyak 

12.5%, menunjukkan peningkatan hidrofilik permukaannya. Selain itu, kemasukan 

nanozarah silika/α-mangostin meningkatkan muatan penjerapan p-kresol membran 

sebanyak 20.9% dengan nilai 56 mg/g. Silika/α-mangostin juga meningkatkan aktiviti 

hapus sisa hidrogen peroksida dan nitrogen oksida, masing-masing sebanyak 61.8% 

dan 36% dan menyekat pembentukan C5a sebanyak 27.3%. Pada fasa akhir kajian, 

membran DLHF yang terdiri daripada kombinasi lapisan dalam dan luar yang 

berlainan telah disediakan. 2 wt% silika dan karbon aktif (AC) dimasukkan ke dalam 

lapisan luar membran, secara individu, untuk memberikan sifat antibakteria pada 

membran. Berbanding dengan membran gentian berongga lapisan tunggal, membran 

DLHF menunjukkan peningkatan penolakan albumin serum bovin (BSA) sebanyak 6-

8%. Membran DLHF dengan kombinasi nanozarah silika/α-mangostin di dalam 

lapisan dalam dan AC di dalam lapisan luar mempunyai penyingkiran urea dan 

kreatinin tertinggi sepanjang 4 jam penapisan. Nanozarah silika/α-mangostin 

menggalakkan interaksi membran dengan urea dan kreatinin melalui penjerapan 

kimia. Selain itu, AC di dalam lapisan luar membran DLHF berjaya menapis bakteria 

melalui pemerangkapan bakteria. Membran tersebut menunjukkan keupayaan 

antibakteria tertinggi terhadap Escherichia coli dan Staphylococcus aureus, masing-

masing dengan kadar antibakteria sebanyak 68% dan 75%. Membran DLHF yang 

bioserasi dan menjerap berjaya dibangunkan untuk penyingkiran toksin uremik yang 

selamat dan berkesan dalam aplikasi hemodialisis.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Kidney failure has been affecting more than 750 million people worldwide and 

in Malaysia this disease has increased progressively each year with an average of 

13.2% annual increase of treated kidney failure from 2003 to 2016 (Division et al., 

2018). End stage renal disease (ESRD) patients are the people whose kidney has partly 

or completely lost its function, and because of that, they need to do dialysis or kidney 

transplant to sustain their life. Approximately 98.7% of ESRD patients choose 

haemodialysis procedure as their prominent treatment as the chance for having a 

kidney transplant is very slim (Ministry of Health Malaysia, 2018). Malaysian Dialysis 

and Transplant Report estimated that by 2020, more than 51,000 patients on dialysis 

in Malaysia (Ministry of Health Malaysia, 2018).  

In the past five decades, haemodialysis treatment kept on evolving in sustaining 

kidney patient health. Membrane technology has been used to mimic the renal function 

and prolong the patient’s life (Kim et al., 2015; Eswari and Naik, 2020). Tens of 

thousands of hollow fibre membrane, whose properties determine the quality of the 

blood filtered, are potted inside a membrane module known as haemodialyser, which 

is the heart of haemodialysis treatment (Ma, Khan and Hussain, 2019). The 

implementation of membrane technology in blood purification applications has been 

vital (Ronco and Clark, 2018). Blood purification is achieved by regulating impure 

blood flow through the lumen of hollow fibre membrane while an electrolyte solution, 

namely dialysate flows in a counter-current direction outside the membrane (Baldwin 

et al., 2016). Due to the concentration difference, uremic toxins like urea, creatinine 

etc. are filtered out from the blood through the porous structure of the membrane into 

the dialysate while water and electrolytes like sodium chloride from the dialysate move 

into the blood (Eswari and Naik, 2020). In addition, the membrane facilitates the 
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filtration without the loss of important blood proteins such as human serum albumin 

(Tsuchida and Minakuchi, 2011). The desirable characteristics of hollow fibre 

membranes for haemodialysis application include high flux, excellent selectivity and 

good biocompatibility (Eswari and Naik, 2020). 

