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ABSTRACT

In recent years, due to outstanding properties such as durability material, 

ultrafast electronic performance and ultrasensitive for sensors, graphene has become a 

demanded material today and in the future due to its remarkable properties. For 

transistors, the scaling of component sizes has become a bottleneck for silicon-based 

materials. This study aims to investigate the memory performances of graphene as a 

charge storage layer in the floating gate with the different type of high-k materials such 

as silicon nitride (Si3N4), aluminium oxide (AhO3), hafnium oxide (HfO2) and 

zirconium oxide (ZrO2) using Silvaco ATLAS TCAD tool simulation. The simulation 

work initially is to validate the experimental work with the simulation data and then 

determine the performance of the flash memory cell with different type of high-k 

materials in terms of memory window, program and erase (P/E) characteristics data 

retention and endurance. Next is to validate in the context of the memory performance 

trend between the experimental work and the proposed work. The memory window 

for flash memory cell for silicon dioxide (SiO2) is 15.4 V while for the memory 

window using variable oxide thickness (VARIOT) of 1/7 nm of SiO2/high-k material 

of four high-k materials for SiO2/Si3N4, SiO2/AhO3, SiO2/HfO2 and SiO2/ZrO2 tunnel 

barrier are 23.0 V, 20.0 V, 25.4 V and 26.0 V, respectively at the same P/E voltage of 

±20 V programming and erasing voltage. Conventional SiO2 has good data retention 

but P/E characteristic is better with the introduction of VARIOT. The data retention 

capability of the four high-k materials is better than that of conventional SiO2, and the 

data can be retained by 75% (11.6 V) after 10 years of extrapolation with -1/1 V gate 

stress. For high-k material of SiO2/Si3N4, SiO2/HfO2 and SiO2/ZrO2 tunnel barrier, 

data are retained by 56% (12.9 V), 47% (11.9 V) and 33% (8 .6  V) while SiO2/AhO3 

tunnel barrier with thickness 1/7 nm shows an excellent result among others with 83% 

(16.6 V) data retained. The endurance performance of the best high-k materials 

SiO2/AhO3 and SiO2/HfO2 was tested, which showed that the endurance retained 82% 

and 75% of the charge during 104 P/E cycles, respectively.
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ABSTRAK

Sejak kebelakangan ini, graphene telah menjadi bahan dengan permintaan 

tinggi pada masa sekarang dan masa hadapan kerana ciri-ciri yang luar biasa seperti 

bahan tahan lasak, prestasi terpantas bahan elektronik dan juga bahan yang sangat 

sensitif untuk penderia. Untuk transistor, pengskalaan saiz komponen telah mencapai 

titik maksima bagi bahan berdasarkan silikon. Kajian ini bertujuan untuk menyiasat 

prestasi memori mengunakan graphene sebagai lapisan simpanan cas di dalam get 

apungan dengan pembezaan jenis bahan tinggi-k seperti silikon nitrida (Si3N4), 

aluminium oksida (Al2O3), hafnium oksida (HfO2) dan zikronium oksida (ZrO2) 

dengan mengunakan alat simulasi Silvaco ATLAS TCAD. Kajian dimulakan dengan 

kerja simulasi untuk mengesahkan kerja eksperimen terdahulu dan kemudian 

mengenalpasti prestasi sel memori imbas dengan perbezaan jenis bahan tinggi-k untuk 

tingkap memori, ciri-ciri data program dan padam (P/E), data pengekalan dan juga 

data ketahanan. Pengesahan didalam konteks ini merujuk kepada pengesahan gaya 

prestasi memori diantara kerja eksperimen dan kerja cadangan. Tingkap memori untuk 

memori imbas yang menggunakan silikon dioksida (SiO2) ialah 15.4 V sementara 

tingkap memori dengan kewujudan pemboleh ubah ketebalan oksida (VARIOT) untuk 

1/7 nm silikon dioksida SiO2/bahan tinggi-k untuk empat bahan tinggi-k seperti 

SiO2/Si3N4, SiO2/AhO3, SiO2/HfO2 dan SiO2/ZrO2 di terowong penghalang ialah 

masing-masing 23.0 V, 20.0 V, 25.4 V dan 26.0 V bagi P/E voltan yang sama iaitu 

±20 V voltan program dan padam. SiO2 konvensional ialah bagus untuk data 

pengekalan namun kajian terhadap ciri-ciri P/E menunjukkan prestasi yang lebih baik 

dengan kehadiran VARIOT. Kemampuan data pengekalan untuk empat bahan tinggi- 

k menunjukkan prestasi yang lebih baik berbanding dengan konvensional SiO2 dimana 

data kekal sebanyak 75% (11.6 V) selepas 10 tahun ekstrapolasi dengan -1/1 V tekanan 

