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ABSTRACT 

The performance of heat exchangers can be altered to perform specific heat-

transfer tasks via heat transfer augmentation techniques. These techniques can be 

divided into two groups that are active and passive. This study involved numerical 

and experimental investigation of heat transfer enhancement for laminar convective 

flow using a new type of tube insert, namely a helical microcoil in a heat exchanger 

with nanofluid. The research used microtube with 1.5 mm diameter, and three types 

of helical coil, namely circle, oval and elliptical with different diameters and pitches 

((10 mm, 14 mm, and 18 mm Different types of nanofluids, Al2O3, CuO, SiO2 and 

ZnO, were used as work fluids with different nanoparticle diameters (25, 50 and 75 

nm) and different volume fractions (1%, 1.5%, and 2%). Water was used as the base 

fluid.  The investigation covered Reynolds number in the range of 200 to 1800. 

Based on numerical simulation results, for all helical microcoil configurations and 

different types of nanofluids, experimental work was then developed to determine 

the optimum geometrical structures and parameters, empirical correlations of Nusselt 

Number and to formulate the frictional factor. A computational model using the 

ANSYS-FLUENT 18.0 was developed and evaluated against the experimental 

findings. It showed that helical microtube curvature swirls were an essential 

phenomenon to increase heat transfer. It also showed that the heat transfer and 

friction loss increased as volume fractions of nanofluids and Reynolds number 

increased while nanoparticle diameter decreased. The numerical and experimental 

results were compared, where the results showed a good agreement for different 

parameters. The conclusion is that compared to the straight coil, the helical 

microtube employment resulted in a clear augmentation in heat transfer with a 

certain increase in pressure drop. The highest value of the average Nusselt number 

ratio was 1.35 at Re = 1800 for circle shape with water as coolant. The maximum 

enhancement in heat transfer using nanofluids was around 11% compared to 

traditional fluid (water). The best thermal performance factor was 3.15, which was 

achieved using Al2O3 nanofluid with a volume fraction of 2% at pitch and diameter 

of 18 mm, and the Reynolds number was 1800.   
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ABSTRAK 

Perlakuan sesebuah penukar haba dapat diubah untuk melakukan tugas 

pemindahan haba tertentu melalui teknik augmentasi pemindahan haba. Teknik-

teknik ini boleh dibahagikan kepada dua kumpulan iaitu aktif dan pasif. Kajian ini 

melibatkan penyelidikan berangka dan ujikaji mengenai peningkatan pemindahan 

haba aliran perolakan lamina menggunakan sejenis sisipan tiub yang baharu, iaitu 

gegelung mikro heliks dalam penukar haba digabungkan bersama bendalirnano.  

kajian ini menggunakan tiubmikro berdiameter 1.5 mm, dan 3 jenis  gegelung 

tiubmikro heliks, iaitu bulat, bujur dan elips dengan diameter dan nisbah heliks yang 

berbeza (10 mm, 14 mm, dan 18 mm). Bendalirnano yang berbeza, Al2O3, CuO, SiO2 

dan ZnO dengan diameter nanopartikel (25, 50, dan 75 nm), serta pecahan isipadu 

yang berbeza ( 1%, 1.5%, dan 2%) telah digunakan dalam kajian.  Air telah 

digunakan sebagai cecair asas.  Penyelidikan ini merangkumi nombor Reynolds 

dalam julat 200 hingga 1800. Berdasarkan kepada hasil simulasi berangka, bagi 

semua konfigurasi gegelung mikro heliks dan pelbagai jenis bendalirnano, kajian 

eksperimen dibangunkan untuk menentukan struktur dan parameter geometri yang 

optimum, hubungan empirik nombor Nusselt dan untuk merumuskan faktor geseran.  