Since the first invention of haemodialyser back in 1943 by Willem Kolff, 

biocompatibility issue has become a major concern (Gautham et al., 2013; Pandit, 

Planell and Navarro, 2013). Haemodialyser is repeatedly used and even a small event 

that repeatedly occur each time may cause undesirable side effects such as chronic 

inflammation (Yamashita and Sakurai, 2015). Interactions may occur between blood 

and the membranes as the membranes are not inert, subsequently leading to alterations 

in blood elements (Felgueiras et al., 2018). Blood interaction with the membranes 

could also lead to the development of protein adsorption (Kyriakides, 2015; Felgueiras 

et al., 2018). When protein adsorption occurs, body immune system will activate the 

defence mechanism and develop events such as thrombosis, infection, and 

inflammation (Mariani et al., 2019; Labarrere, Dabiri and Kassab, 2020; Prasadh, 

Ratheesh and Wong, 2020). Biocompatibility of haemodialysis membranes is mainly 

affected by these interactions.  

Even though various types of haemodialyser have been developed, CKD 

patients are still facing with multiple clinical complications such as heart disease, bone 

disease, amyloidosis and nerve damage (Arnold et al., 2016). These diseases have been 

associated with the existence of the small molecule uremic toxins in the patients 

especially in cardiovascular events. Cardiovascular disease has been responsible for 

approximately half of the deaths of haemodialysis patients. The presence of small and 

middle molecule uremic toxins problems in blood can be solved using a high flux 

haemodialyser which consists of membranes with bigger pore size and increased 

applied convection. However, the increase in applied convection does not improve the 

removal of protein bound uremic toxins. Due to its affinity to protein, this class of 

uremic toxins is hardly removed using conventional haemodialysis membranes. It is 

also found that most protein bound uremic toxins are carcinogenic and could affect the 

renal patient’s mortality (Dhondt et al., 2000). To date, many studies focused on 

removing protein bound uremic toxins using sorbent hemoperfusion. This method 
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utilises adsorption process using nano porous adsorbents, in direct contact with blood, 

to remove the uremic toxins (Park et al., 2016). However, most adsorbents are bio-

incompatible as they promote platelet activation and thus increase the risk of blood 

clotting (Park et al., 2019). 

Biocompatibility of the materials used to prepare haemodialysis membrane is 

paramount to prevent from producing adverse health effects to the renal patients. Bio-

incompatibility between membrane polymer and blood sample will cause a rapid 

adsorption of protein onto the membrane surface due to the hydrophobicity of 

polymeric and eventually platelets coagulation will occur on the surface of membrane. 

Besides, membrane fouling can happen due to the adsorption of non-polar solutes and 

hydrophobic bacteria on the membrane surface. This fouling problem will reduce the 

lifetime expectancy of the membrane. Thus, in this study, the polymeric membrane 

was modified by blending with hydrophilic polymer such as polyvinylpyrrolidone 

(PVP) and incorporating inorganic particles to overcome the limitations of polymeric 

membrane. 

Furthermore, haemodialysis patients are exposed to approximately 300 – 600 

L of water (dialysate) a week during the haemodialysis treatment (Coulliette and 

Arduino, 2013). This high exposure to water increases the possibility of contamination 

to waterborne pathogens during the treatment. Hence, the quality of dialysate is one of 

the important factors that needs to be taken seriously. Bacterial endotoxin in dialysate 

may pass through haemodialysis membrane into the patient’s blood and cause a silent 

chronic microinflammation to the kidney patients. The interaction between endotoxin 

and blood may potently initiate the activation of pro-inflammatory cytokines from 

monocyte (Abe et al., 2017). High concentration of cytokines (Interleukin‐1, 

Interleukin‐6 and TNF‐alpha) may induce acute and chronic side effects to the 

haemodialysis patients. 

Recently, there were few attempts to utilise mixed matrix membrane (MMM) 

for haemodialysis application. The incorporation of inorganic nanomaterial in 

polymeric membrane has shown promising results in terms of the separation 

characteristic and performance. Silica nanoparticle is biocompatible, chemically 
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stable, and highly adsorptive. Based on a review done by Weber et al. (2018), a small 

portion of silica adsorbed to the surface of erythrocytes without altering the cell 

membrane or morphology (Weber et al., 2018). Furthermore, silica has been widely 

used in cosmetics as well as food additives. Hybrid silica and other organic/inorganic 

materials have also been safely used in various applications including enzyme 

encapsulation. 

1.2 Problem Statement 

The advancement in the development of haemodialysis membrane has 

provided better removal of uremic toxins for end-stage renal disease patients. The 

manipulation of the pore size and permeability of the membrane producing high flux 

hemodialyzer that are able to remove widest range of uremic toxins by allowing high 

fluid flow and convective transport. Urea normal level in the blood for a healthy 

person, in general is approximately around 7 – 20 mg/dL (Amin et al., 2014). 

