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ABSTRACT 

 

 

 

Skin burn injury is common among firefighters despite being encapsulated in the 

personal protective clothing. However, it is complex to predict skin burn during actual 

firefighting scenarios due to complex clothing geometries and thermal hazard 

environment. The objectives of this research were to develop a heat transfer model for 

predicting skin burn injury for firefighters and identify the causative factors affecting 

skin burn. A heat transfer model of a multilayer personal protective clothing furnished 

with human skin was developed using the Finite Element Method. The model 

considered bioheat equations that includes metabolic heat generation and blood 

perfusion for predicting skin burn injury. The model employed a quarter cylinder 

(radial) geometry to represent human limb overlays with Aralite material under wet 

and dry conditions. The factors such as air gap, heat flux and vapour were considered 

in skin burn analysis. The validation of the model was carried out by comparing skin 

temperatures at specified positions based on the published experimental data. The 

percentage error is less than 17% which is acceptable according to ASHRAE's 

prescription. The result shows that air gap thickness of 1 mm able to reduce the skin 

temperature by 10°C and the skin temperature can be reduced further as the air gap 

thickened. In dry conditions, each 1000 W/m2 increment of heat flux will increase the 

skin temperature by 2°C. While, in wet condition, a significant increase of 4°C of the 

skin temperature was observed for every 1000 W/m2 increment due the material 

properties of the personal protective clothing when it was altered and enhanced heat 

transfer across multiple layers of wet fabric. The presence of vapour under a constant 

heat flux of 7000 W/m2 for 25 seconds increases the skin temperature by 10°C. Based 

on transient heat transfer analysis, it was observed that steam burn injury occurred due 

to vapour. The research had developed a parametric study based on the three causative 

factors specifically for Aralite material. The model could benefit designers in 

producing and improving protective personal clothing for firefighters. 
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ABSTRAK 

 

 

 

Kecederaan kulit terbakar adalah kecederaan biasa dikalangan anggota bomba 

walaupun mereka telah memakai pakaian peralatan perlindung diri. Namun begitu, 

sukar untuk meramalkan kecederaan kulit terbakar kerana geometri pakaian yang 

kompleks dan bahaya tegasan haba di persekitaran. Objektif kajian adalah untuk 

membangunkan model pemindahan haba bagi meramalkan luka terbakar dikalangan 

anggota bomba dan mengenalpasti factor yang memberi kesan kepada luka terbakar. 

Model pemindahan haba terdiri daripada lapisan pakaian pelindung diri dan kulit 

manusia menggunakan teknik Finite Element Method. Kajian ini menggunakan 

persamaan bio haba untuk menentukan suhu permukaan kulit manusia dengan 

mengambil kira pengaruh kadar metabolik and kadar aliran darah. Model yang 

dicadangkan ialah dalam bentuk geometri suku silinder (radial) yang mewakili bentuk 

tangan dan kaki manusia menggunakan bahan Aralite di bawah keadaan kering dan 

lembap. Kajian ini disahkan melalui perbandingan hasil kajian model penyelidik yang 

lain. Nilai ralat kurang dari 17% mematuhi nilai yang ditetapkan oleh ASHREA. 

Faktor seperti ruang udara, fluks haba dan kelembapan diambilkira dalam analisis kulit 

terbakar. Keputusan menunjukkan peningkatan ketebalan ruang udara sebanyak 1mm 

dapat menurunkan suhu permukaan kulit sebanyak 10°C. Suhu permukaan kulit 

berkurang sekiranya ruang udara semakin tebal. Dalam keadaan kering, kenaikan fluks 

haba 1000W/m2 menyebabkan peningkatan suhu permukaan kulit sebanyak 2°C. 

Manakala dalam lembap setiap kenaikan fluks haba 1000W/m2 menyebabkan 

peningkatan 4°C suhu permukaan kulit. Kehadiran wap di bawah fluks haba 

7000W/m2 yang tetap selama 25saat akan meningkatkan suhu sebanyak 10°C. Ini 

kerana perubahan sifat bahan and peningkatan pemindahan haba melalui lapisan fabrik 

yang lembap. Berdasarkan analisis pemindahan haba dalam keadaan transient, hasil 

kajian mendapati kehadiran wap menyebabkan berlakunya kejadian luka terbakar 

akibat stim. Kajian ini telah membangunkan kajian parametrik berdasarkan tiga faktor 

utama untuk bahan Aralite. Model ini sangat bermanfaat untuk membuat dan 

memperbaiki rekaan pakaian pelindung diri dikalangan anggota bomba. 
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CHAPTER 1 

 

 

 
Introduction 

 

 

 

 

1.1 Introduction 

 

 
This chapter identifies the objectives, problem statement, scopes and the 

significance of the study. The chapter presents the firefighter’s thermal hazard during 

work duty. This chapter elaborates briefly the current methodology to evaluate 

effectiveness of the flame-retardant material and limitations. 