Satu model komputeran menggunakan perisian ANSYS-FLUENT 18.0 dibangunkan 

dan dinilai berbanding dengan hasil penemuan eksperimen. Ia menunjukkan bahawa 

pusaran lengkungan tiub mikro heliks adalah satu fenomena penting untuk 

meningkatkan pemindahan haba. Ini juga menunjukkan bahawa pemindahan haba 

dan kehilangan geseran meningkat apabila pecahan isi padu bendalirnano serta 

Nombor Reynolds meningkat, manakala diameter nanopartikel menurun. Dapatan 

dari kajian berangka dan eksperimen telah dibandingkan, di mana hasilnya 

menunjukkan persetujuan yang baik pada parameter yang berbeza. Kesimpulannya 

adalah bahawa jika dibandingkan dengan gegelung lurus, penggunaan tiub mikro 

heliks menghasilkan peningkatan yang jelas dalam pemindahan haba dengan 

peningkatan kejatuhan tekanan tertentu. Nilai tertinggi dari nisbah nombor Nusselt 

secara purata ialah 1.35 pada Re = 1800 untuk bentuk bulatan dengan air sebagai 

penyejuk. Peningkatan maksimum dalam pemindahan haba menggunakan 

bendalirnano adalah sekitar 11% berbanding cecair tradisional (air). Faktor prestasi 

terma terbaik sebanyak 3.15 dicapai dengan menggunakan bendalirnano Al2O3 

dengan pecahan isipadu sebanyak 2% pada nisbah heliks dan diameter  sebesar 18 

mm, dan nombor Reynolds adalah pada 1800. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Heat transfer enhancement is referred to techniques that revolve around 

improving the thermal performance of heat transfer systems. The improvements that 

occur due to these techniques reduce the size and capital cost of heat transfer 

systems. Heat transfer enhancement techniques have been developed and applied in 

many applications such as transportations, air-conditioning systems, cooling systems, 

nuclear reactors, cooling of electronic parts, applications used in space and aviation, 

optical and biomedical applications (Gugulothu et al., 2017). 

The classification for these enhancement techniques is divided into two main 

categories which are active and passive techniques. The active technique requires 

external power such as electric fields, jet impingement, acoustic or surface vibration. 

The passive technique does not require external power; examples include treated 

surfaces, rough surfaces, extended surfaces, coiled tubes, fluid additives (Nanofluids) 

and special surface geometries to the flow channel by incorporating inserts. Two or 

more passive and/or active techniques in the context of the compound technique may 

be used to produce an enhancement higher than each technique operating 

individually (Yilmaz et al., 2003; Sheikholeslami and Ganji, 2015; Vashistha and 

Kumar; 2016, Omidi and Jafari, 2017; Alam and Kim, 2018). 

Nowadays, micro-electronic cooling techniques, the characteristics of fluids 

flow and heat transfer in microtubes and microchannels have received a growing 

interest to improve the thermal treatment in relevant technologies. Microtubes are 

used in shell and tube heat exchanger which is gaining attention in transportation, 

biomedical, automobile industries and space applications such as gas turbines (Nacke 

et al., 2011), integrated circuits (Qian and Wang, 2012), micro-reactors (Šalić et al., 
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2012). Therefore, the design stage of the microthermal devices' and the enhancement 

of heat transfer coefficient of conventional fluids the main issue and challenge in 

developing energy-efficient heat transfer equipment's. The heat transfer rate can be 

improved by introducing a disturbance in the fluid flow (breaking the viscous and 

thermal boundary layers), but in the process pumping power may increase 

significantly and ultimately the pumping cost becomes high. Therefore, to achieve a 

desired heat transfer rate in an existing heat exchanger at an economic pumping 

power, there are several techniques used to improve the thermal performance of heat 

transfer equipment's. In this respect, manipulating the path of the main fluid by using 

helical microtube is one of the best important strategies (enhancement passive 

technique) to improve heat transfer. This technique lead to relatively more compact 

heat exchangers and allows cause secondary flow vortexes which promote higher 

heat transfer coefficients in single phase flows as well as in most regions of boiling 

by improves the fluid mixing and achieves the desired goal of improvement (Bejan et 

al., 2003). In addition liquid additives (nanofluids) exhibit enhanced thermal 

properties and convective heat transfer coefficients compared to conventional fluids 

such as water ethylene glycol and oil engine (Das et al., 2003). Suspension of 

nanoparticles improved the fluid thermal conductivity which consequently enhanced 

heat transfer performance. 