get. Untuk bahan tinggi-k SiO2/Si3N4, SiO2/HfO2 dan SiO2/ZrO2 terowong 

penghalang, masing-masing menunjukkan data kekal sebanyak 56% (12.9 V), 47% 

(11.9 V) dan 33% (8 .6  V) dimana SiO2/AhO3 terowong penghalang dengan ketebalan 

1/7 nm menunjukkan keputusan yang cemerlang iaitu data kekal sebanyak 83% (16.6 

V). Kemudian, bahan tinggi-k SiO2/AhO3 dan SiO2/HfO2 dipilih untuk menguji data 

ketahanan yang menunjukkan ketahanan data masing-masing kekal 82% dan 75% cas 

sehingga 104 kitaran P/E.
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CHAPTER 1

INTRODUCTION

1.1 Research Background

The nature of an innovation by contemporary product growth and opportunities 

facing next generation in electronics systems have become more complicated as the 

elements have become extremely integrated in both physical and functional 

characteristics. Placement of the number of transistors in a chip follows the traditional 

Moore’s Law, invented by Gordon Moore, the founders of Intel, states that the 

numbers of transistors that can be placed on a chip will approximately double every 2 

years, as can be seen in Figure 1.1 [1]. The law was invented in order to achieve low 

cost and able to accommodate more transistor in a chip while sustaining its high 

performance. As a result, since past few years, research has been working on shrinking 

down device dimension [2]. As a consequence, denser silicon integrated circuits can 

be realized which allows for integration of devices with many capabilities and added 

functionality. As a result, many high-technology electronics devices exist today [3].
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Figure 1.1 Semi-logarithmic plot of Moore’s Law for number of transistors in 
microprocessors [1].

Memory technology is one of the highest demands to consumer and almost 

every electronic device utilizes the memory such as cell phones, computers, cameras 

and many more where the encoded data is stored and retained as digital information 

inside a memory device [4]. The trends of International Technology Roadmap for 

Semiconductor (ITRS) is illustrated in Figure 1.2 that showing the shrink of 0.7 times, 

in every 2 years and shows that the flash memory bit size is accelerated by one year 

compared to dynamic random-access memory (DRAM) [5]. Hard disk drives and flash 

memories are probably the most common form of non-volatile memory (NVM) due to 

their good reliability in term of its capability for smaller size footprint, high capacities 

and as well as relatively cheap production per byte (refer Figure 1.3) [6].
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Figure 1.2 ITRS technology trends for memory technology [5].

The challenge of semiconductor industry is to produce absolutely small device 

while increase the performance to meets the consumer demands. Recently, 

introduction of non-silicon materials such as graphene and carbon nanotube (CNT) as 

field effect transistor (FET) channel seems to be the most promising solution [7].

Figure 1.3 Memory technology [6].
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In 2010, graphene resulted in a noble prize in physics and became a 

phenomenal growth in terms of published research. Graphene has potential to become 

one of the strongest candidates for post-silicon in the next generation of electronic and 

energy application because of its excellent in electronic, mechanical, chemical and 

optoelectronic properties [8]. Graphene could be ideal for utilize in future electronics 

applications because of the electrons can transport through the material at extremely 

in high speed and behave like relativistic particles with no rest mass [9]. These 

remarkable properties of graphene, such as high carrier mobility, thermal conductivity, 

mechanical flexibility and optical transparency, make it a highly promising material 

for future electronics and would be acceptable for production for solar cells, touch 

screens and light panel [10, 11].

Recently, high speed logic computing through device scaling, increasing 

number of electronic consumer and information technology have demanded for higher 

data storage capability. Flash memory technology has recently gained much attention 

with the growing demand of non-volatile memories for mobile electronic devices [12]. 

Researchers at Seoul National University and the Gwangju Institute of Science and 

Technology, South Korea, have fabricated organic memory devices that feature 

multilayer graphene film sandwiched between insulating polyimide layers with the 

embedded multilayer graphene film acting as a charge-trapping layer which having a 

fascinating result [9].

1.2 Problem Statement

The scaling of the semiconductor component sizes is crucial due to the growing 

needed for smaller sizes, faster computing capabilities, and lower power consumption 

[13]. Scaling is referring to the continued reducing the horizontal or vertical physical 

component sizes of the on-chip logic to overcome the reliability issues including 

increase the density and performance speed, reduce power and reduce cost [14]. 

However, the scaling of silicon-based technology is leading to an unfavourable 

bottleneck in the coming nano-technology era [15].
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Figure 1.4 Basic concept of floating gate (FG) memory cell device structure.

The limitation of scaling in silicon-based technology has faced many 

challenges in the FG memory cell (Figure 1.4). Continuous decreasing the thickness 

may lead to defect in the dielectric layer which may generate device failure and 

reliability concerns and most crucial factor is that high operating voltages and high 

leakage currents [16].