 

 

 
1.2 Research Background 

 

 
The personal protective clothing is worn to protect against thermal hazards. In 

firefighting, the firefighters are often exposed to extreme heat of radiant, flame, hot 

gases, steam and explosions. It is very complex to predicts in the firefighting situation 

because there are factors that need to be considered. In United States, approximately 

100 firefighters suffered from critical injuries. There are more than 30000 firefighters 

subjected to injuries during fire suppression (Karter, 2009). The most common areas 

suffered from burn injuries is in the head, human limb, neck and shoulder (Karter, 

2012). It is found that scalds burns of 65% is one of the common injuries followed by 

flame burns and the remaining 15% suffered from compression burns (Kahn et al., 

2012). 

 

The type of burn degree is classified by the depth of skin injuries. The first 

degree burns are injuries that only affect the outer layer of the skin surface known as 

the epidermis. The second degree burn is identified as the wound that penetrates across 

the dermis. The third degree burn occurs from the epidermis and dermis penetrating 

through the major third layer of the skin known as the hypodermis (Singer et al., 2014). 

In order to protect humans against burn injuries, protective clothing is worn. The flame 

1 



 

retardant material comprises of the outer shell, moisture barrier and the thermal liner. 

The outer shell is the outmost layer of the fabric that is directly in contact with the fire. 

It is made of Aramid fibre named as Nomex (Hamouda, 2005). The second layer of 

the fabric is moisture barrier that made of light knitted fibre coated with the outer shell. 

The thermal liner is the third layer of the fabric that avoids heat transfer penetrating 

through the skin (Lawson et al., 2005). Despite encapsulated by the flame-retardant 

material, burn injury still occurred in firefighting. 

 

Heat flux transmitted from these thermal hazards in firefighting scenario ranges 

from 20 – 160 kW/m2 and usually occurred during extreme fires and explosions (He 

et al., 2017). Barr et al. (2010) discovered that the tolerance time for the existing 

protective clothing that can be sustained by a human under heat flux within 5 to 20 

seconds only. Heat transfer by radiation is frequently present in all the thermal hazards. 

Skin burn injuries can occur under low radiation intensity of heat flux ranging from 5 

kW/m2 to 20 kW/m2 (Barr et al., 2010). The presence of moisture strongly affects burn 

injury, as water used to suppress fire and sweat profusion is absorbed through the 

clothing layers. It alters the material thermal conductivity and specific heat capacity 

enhanced heat transfer to the skin. Skin burn injury is more severe with moisture rather 

than with dry clothing material (Keiser, 2007; Keiser et al., 2008; Keiser & Rossi, 

2008; Keiser et al., 2010). Furthermore, these exposure causes burn injuries are usually 

taken within minutes of heat exposure (Holmér et al., 2006a). 

 

The prediction of skin burn can be done by using heat transfer analysis with 

the mathematical model and experimentation. Both are designed to represent the 

human skin but predicting the burn injury is extremely difficult because there are many 

factors affecting burn injuries. However, the prediction of skin temperature can be 

done if human skin material properties and its material properties are known. Previous 

researchers utilized bench scale test (G. W. Song et al., 2011) and thermal manikin 

(Bröde et al., 2008; Ming Fu et al., 2015; Havenith et al., 2006; Havenith et al., 2005; 

Qian & Fan, 2006; Sun & Fan, 2017). These are done using a specimen of flame- 

retardant material under continuous fire to determine the skin temperature. Current 

experimentation is inaccurate as it does not consider the heat gained from metabolic 

heat to the surrounding skin tissue. However, it is unsafe to use human subject in 
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experimentation. Therefore, this research will adapt mathematical model from Pennes 

(1948) bioheat equation in predicting human skin temperature with the blood perfusion 

and the metabolic heat generations. 

 

Moisture significantly affects the protective clothing thermal protection. 

According to Keiser and Rossi (2008) steam burn injury occur in wet condition under 

continuous heat exposure. This causes enhancement of heat transfer across the 

multilayers fabric developing evaporation and vaporization of moisture. Firefighting 

requires spraying of water on flame to control fire. This form external source of 

moisture. While internal moisture source comes from sweating (Keiser & Rossi, 2008). 

 

In this research, a new approach is developed to predict burn injury of personal 

protective clothing in wet and dry material condition by using the bioheat equation and 

finite element analysis. 

 

 

 
1.3 Problem Statement 

 

 
The current method of predicting skin burn injury is done by using 

experimental method such as bench scale test, thermal manikin test and test method 

for wet sample. These methods produce unreliable outcome as they do not represent 

the behaviour of human skin. 

 

The human skin temperature is not constant. It is affected by blood perfusion, 

human activities and surroundings conditions. The blood perfusion is influenced by 

the clothing type and wetness. Human activities are affected by the metabolic rate. The 

surrounding conditions such as the combination of moisture and heat can cause steam 

burn injury. Therefore, a model that can predict the human skin temperature without 

using the human experimentation need to be developed. 

 

There are a number of researchers who developed mathematical model to 

predict burn injury using one dimensional plane geometry. However, this geometry is 

not representative of the human limbs because it consists of cylindrical geometry 

3 
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where the heat transfer is in radial direction. Thus, a quarter cylindrical geometry 

model has to be developed for a reliable representation of the human limbs in order to 

predict skin burn. 