This new type of helical microtube can present a new breakthrough in the 

heat transfer performance against the common smooth micro tube. The outcome of 

the present study not only will advance the development of high efficiency heat 

exchangers and design more compact heat exchanger with a view to minimize the 

overall volume and cost of heat exchanger thus decrease the pumping power required 

for a given heat  transfer process.   
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1.2 Background of Study 

The characteristics of fluids flow and heat transfer in microtubes and 

microchannels have attracted much attention of researchers because of the rapid 

developments of microelectromechanical systems (MEMS). These developments 

have great impacts on the microelectronic cooling techniques, the microheat 

exchanger, bioengineering, human genome project, medicine engineering, etc. It is 

evident that the understanding of the microscale phenomena is very important for 

designing efficient microdevices. 

Several research studies have been implemented experimentally and 

numerically on heat transfer enhancement using different types of nanofluids under 

turbulent flow conditions. Xuan and Li (2003) investigated the turbulent flow 

convective heat transfer via an experiment in a uniform heat flux tube using Cu 

nanofluid with volume fraction of (0-2) %. The heat transfer coefficient was 

increased remarkably with Reynolds Number for all types of fluid tested. The 

Nusselt Number of nanofluid enhanced with volume fraction of nanoparticles is 

improved better than the base fluid under the same Reynolds Number. Maïga et al. 

(2006) have implemented a numerical investigation on the hydrodynamic and 

thermal behaviors of turbulent flow of saturated water and Al2O3 nanoparticles at 

various concentrations, flowing in a uniform wall heat flux boundary condition. They 

found that increasing particles volume fraction into the base fluid has increased the 

heat transfer coefficient, and a drastic effect has been induced on the wall’s shear 

stress when in presence of nanoparticles. Bahremand et al. (2015) in the present 

study, turbulent flow in helically coiled tubes under constant wall heat flux is 

numerically and experimentally investigated. Pressure drop and convective heat 

transfer behavior of water and water–silver nanofluid are studied It was found that 

the utilization of the base fluid in helical pipe with greater curvature ratio compared 

to the use of nanofluid in straight tubes increased heat transfer more effectively. 

Rakhsha et al. (2015)  steady state turbulent forced convection developing flow of a 

CuO nano-fluid inside helically coiled tubes at constant wall surface temperature was 

investigated both numerically and experimentally the applied CuO nano-fluid over 

pure water,The numerical results respectively demonstrate 6–7% and 9–10% 

file:///C:/Users/9776/Desktop/دكتوراه/PhD%20Proposal%20(1)%20-%20Copy.docx%23_ENREF_60
file:///C:/Users/9776/Desktop/دكتوراه/PhD%20Proposal%20(1)%20-%20Copy.docx%23_ENREF_60
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increase in the convective heat transfer and pressure drop of the applied CuO nano-

fluid over pure water. Korpyś et al. (2020)   this work presents experimental and 

CFD simulation results of heat transfer for water and CuO water nanofluid flow 

systems stabilized by capping agents. The experiments were carried out in a helically 

coiled tube in the range of turbulent flow regime with Reynolds numbers from 6000 

to 21968, for practical applications importance.Nusselt number enhancement with 

regard to host liquid was observed, up to 18-35% for nanofluids under investigation. 

in othor words, addition of nanoparticles causes increase in the heat transfer 

coefficient of the nanofluid compared with the base liquid (water) up to 18 - 35%. 