Meanwhile, the normal range for creatinine in the blood is approximately around 0.84 

– 1.21 mg/dL. In addition, accumulation of p-cresol in blood has been associated not 

only in the progression of chronic kidney disease, but also in the development of 

cardiovascular disease among haemodialysis patients. Elevated concentration of these 

uremic toxins indicated impaired kidney function (Kaysen, 2001; Meijers et al., 2008). 

At the same time, there are proteins that need to be retained during haemodialysis 

ranging from size 64-66 kDa (Tanaka et al., 2014). Clearance of these uremic toxins 

and retention of protein through semi-permeable haemodialysis membrane need to be 

achieved. However, there are concern in the use of high flux hemodialyzer as water 

pathogens can enter from the dialysate into the blood by back filtration (convective 

transfer) and back diffusion (movement down the concentration gradient). In 

conventional haemodialysis centre setting, dialysate undergo water treatment and 

ultrafilter/endotoxin-retentive filter to remove bacteria and endotoxin by using a 

positively charged filter surface and size exclusion prior delivery to the hemodialyzer. 

The delivery of dialysate into hemodialyzer can either be indirect or direct system. 

Indirect system is preferable and safer as the water constantly circulate through reverse 

osmosis treatment and ultrafilter, even when the machines are in not use. While direct 
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delivery system is one way system and water become stagnant when the machines are 

in not use. Consequently, stagnant water contributes to the formation of 

microbiological biofilm. Unfortunately, poor dialysate delivery system of using direct 

system and poor maintenance in some developing countries are unavoidable. 

In recent years, some strategies to retained and removed endotoxin from the 

dialysate have been studied by using sorbent or adsorptive membrane. Dialysate 

passed through these adsorptive filters before entering the hemodialyzer. Based on the 

study done by Das et al., activated carbon also showed good bactericidal or killing 

percentage against the commonly available waterborne pathogen Escherichia coli 

(around 43%) even without incorporation of any metals in it (Cai et al., 2017; Geremia, 

Bansal and Stamatialis, 2019). However, direct contact of activated carbon with blood 

may induce bio-incompatibility of the membrane (Tijink, Wester, Sun, Saris, L. A. M. 

Bolhuis-Versteeg, et al., 2012a). Therefore, the idea of developing dual-layer hollow 

fibre (DLHF) membrane which consist of AC on the membrane outer layer was 

proposed (Fahmi et al., 2018) to prevent direct contact of AC with blood. The 

membrane will be thick and high concentration of AC with antibacterial properties was 

concentrated on the outer layer of the membrane to inhibit the bacteria or endotoxin 

transfer. Geometrical structure of membrane fibre plays an important role in the ability 

of the membrane to inhibit bacteria or endotoxin transfer. A study done by Henrie et. 

al. stated that there is presence of endotoxin in the blood circuit sample of mostly 

available haemodialysis membrane in the market except for thick-wall membrane 

(Henrie et al., 2008).  

To achieve both biocompatible membrane with better clearance of uremic 

toxins and prevention of bacterial penetration into blood compartment, DLHF 

membranes with different outer layer composition was developed. Novel 

biocompatible silica/α-mangostin nanoparticle was incorporated into the inner layer of 

the membrane to enhance the biocompatibility of the membrane when in contact with 

blood while maintaining its adsorption capacity. Silica is a good adsorbent towards 

both urea and creatinine. Hiue et al. showed that silica (modified mesoporous silica 

SBA-15) has the adsorption capacity for urea and creatinine, 1644.7 and 181.7 mg/g, 

respectively (Hieu et al., 2021). Hassankhani et al. proved that silica nanoparticle has 
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no hematological, histopathological or biochemical alterations in various organs. 

However, 10 – 15 nm silica nanoparticles are able to exert toxic effects (Hassankhani 

et al., 2014). Thus, some modification on the silica nanoparticles with alpha mangostin 

was done to enhance its biocompatibility (Kankala, Lin and Lee, 2020). Alpha 

mangostin is a bioactive compound that can be extracted from mangosteen pericarp 

(Ghasemzadeh et al., no date). It has various pharmacological activities, including 

antioxidant, anticancer, anti-inflammatory, and antimicrobial (Ngawhirunpat et al., 

2010; Aizat, Jamil and Ahmad-hashim, 2019). The presence of this bioactive 

compound at the membrane surface can enhance the biocompatibility of the 

membrane, hence minimizing the biocompatibility issues of haemodialysis membrane. 