 

 

 
1.4 Research Question 

 

 
The research questions are as follow: 

 

 

         How to predict firefighter’s skin burn injury? 

 
         What are the causative factors affecting skin burn? 

 
How will moisture in flame retardant material affect skin burn injury ? 

 

 

 

 

 

 

 

 

1.5 Research Objectives 

 

 
The objectives of the study are to: 

 

 

         Develop heat transfer model for predicting skin burn injury. 

       Determine the causative factors affecting skin burn. 

Develop a parametric study for Aralite material. 
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1.6 Research Scope 

 

 
The scopes of the research are as follow: 

 

 

         The heat transfer model developed will be based on the Aralite material under 

sedentary position. 

 

         The causative factors affecting skin burn that will be studied are the air gap 

thickness, heat flux and moisture. 

 

The parametric study of the Aralite material is under wet and dry conditions. 
 

 

 

 

 

 

 

 

1.7 The Significance of the Research 

 

 
The proposed model can predict burn injury with consideration of blood 

perfusion and metabolic heat generation by using Pennes bioheat equation. This is a 

better representation of the human skin. The proposed model can replace exhaustive 

experimentation. 

 

The proposed model enables the study of the combined effect of moisture, air 

gap thickness and the heat flux. These are the most significant factors that influenced 

the formation of the skin burn injury. Furthermore, it can predict the occurrence of 

steam burn injury under moisture of wet condition. 

 

Previously researchers have used numerical method to predict firefighter’s skin 

temperature, but they only considered one dimensional plane geometry. However, the 

proposed model is in one dimensional quarter cylinder (radial) geometry that better 

represents the human limb and produce reliable outcome in predicting the skin 

temperature. 
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The proposed model can be a tool to assess the effectiveness of the protective 

clothing specifically Aralite material. The model provides systematic procedure and 

method to assess thermal performance of the flame-retardant material. The proposed 

model can simulate the thermal hazards that caused skin burns under wet and dry 

conditions. This can provide understandings of heat transfer mechanisms across the 

fabric in preventing occurrence of burn injury during firefighting. 

 

 

 
1.8 The Outline of the Thesis 

 

 
Chapter 1 is the introductory of the study to comprehend the thermal hazards 

of firefighters. It elaborates the methods used to evaluates the flame-retardant material 

and its limitations. The chapter presented problem statement, research objective and 

the importance of the research. 

 

Chapter 2 is the literature review of the study. It discusses the material and 

structure of the protective garments. The significant factors that have effects on skin 

burn injury are identified based on findings of past researchers. The current methods 

and limitations that are used to predict skin burn is emphasized. 

 

Chapter 3 presents the methods of the research in chronological order. The 

materials and procedure in determining skin burn are also presented in this chapter. 

 

Chapter 4 discusses the development of the proposed model in determining the 

firefighter’s skin burn under wet and dry conditions. This chapter presents the equation 

applied in the model. It also shows the development of finite element model. 

Verification and validation are developed to ensure the model is reliable in predicting 

skin burn. 

 

Chapter 5 discusses the result of the study. The findings from the proposed 

model is presented in this chapter. The significant effect of air gap, heat flux and 

moisture are emphasized in this chapter. 
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Chapter 6 discusses factors affecting skin burn injury. It discusses the 

significant factors affecting skin burn. The threshold of predicted pain, first degree 

burn and second degree burn in body parts are presented in this chapter. 

 

Chapter 7 presents the conclusion of the study. It summarizes the overall 

important outcomes of this research. It also presents the recommendations for future 

work. 



 

Expand wet material database 

 

Currently the gas and liquid absorbed in the clothing material is specifically for Aralite 

material provided by Chitrphiromsri (2005). There are many materials for personal protective 

clothing available in the market such as combination of Meta-aramid, 

Polytetraflouroethylene, Nomex and Kevlar (Lawson et al., 2010). However, there is a lack 

of data on their porosity and absorption characteristics. During firefighting, sweat is produce 

excessively due to strenuous physical activities (Holmér et al., 2006b). The amount of sweat, 

liquid and gas absorbed in the material differ depending on the materials porosity. Therefore, 

it is crucial to conduct further experiment to have more information on the amount bound 

water, liquid and gas due to the evaporation process for these materials. The amount of bound 

water, liquid and gas will affect the material properties, thermal performance and tolerance 

time to burn injury. Therefore, there is a need to expand the thermal protective clothing 

performance database in wet condition. This will provide a proper guidance for users and the 

thermal protective clothing designers to provide better protection against heat and fire. 

 

 

Compression condition 

 

Compression condition of the multilayer’s fabric is a significant factor to be 

considered in the evaluation tool of the personal protective clothing. The compression 

normally occurs due to human body movement such as crawling and kneeling motion 

resulting in skin burn. The results show that the skin burn occur faster without air gap. The 

air gap do not appear if the fabric is compressed and there may be reduction in the amount of 

moisture absorbed in the fabric. Compression decreases fabric thickness and air gap hence 

the heat transfer rate will rise and reduces threshold for burn injury. Therefore, there is a 

necessity to study compression effect to the skin burn injury. 
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