In addition, the effect of flow pulsation when in regards to heat transfer 

enhancement has been studied experimentally and numerically by numerous 

researchers. Xiao et al. (2009) investigated numerically the effects of gas flow in 

microtube. The second-order slip flow and temperature jump boundary conditions 

were applied to solve the    momentum and energy equations in MT for an iso flux 

thermal boundary condition, which means that the heat flux at the boundary is fixed. 

The results indicated that the heat transfer effects associated with the rarefied flow 

were reduced for the second-order model. Nusselt Number was increased relative to 

the values of no-slip when the temperature jump effect was small. Koo and 

Kleinstreuer (2004) investigated experimentally the effects of viscous dissipation on 

the temperature field and the friction factor in a microtube (MT) and microchannel 

(MC). Three working fluids were used, water, methanol and iso-propanol. The 

results indicated that the viscous dissipation effect on the friction factor was 

increased as the system size decreased. For water flow in a tube with D < 50 μm, 

viscous dissipation becomes significant. For liquids, the viscous dissipation effects 

decreased as the fluid temperature increased. Aziz and Niedbalski (2011) used a form 

of numerical experimentation in order to investigate first and second order slip flow 

effects on the thermal development of dilute gas flow in a micro-tube with axial 

conduction and viscous dissipation. Following the results reported particularly for the 

second order slip model, the analytical solution predicts a higher velocity in the 

central region of the flow, but this pattern does not hold the same when it comes to 

the wall region, which is in fact reversed. The Nusselt Number local to the 

experiment was also decreased as the cooled section of the tube would carry the 

fluid. 
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According to the above literature, showed that the presence of the coil tube 

leads to promote heat transfer coefficients. Whereas the presence of nanofluid 

improves the effective thermal conductivity, leading to a significant increase in the 

convection heat transfer coefficient. Thus, the attractive characteristics of nanofluid 

with helical tube heat exchangers as well as the benefits and application of 

microtubes and microchannels have encouraged the current research to propose a 

combination of all three of this element into a single method which encompasses  all 

of the benefits as well as extra ones that are carried on depending on the case that is 

being tested. This can provide even more improvement when compared to the 

individual use of micro coil with nanofluid or microtubes and microchannels 

(MT/MC) with nanofluid flow.  the combination of nanofluid with the new 

configuration for the micro coil tube could be result in a higher degree of 

performance than the other forms of conventional liquids such as water, engine oil 

and ethylene glycol. 

1.3 Statement of the Problem 

Heat transfer enhancement techniques play a vital role in laminar flow since 

the heat transfer coefficient is generally low in plain microtubes. Active and passive 

techniques have been applied to improve heat transfer rates in a wide variety of 

products, which includes tube inserts, duct geometry modifications and drag 

coefficient reducer using some liquid additives. Tube inserts include helical 

microtube inserts, are perhaps the most convenient enhancement passive technique 

devices owing to their better thermal-hydraulic performance in laminar flow heat 

transfer by produce secondary flow vortexes which promote higher heat transfer 

coefficients in single phase flows as well as in most regions of boiling by improves 

the fluid mixing and achieves the desired goal of improvement (Bejan et al., 2003). 

In addition, more compact heat exchangers, easy to fabricate, easy to fit and remove 

in existing heat exchangers. 

 



6 

Thermal conductivity of the heat transfer fluid is an important factor in 

efficiency energy heat transfer equipment. Fluids such as water, oil or even ethylene 

glycol are conventional fluids considered to have   poor and limitation of the 

thermophysical properties, have always been the primary limitation in the 

development of energy-efficient heat transfer fluids. This leads us to the usage of 

other types of fluids that can be used to improve heat transfer. Based on these 

findings, the presence of nanoparticles increases the thermal conductivity without 

significant changes to the chemical and physical properties of the base fluid by 

dispersion of these nanoparticles in the base fluid and due to their higher stability, 

higher heat transfer capabilities and reduced particle clogging (Fsadni and Whitty, 

