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ABSTRACT 

The porosity of a solid oxide fuel cell (SOFC) cathode made of lanthanum-strontium-

cobalt (LSC) has not been addressed sufficiently. The LSC thin films were deposited 

on glass substrates by sol-gel dip coating method with different number of layers of 

film (1 – 4 layers), different annealing temperatures (400 – 600 ºC) at 100 ºC 

temperature intervals, and different solution temperatures (30 – 60 ºC) at 10 ºC 

temperature intervals. The dip coating solution was prepared using 40 ml of ethanol, 

1 g LSC powder and 0.07 g polyvinyl alcohol (PVA). The structural properties of 

SOFC cathode were characterized using X-ray diffraction and Fourier transform 

infrared spectrophotometer. The morphology of SOFC cathode was determined using 

atomic force microscope and field emission scanning electron microscope. The 

elemental compositions of LSC films were confirmed using energy dispersive X-ray 

spectroscopy. The X-ray diffraction results showed that crystalline temperature of LSC 

was 500 ºC and crystallite size decreased as annealing temperature increased. From 

the atomic force microscope and field emission scanning electron microscope analysis, 

the LSC film became smoother as number of layers and annealing temperature 

increased. Fourier transformed infrared spectrophotometer results showed presence of 

metal-oxygen bonds at 447 cm-1 and 916 cm-1 which correspond to Co-O, Sr-O, La-O 

bonding at solution temperature 30 ºC. Hence, it can be concluded that annealing and 

solution temperature plays vital role in producing high quality LSC thin films.  
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ABSTRAK 

Keliangan katod sel fuel oksida pepejal (SOFC) yang diperbuat daripada lanthanum-

srontium-kobalt (LSC) belum dapat ditangani dengan secukupnya. Saput tipis LSC 

telah dienapkan pada substrat kaca dengan kaedah salutan celup sol gel dengan 

bilangan lapisan saput yang berlainan (1 – 4 lapisan), suhu sepuh lindap yang berlainan 

(400 – 600 ºC) pada selang suhu 100 ºC dan suhu larutan yang berbeza (30– 60 ºC) 

pada selang suhu 10 ºC. Larutan salutan celup telah disediakan menggunakan 40 ml 

etanol, 1 g serbuk LSC dan 0.07 g polivinil alkohol (PVA). Sifat struktur katod SOFC 

dicirikan dengan menggunakan pembelauan sinar-X dan spektrofotometer inframerah 

transformasi Fourier. Morfologi katod SOFC ditentukan dengan menggunakan 

mikroskop daya atom dan mikroskop elektron pengimbasan pancaran medan. 

Komposisi unsur saput LSC telah disahkan dengan penggunaan spektroskopi sinar-X 

penyebaran tenaga. Keputusan pembelauan sinar-X menunjukkan bahawa suhu hablur 

LSC ialah 500 ºC dan saiz hablur menurun apabila suhu sepuh lindap meningkat. 

Daripada analisis mikroskop daya atom dan mikroskop elektron pengimbasan 

pancaran medan, saput LSC menjadi lebih licin apabila bilangan lapisan dan suhu 

sepuh lindap meningkat. Keputusan spektrofotometer inframerah transformasi Fourier 

menunjukkan kehadiran ikatan logam-oksigen pada 447 cm-1 dan 916 cm-1 yang 

mewalili ikatan Co-O, Sr-O, La-O pada suhu larutan 30 ºC. Oleh itu, dapat 

disimpulkan bahawa suhu sepuh lindap dan suhu larutan memainkan peranan penting 

dalam menghasilkan saput tipis LSC berkualiti tinggi. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of the Study 

Solid oxide fuel cell (SOFC) is a device that produce power of electrochemical 

transformation from oxidizing a fuel. For the electrochemically changing, over 

substance vitality into electrical vitality and warmth without the requirement of direct 

combustion as a moderate stride, the fuel cell are very suitable gadgets and giving 

higher transformation efficiencies than routine vitality frameworks (Sun, Hui and 

Roller, 2009). Fuel cells are also gadget that produces power by a mixture response. 

The responses that create power occur at the terminals. They are various kinds of fuel 

cells, two electrodes, one positive and one negative, which are the cathode and anode 

(Shao, Zhou and Zhu, 2012). Some of the fuel cell has an electrolyte, which conveys 

electrically charged particles from one anode to the next, and a catalyst, which speeds 

the responses at the cathodes. Power device described by their electrolyte material, the 

SOFC has a strong oxide or ceramic electrolyte. 