AC were incorporated in the outer layer of the membranes and bacteria filtration for 

the membrane was done.  To avoid delamination of DLHF membrane, PSf polymer 

was used as the main polymer for both inner and outer layer of the membrane. The 

morphological structure, performances of the membrane to remove uremic toxins (urea 

and creatinine) and the bacteria filtration capability of the membrane were evaluated 

and compared to single layer hollow fibre membrane. A summary of this whole study 

is shown in Figure 1.1. 

 

Figure 1.1 Illustration showing the summary of the whole study 
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1.3 Research Objectives 

The main objective of this study is to fabricate a biocompatible, adsorptive and 

antibacterial PSf based DLHF membrane embedded with inorganic particles via a 

single-step co-extrusion technique for haemodialysis application. The specific 

objectives of this study are: 

(a) To assess the effect of silica nanoparticle modification with α-mangostin at 

various concentrations on the nanoparticle biocompatibility and adsorption 

capacity towards p-cresol. 

(b) To investigate the effect of silica and modified silica nanoparticles addition on 

the separation performance, adsorption capacity and biocompatibility of the 

resultant single layer hollow fibre (SLHF) membrane. 

(c) To examine the effect of different combinations of inner and outer layer 

compositions on the dialysis performance and antibacterial property of the 

resultant DLHF membrane. 

 

 

 

 

1.4 Scopes of the Study 

(a) Studying the effect of silica nanoparticle modification with α-mangostin at 

various concentrations on the nanoparticle biocompatibility and adsorption 

capacity towards p-cresol.  

i. Synthesising silica nanoparticle via sol-gel process and modifying the 

silica nanoparticle during the process via the addition of 2 and 5 wt% 

α-mangostin to form silica/α-mangostin nanoparticle. 

ii. Characterising silica and silica/α-mangostin nanoparticles by analysing 

the chemical functionality, particle size and surface charge 

measurement, crystalline structure, pore and surface analysis, 

surface/cross-section morphology and elemental composition. 
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iii. Conducting the adsorption isotherm studies of p-cresol on the silica and 

silica/α-mangostin nanoparticles by varying the initial p-cresol 

concentration (0-250 mg/L) and studying the effect of contact time (0-

24 hours) on the p-cresol adsorption capacity. 

iv. Determining the biocompatibility of silica and silica/α-mangostin 

nanoparticles by analysing the nitric oxide (NO) and hydrogen peroxide 

(H2O2) scavenging activities and the blood clotting time. 

(b) Investigating the effect of silica and modified silica nanoparticles addition on 

the separation performance, adsorption capacity and biocompatibility of the 

resultant SLHF membrane. 

i. Preparing several dope solutions containing 18 wt% PSf, 3 wt% PVP 

and different loadings of silica or silica/α-mangostin nanoparticles (0, 

1 and 2 wt%) using N-methyl-2-pyrrolidone (NMP) as solvent. 

ii. Fabricating SLHF membranes of different nanoparticles (silica and 

silica/α-mangostin) via the dry-wet spinning technique at 50 cm air gap 

distance, 8 ml/min inner dope extrusion rate (DER), 8 ml/min bore fluid 

flow rate and 4 rpm take-up speed. 

iii. Examining the morphology of SLHF membranes by scanning electron 

microscopy (SEM), surface hydrophilicity using contact angle 

goniometer, water permeability and bovine serum albumin (BSA) 

rejection. 

iv. Evaluating the separation performance of SLHF membranes in terms 

of urea and creatinine removal by filtration at the pressure of 0.5 bar 

using crossflow filtration system. 

v. Determining the adsorption capacity of SLHF membranes on p-cresol 

by varying the initial p-cresol concentration (0-250 mg/L) and studying 

the effect of contact time (0-24 hours). 
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vi. Conducting the dynamic adsorption-filtration performance of SLHF 

membranes for p-cresol removal by filtration of 500 ppm p-cresol 

solution at 0.5 bar for 20 minutes time intervals. 

vii. Evaluating the biocompatibility of SLHF membranes based on the 

results of platelet adhesion, NO and H2O2 scavenging activity, and 

human complement fragment 5a (C5a) activation. 