2016 ; Singh and Gupta, 2016).The nanofluid flow around the micro-coil tube as 

compared with the constant flow of conventional fluid promotes a higher heat 

transfer coefficient. Thus, logic dictates that there can be higher thermal conduction 

and convection if a nanofluid alongside a configuration for the micro-coil tube would 

be significantly higher than the typical fluids alluded to earlier. 

there are no studies of experimental and numerical related to pipe fitted with 

helical micro-coil tube. On the other hand, in the past, when a nanofluid was applied 

as working fluid, geometric structures and parameters of the microtube were not 

examined. Thus, to the best of the authors’ knowledge, the effects of geometric 

structures and parameters on heat transfer characteristics and pressure drop in the 

helically coiled microtube heat exchanger with using nanofluids have not been 

reported. Therefore, this lack of knowledge motivated researchers to conduct this 

investigation. This gap can be fulfilled by incorporation of micro heat exchangers 

with nanofluids for further improved heat transfer rate concerning the individual use 

of a micro-coil or nanofluid flow. 
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1.4 Objectives of the Study 

The major focus of this research is to study the heat transfer and fluid flow 

characteristics induced by compound technique using novel configurations of helical 

microtube inserts with metal and non-metal nanofluids to achieve the following 

specific objectives: 

i. To numerically investigate effects of different parameters on the heat 

transfer and fluid flow characteristics. 

ii. To determine the thermophysical properties of the prepared nanofluids. 

iii. To design and fabricate experimental setup of fully developed flow 

regime to validate the numerical result of CFD simulation with 

experimental data of fully developed flow regime with optimum 

geometrical structures and parameters in (i). 

iv. To develop new correlations for Reynolds Number with Nusselt Number 

and friction factor characteristics prediction for water and nanofluids with 

helical micro coil. 

1.5 Scope of the Study 

In order to achieve the mentioned objectives, the study will consists of the 

following: 

i. The first part deals with the numerical simulation was carried out by using the 

commercial CFD package (ANSYS 18) to study the effect of helical micro 

coil configuration and nanofluid concentration on heat transfer augmentation 

and the friction factor for different values of Reynolds Number ranging from 

200 to 1800 for hot fluid (nanofluids, water) through the micro coil and 5000 

for cold fluid (water) through the shell. Three of helical microtube coil 

namely circle, oval and elliptical geometries with the same pitch-to-diameter 
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ratio (p / d) is 1 and the same number of curvatures. The geometrical 

parameters of helical micro coil heat exchanger helical diameter and pitch 

values are 10, 14 and 18 mm respectively, and different nanoparticles (ZnO, 

SiO2, Al2O3 and CuO) with water as base fluid of different volume fractions 

in the range at 1%, 1.5% and 2% .The diameter of nanoparticles (25, 50 and 

75 nm) are used for investigation.  

ii. The second part of work deals with the preparation and measurement of the 

thermophysical properties  of nanofluids metal oxide (ZnO and Al2O3) with 

nanoparticle diameter 25 nm and volume fraction 1%, 1.5%, 2% because they 

were achieved the highest thermal performance factor than others of 

nanoparticles in the first objective. 

iii. The third part of this work is to design and construct experimental setup of 

fully developed flow regime by using nanofluids (ZnO and Al2O3 )  with 

volume fraction 1%, 1.5% and 2%, nanoparticle diameter 25 nm at laminar 

flow with a range of Reynolds Number from 200 to 1800 through the helical 

microcoil as hot fluid and the Reynolds Number is 5000 through the shell as 

cold fluid, the inlet temperature of the hot fluid is 298 K and the temperature 

of the inlet cold fluid is 360 K, with circle helical micro coil in tube heat 

exchanger with 1.5 mm diameter at optimum helical diameter and Pitch in the 

first objective which is 18 mm and the number of curvatures are 28 mm in 

order to validate numerical results of CFD simulation.  