Fuel cells include high efficiency, long-term stability, fuel flexibility, low 

emissions and relatively low cost. High temperature energy components, for thin film 

SOFC, work between 600 ℃ and 1000 ℃ and can use hydrogen, regular gas or 

hydrocarbons. They work at high temperature between to guarantee satisfactory ionic 

conduction in the electrolyte. Lowering the temperature of a SOFC to 550-800 °C can 

keep the debasement of the cell parts, diminish the manufacture cost and enhance the 

adaptability in cell configuration, however would expand the ohmic resistance (Bansal 

and Zhong, 2006). Therefore, for over 10 years, broad research has been pursued to 

prepare ceramic oxides with blended ionic and electronic conductivity (perovskite 

oxides) and to concentrate the plausibility of utilizing them as cathode materials for 

low temperature solid oxide energy components (Hieu, Park and Tae, 2012).  
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The Lanthanum Strontium Cobalt (LSC) was used as a material for the film in 

SOFC. Based on the other oxide material, the mixed ionic-electronic conducting 

Lanthanum Strontium Cobalt Ferrite (LSCF) or Lanthanum strontium cobaltite (LSC) 

perovskites are well known class of SOFC cathode film materials. The LSC have been 

demonstrated as high-performance materials for intermediate temperature SOFC (Han 

et al., 2012). LSC can upgrade oxygen reduction kinetics compared to the conventional 

other cathode material LSM by providing an additional pathway through the bulk of 

the perovskite structure (Banel et al., 2013). There are many methods for the LSC can 

be performed such as sputtering, thermal evaporation and pulsed laser deposition 

(PLD). Previously, many researches focused on synthesizing LSC films via Chemical 

Vapour Deposition (CVD) method. The chemical technique can be used such as spray 

pyrolysis, CVD and sol-gel method (Baque et al., 2006). Among all of the methods, 

further studies were used sol-gel method such as dip coating technique to synthesis 

LSC thin film because dip coating technique process was used wet chemical material 

which is major method of sol-gel (Bi and Traversa, 2014).  

Experimental studies are bringing out at temperatures and oxygen partial 

pressures of suitable for IT-SOFC (Egger et al., 2012). Besides, LSC have low 

catalytic compared than other materials for cathode film. The polarization resistance 

also low and have advantage of its in case to make the single chamber conditions was 

stable (Rembelski et al., 2012). The one of the rate-determining steps for the oxygen 

reduction was exchanging the oxygen at the perovskite or air interface. When the 

thicknesses of the porous layers are expanding, it gives that increasing perovskite area 

and makes the larger number of sites for oxygen exchange. Therefore, the 

improvement of the cathode activity can be accomplished by using nonporous thin 

films with small grain sizes (Evans et al., 2015).  

Meanwhile, the homogeneous and heterogeneous can be observed in many 

view of natural and unnatural substances. Local measurement of particle orientation 

and size distribution would have recognized the nucleation growth in a material 

system. The development of homogenous and heterogeneous can control by nucleation 

process and grain growth (Baniassadi et al., 2011). It is clear that by using grain 

growth, the nucleation can be developed at certain level based on their morphology 
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performance. Based on the random nucleation points, the growth occurs as in 

crystalline grain growth when the initial microstructure generation basic cells are 

created. As conclusion, LSC were investigated based of their, chemical stability, 

polarization resistance and oxygen performance in film and nucleation growth 

mechanism compare to other material that used for cathode of SOFC. 

1.2 Problem Statement 

The high efficiencies of SOFC and the usage of high energy density fuels give 

rise to higher energy power sources. By investigate the growth of nucleation on the 

films, will help the performance of the films. The cathode of SOFC must be a porous 

layer where the oxygen reduction reaction (ORR) takes place and transported through 

the porous layer of cathode as current collector to reach the reaction site. The peak 

must crystallites for the good structure of cathode and also for the stability of the 

perovskite structure meanwhile for the morphology, need get a rough surface to 

develop gas permeability and ionic and electronic conductivities. The crystal structure 

of cathode materials deviates from the ideal cubic perovskite structure, and was 

commonly orthorhombic or rhombohedral. Dip coating technique shows some of 

advantages such can control the chemical composition to get multi-component oxide 

film under simple innovative equipment, low temperature and also based on Aydemir 

and Karakaya, 2015, the method will improve cell durability and reduce the system 

cost.  