(c) Examining the effect of different combinations of inner and outer layer 

compositions on the dialysis performance and antibacterial property of the 

resultant DLHF membrane. 

i. Preparing inner dope solutions containing 18 wt% PSf, 3 wt% PVP, 

and the optimised silica/α-mangostin nanoparticle composition, and 

several outer dope solutions containing 18 wt% PSf, 5 wt% PVP and 2 

wt% different types of inorganic particle (silica or activated carbon), 

using NMP as solvent. 

ii. Fabricating DLHF membranes with different combinations of inner and 

outer layer compositions via one-step co-extrusion technique using a 

triple orifice spinneret at 50 cm air gap distance, 8 ml/min inner dope 

extrusion rate (DER), 1 ml/min outer DER, 8 ml/min bore fluid flow 

rate and 4 rpm take-up speed. 

iii. Characterising the DLHF membranes in terms of morphology, surface 

hydrophilicity, water permeability and BSA rejection. 

iv. Conducting 4 hours of dialysis experiment on the DLHF membranes 

using a feed solution containing a mixture of red blood cell, 0.9% saline 

solution, 1500 ppm urea, 1000 ppm creatinine, 500 ppm p-cresol and 

500 ppm BSA. 

v. Evaluating the antibacterial property of the DLHF membranes by in-

vitro filtration using dialysate contaminated with approximately 1 – 2 

x 108 CFU/mL bacterial culture of E. coli and S. aureus as feed. 
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1.5 Significance of the Study 

The rationale of this research is to explore the development of biocompatible 

and adsorptive membranes for haemodialysis application. This study would have 

brought upon a huge importance towards multiple fields of research which includes 

nanotechnology, membrane technology and nephrology. The primary outcome of the 

research would benefit the scientific community in the sense of filling in the 

knowledge gap in those fields. The employment of biocompatible organic-inorganic 

nanofiller in hemodialysis membrane for instance could progressively diversify its 

potential in this biomedical-device application. The ingenious approach which 

combined both unique properties of inorganic nanoparticle and versatility of polymer 

as a host showed great potential to combat the biocompatibility issues commonly faced 

by polymeric membranes. In addition, the research on haemodialysis membranes in 

Malaysia is still at early stages and there is no large-scale initiative to utilise local 

experts in membrane technology for haemodialysis application. Hence, this novel 

invention is believed to become a steppingstone which could provide a valuable 

information for membranologists and lead the way to further study.  The aftermath of 

the research will also benefit the ESRD patients by providing a biocompatible 

haemodialysis membrane that is capable and reliable to perform exceptional blood 

purification with minimal adverse effect. Therefore, this research’s long-term target is 

to develop a locally made dialyser equipped with a highly efficient membrane to 

sustain the current demand, especially in Malaysia. Triggered by the general 

necessities of serving the social community, the study would attract companies that 

manufacture or supply medical equipment as a platform to patent and market the 

product.  

1.6 Organisation of Thesis 

The thesis consists of 7 chapters altogether. Chapter 1 outlines brief 

information on the current issues that are related to haemodialysis and the purpose of 

conducting this research. The objectives, scopes and the significance of this study have 

also been highlighted in this chapter. Chapter 2 includes a comprehensive review on 
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how membrane works in haemodialysis treatment, haemodialysis membrane 

compatibility with blood and current membrane technology in removing uremic toxins 

for haemodialysis application. Chapter 3 describes all the materials, experimental set 

ups, working procedures and characterisation methods that were used in this study. 

Results and discussion were elaborated in Chapter 4 – Chapter 6. Chapter 4 

discusses the effect of silica nanoparticle modification via the incorporation of 2 wt% 

and 5 wt% α-mangostin, on the p-cresol adsorption capacity and the in-vitro 

biocompatibility of the nanoparticle. The optimum α-mangostin weight percent was 

selected and was used to fabricate the SLHF membranes in Chapter 5. Chapter 5 

focusses on the effect of silica and modified silica nanoparticles addition on the 

separation performance, adsorption capacity and biocompatibility of the SLHF 

membranes. The optimum SLHF membrane composition was then used for the 

preparation of DLHF membrane inner layer in Chapter 6. The development of DLHF 

membranes consisting different combinations of inner and outer layers were prepared 

in Chapter 6. The effect of silica and activated carbon incorporation in the outer layer 

on the dialysis performance and antibacterial property of the DLHF membranes were 

addressed. To conclude this thesis, the general conclusion of this study and some 

recommendations for future work have been listed in Chapter 7. 
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