iv. The fourth part of this work is to develop new correlations for Reynolds 

Number with Nusselt Number and friction factor characteristics prediction  

for Al2O3-water and ZnO-water nanofluids of 1.0%, 1.5% and 2.0% volume 

fraction by using least square regression analysis and SPSS Statistical 

Software package. Circle shape of helical microtube was considered as a coil 

of heat exchanger with ranges of pitch between 10 and 18 and constant 

pitch/diameter ratio under laminar flow at Reynolds number from 200 to 

1800. 
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1.6 Significance of the Study 

The heat exchange as a form of study has a wide array of applications which 

are both diverse and essential when it comes to developing and producing high 

efficiency heat exchangers. These devices are widely used in many industry, thus the 

research is justified via its importance through applicability. High performance heat 

exchangers allow for the saving of energy. However, there are limited researches 

when it comes to the performance increase of thermal systems on helical microtube 

heat exchanger by using CFD models. The benefits of heat transfer enhancement also 

have several positive for environmental issues and result in a considerable saving in 

the material cost. 

Thus, the present work attempts to fulfil the existing gap in this particular 

area of research. The industrial applications of enhancing the heat transfer inside the 

helical microtube heat exchanger are to develop the microelectronic cooling 

techniques, the micro heat exchanger.  

This new type of helical microtube can present a new breakthrough in the 

heat transfer performance against the common smooth micro tube. The outcome of 

the present study not only will advance the development of high efficiency heat 

exchangers and design more compact heat exchanger with a view to minimize the 

overall volume and cost of heat exchanger thus decrease the pumping power required 

for a given heat  transfer process  , but also can be used to other engineering 

applications such as : 

i. Liquid rocket engine cooling. 

ii. Hydrogen storage: storage volume is one of the major challenges to 

overcome before hydrogen become a viable fuel for automobile. 

iii. MEMS: Micro-Electro-Mechanical Systems cooling. 

iv. Transportation, biomedical, automobile industries, micro-reactors, and 

space applications such as gas turbines. 
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1.7 Thesis Organization  

The thesis is divided in logical order into five chapters in order to facilitate 

the transition between chapters. Figure ‎1.1 shows the organization of this thesis.  

 

Figure ‎1.1 Thesis organization 

Chapter I contains an introduction and research background including, 

general description of heat transfer enhancement. This chapter provides a general 

background that is used as an overview for the general reader. As such, the chapter 

has sections that include problem statement, research objectives and scope of 

research, the significance of study and finally, information about the thesis 

organization. 

Chapter II contains an extensive review of heat transfer enhancement, 

especially using helical tube with nanofluid, microtubes and microchannels. All the 

relevant parameters effecting on heat transfer and friction factor characteristics are 

discussed. Previous researchers works are reported and their findings are 

summarized. 

Chapter V Conclusion and Recommendations 

Chapter IV Results and Discussion 

Chapter III Research Methodology 

Chapter II Literature Review 

Chapter I Introduction 
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Chapter III describes the research methodology, including the experimental 

and Computational Fluid Dynamics (CFD) model simulation. Presents the design and 

fabrication of the experimental set-up. Techniques for pressure drop, fluid velocities 

and fluid temperature measurement have been displayed. Heat transfer and friction 

factor calculation based on these measurements. All the experimental measurements 

and test components and their functions are described in detail. 

Chapter IV reports the results obtained from the experimental work and 

numerical simulation with a discussion of these results. In the numerical section, a 

computational fluid dynamics simulation is used to compute the 3-D steady viscous 

flows with heat transfer for plain tube fitted with a helical micro coil with different 

pitch and diameter, nanofluid in order to evaluate the effect helical microtube and 

nanofluid concentration on heat transfer enhancement. The simulation results were 

visualized using plots to understand the physical phenomena of heat transfer and 

friction factor. In the experimental section, the results obtained from measurements 

and calculations are described, in order to validate the observed results via the 

evaluation of the computational findings. 

Chapter V presents the conclusion of the thesis with a summary and 

objectives that were achieved as well as the suggestions and recommendations for 

future work. Furthermore, the references of cited literatures, appendices and list of 

published papers are also presented.
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