Working with high temperature will brought many problems as state by Gwon 

in 2014 where will cause the decreasing the cell life time, interfacial diffusions, sealing 

problems. To build its aggressiveness and make SOFC innovation financially 

attainable, bringing down the operation temperature to the intermediate range of 

around 300-600 °C (Shao, Zhou and Zhu, 2012) (Richter et al., 2009). A decrease in 

temperatures would enable less expensive materials (ferritic hardened steels for 

interconnect) and enhance reaction to speedy start-up reshowing warm cycling from 

encompassing to working temperatures (Ding et al., 2014).  
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Besides, reducing the electrolyte thickness, it will give the results ohmic 

resistance was reducing and different of the cell performance. With that, fabrication of 

films of these electrolytes can boost the SOFC performance (Bi and Traversa, 2014). 

According to the Bu in 2013, the grain boundary and grain resistance are mainly 

affected to the electrolyte conductivity and caused the exchanging of grain size. The 

influence on the thickness of LSC electrode as a cathode as state by Evans in 2015 also 

give the different result of LSC thin film. The cathode layer has porous morphology 

that enhances oxygen diffusion depending on their thickness (Gwon et al., 2014). The 

effectiveness about solution temperature also were gave the attention in this 

performance. By increasing the solution temperature, the performance of the film such 

as particle distribution was also effected the performance on the film. Table 1.1 shows 

the summary of findings from previous researchers. 

Table 1.1 Summary of findings from previous researchers 

Authors, Year Finding/Result 

Benel et al., 2013 

 

Used Pulsed laser deposition. These methods are not cost-

effective and not easy to scale up. 

Benel et al., 2013 

 

The influence of the thickness of LSC electrodes prepared 

by spin coating on thin-film SOFC and found that the 

thickness of LSC functional layer was controlled within 

the range of 150-500 nm by adjusting the dispersion 

concentration and spin coating parameters. 

 

Below of 150 nm no further improvement of the LSC 

electrodes was observed.  
Evens et al., 2013 LSC thin film cathodes have a larger grain size at 550 °C. 

da Côrte et al., 2013 Smooth surface over to a high specific surface area and 

large number of reaction sites  

Muthukrishnan et al., 

2016 

Crystallinity and the existence of most stable hexagonal 

wurtzite structure using ZnO thin films by sol-gel dip 

coating.  
Solovyev et al., 2017 

 

At temperature below 600 °C, the deposited films were 

amorphous and they remained amorphous until annealing 

at 800 and 1000 °C, the film becomes crystalline. The films 

also dense at low temperature.  



 

5 

1.3 Objectives 

The objectives of the research are: 

(a) To evaluate the growth mechanism of studied of Lanthanum Strontium Cobalt 

thin films.  

(b) To characterize the structure and morphology of Lanthanum Strontium Cobalt 

thin films prepared using dip coating method. 

(c) To determine the influence of growth parameters such as different layers (one 

to four), annealing temperature (300-600 °C) and solution temperature (30-60 

°C) on the structure and morphology of proposed Lanthanum Strontium Cobalt 

thin films. 

1.4 Scope of the Study 

The preparations of LSC thin film will be conducted by dip coating method. 

Dip coating method will be used in the deposition of LSC thin film with constant 

withdrawal speed at 60 rpm for different coating layer onto the glass substrate, 

different annealing temperature and different temperature of the stirring 

suspension/solution of LSC. The parameters temperature of annealing and the 

temperature of suspension was constant for the first parameter, meanwhile the layer of 

thickness are changing.  Second parameter was continued with constant thickness of 

layer and solution temperature of suspension LSC with different annealing 

temperature. The annealing temperature that used for second parameter was based on 

the optimum result from the first parameter.  

For the last parameter, the optimum results of layers’ thickness and annealing 

temperature were used to get the entire sample the optimal growth with using the 

different solution temperature of LSC. The properties of the structural were 

characterized by using X-ray Diffraction (XRD), Fourier Transform Infrared Spectral 

(FTIR) and Energy Dispersive X-Ray Spectroscopy (EDX). For morphological 
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characterization were using Field Emission Scanning Electron Microscope (FESEM) 

and Atomic Force microscopy (AFM). This project is principally experimental.  

1.5 Significant of the Study 

The most important in dip coating methods was the ability to tune the 

microstructure of the deposited film. This study will be useful for industries since LSC 

cathode for SOFC application continue to play important role such as improve long 

term stability, high power density and high energy conversion efficiency. Furthermore, 

by the lowering the temperature, will low the cost in SOFC and will produce electrical 

energy with minimal environment impact. By using this information, it will help 

industrial to develop a better quality of LSC thin film. Dip coating method was one of 

the alternative methods that usually use in small scale for laboratory. Dip coating 

method for fabrication of LSC thin film is simple, non-toxic, non-vacuum system and 

hence suitable for large area coating. On the other hand, this method more 

advantageous compared to other deposition methods due to its ability to prepare high 

quality thin films in large scale with excellent control of stoichiometry, apparatus and 

raw materials (Ghodsi and Absalan, 2010). 

1.6 Outline of Thesis 

A general background of study and brief introduction of LSC thin film 

nanostructure and SOFC were discussed in Chapter 1. Then it was followed by 

problem statement, objective and scope of study. In Chapter 2, the elaboration of thin 

film, solid oxide fuel cell, LSC structure, sol-gel technique, perovskite and theory of 

dip coating method was presented. Chapter 3 is focused on the fabrication method and 

characterization technique of LSC thin film by dip coating method. The Chapter 4 was 

present the result and analysis on the structural properties, morphology and growth 

mechanism of LSC thin film. The conclusion of study was summarizing in Chapter 5. 
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CHAPTER 2  

 

 

LITERATURE REVIEW 

2.1 Introduction 

This chapter explains about the hypothesis identified with our exploration, 

including the definition of SOFC in general, the type of SOFC, the technique using 

dip-coating method, some basic knowledge of thin film, perovskite and the LSC 

mechanisms and properties. 

2.2 Solid Oxide Fuel Cell 

2.2.1 Background 

In the 21st century, SOFC known as green energy, because it has very high 

energy conversion efficiency and very low emissions of air pollution, has high fuel 

reforming performance (Wen et al., 2002) (Cebollero et al., 2017). According Zhou et 

al., in 2018 state, SOFC also known as an electricity generation instrument that change 

over chemical energy directly into electrical energy because of the higher efficiency 

and less environmental impact than traditional power generation methods. The routine 

of SOFC work was at high temperature in between of 800-1000 ℃ and the very 

effective, environment friendly transformation advancements, so the Chang et al., in 

2017 was assume a key part in future vitality supply and capacity. It can produce power 

and warmth utilizing flexible fills including hydrogen, methane and light hydrocarbons 

(Wei et al., 2015). Recently, significant effort has committed to the improvement of 

Intermediate Temperature SOFC (IT-SOFC) (Takeshita et al., 2014) (Zhan et al., 

2015). Operating in middle or low temperature (500-700 ℃) not just diminishes the 

corruption of fuel cell stack parts and drags out the lifetime of fuel cell systems, it also 

enlarges materials choice. The poor activity of traditional cathode materials also 
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happened that was discover by Shao and Haile, 2004 and the modest stainless steel 

materials can be utilized as interconnect at middle or low temperatures based on 

Vargas et al., 2012. Bringing down the temperature causes less requesting on the seals 

(Lee et al., 2002) and the equalization of-plant parts, rearranges thermal management, 

helps in quicker startup (Samat et al., 2016) and chill off, and results in less 

debasement of cell and stack segments. 

The polar resistance (Rp) will loss of voltage or overcapacity when decreasing 

the SOFC operating temperature. Polarity cathodes contribute to the decline in SOFC 

performance and it was loss the most common voltages versus ohm polarization and 

polarization activation. But, these advantages of its more benefits in SOFC which is, 

activity in the development of SOFC capable of operating in the temperature range of 

650-800 ℃ (Narottam, Bansal and Zhong, 2006) (Weber and Ivers-Tiffée, 2004) (Xia 

and Liu, 2002) had increased dramatically in the last few years. Besides, annealing 

above 600 ℃ would minimize the cracking of membrane of the sample (Angoua et 

al., 2011) because the limited temperature for the maximum processing temperatures 

of microscale SOFC was at 600 ℃ and continue with the increasing of the grain growth 

and the ratio of crystalline of the material. Moreover, the low polarization resistance 

for maximum of voltage and power output still can be achieved with the stability of 

the thin film was maintaining (Angoua et al., 2011). Figure 2.1 shows other advantages 

of lowering the temperature of cathode. 

The operating temperature of a SOFC was confined by thermally actuated 

transport process particle and electrochemical responses, for example, the oxide 

particle conductivity of the strong electrolyte and distinctive reaction step in the 

electrodes, individually, at the cathode or electrolyte interfaces. The improvement of 

the cell and stacks for a middle of temperature SOFC working financially in range of 

500 ℃ and 700 ℃ were required, while for new materials, the temperatures were 

below 600 ℃ meanwhile cell ideas, creation advancements and appropriate stack 

originator must be produced according to Weber and Ivers-Tiffée, 2004. 
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