Conventionally, SiO2 (silicon dioxide) has been operated as a tunnel barrier 

layer for flash. Nevertheless, the major limitation of scaling the SiO2 below the 

conventional thickness are issues in programming and erasing, memory window (MW) 

and retention trade-off due to stress induced leakage current (SILC) [17]. Further 

scaling of SiO2 beyond 10nm brings problems as the gate oxide gets thinner because 

of quantum mechanical tunnelling of carriers through such a thin SiO2 layer. The 

leakage current not only reduces the reliability of the device, but also creates oxide 

defects after repeated cycles of operation [18]. However, there are some major issues 

regarding to fabrication process which formed a mixture of metal and semiconductor 

and behaves in metallic manner. Further studies still undergoing to replace 

acceptability and suitability of material as FET channel. Fabrication process may 

involve a higher cost and time consuming. Therefore, simulation studies are one of a 

suitable choice as an alternative to investigate the characteristics of a new material 

especially graphene before actual fabricated and produced to the industries [7].
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1.2.1 Tunnel barrier scaling issues

Flash memory requires approximately 15V to 20 V biases for device operation. 

Scaling tunnel dielectrics generates higher electrical stress resulting defects in the gate 

stack. However, probability of electrons tunnelling in or out will increase 

exponentially and stored charges can easily leak into the channel resulting the flash 

cell may reduce both endurance and retention performance [18]. Figure 1.5 shows the 

scaling thin tunnel oxide below 4 nm resulting higher charges leakage due to direct 

tunnelling dominates to the tunnel dielectric compared to when thick tunnel oxide of 

6-7 nm is used, tunnelling of electrons happens mostly by Fowler-Nordheim (FN) 

tunnelling. In conclusion, tunnel dielectric scaling creates better program and erase 

(P/E) and MW for the same P/E voltage, however, the retention is affected poor [19].

Figure 1.5 (a) Tunnel oxide of 6-7 nm and (b) tunnel oxide of less than 4 nm

flash memory cell [19].
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1.2.2 Graphene as floating gate issues

Graphene also have the remarkable properties such as high carrier mobility, 

mechanical flexibility as well as thermal conductivity which make it an optimistic 

material for hereafter electronics [9]. There has been interested in utilising graphene 

for faster and lesser energy-consuming in NVM in industries [20]. The MW and data 

retention analysis are important in determining the memory cell performance. 

However, there is lack of analysis on the memory characteristics for graphene-based 

FG memory cell due to graphene application is still new in memory cell. To discover 

more the unique behaviour of graphene in a memory cell, simulation and deep analysis 

will be performed to investigate the reliability of a single graphene-based memory cell 

on MW and data retention. The hypothesis on different number of layer and memory 

performance is still inconclusive. There are few variabilities works that have been done 

by previous researchers on different number of a graphene layer FG memory cell, 

however, the optimum number of graphene layer in FG memory cell is still 

questionable.

Table 1.1 Previous works on the graphene-based FG memory [12, 21-24].

Researcher Number of layers
MW

(V)

Electron 

density, ne 

(cm-2)

Data 

retention 

after 10 years

A. J. Hong 

(2011) [12]

SLG: single-layer SLG: 2
unmentioned

MLG: Only 

8% data lossMLG: unmentioned MLG: 6

A. Mishra, 

(2012) [21]
MLG of 6-7 layers MLG: 6.8 9.1x1012 unmentioned

S. Bertolazzi, 

(2013)[22]

MLG of 4-5 layers 

with additional 

SLG at channel

8 2.8x1013
Only 30% data 

retains

A. Mishra, 

(2014)[23]
MLG: unmentioned 9.4 1x1013

74% data 

retains

W. J. Liu, 

(2015) [24]
single-layer 5.6 unmentioned unmentioned
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Table 1.1 summarizes the previous work in graphene-based flash memory cell 

in past 10 years. The introduction to multi-layer graphene (MLG) as FG in flash 

memory structure may cause to increase the electron density compared to single-layer 

graphene (SLG) which is capable for storing number of charge accumulation in FG 

and also can lead to achieve large MW [16]. However, there are limited study on 

memory reliability on graphene flash memory and also the architecture for graphene 

layer as the FG is still undergoing research. Therefore, the variability simulation of 

memory reliability on graphene is choose to overcome some issues regarding the 

limitation graphene sources and equipment and also, the simulation can reduce time 

consuming and cost. Using this idea, the variabilities can occur on simulation for 

variability oxide thickness (VARIOT), P/E volage, data retention and endurance.

The introduction of VARIOT which referred to high-k material as tunnel layer 

becomes one of outstanding solution. A lot of research studies regarding VARIOT 

stack is found to have a high field sensitivity compared to single SiO2 layer resulted in 

shorter P/E time, lower P/E voltage as well as less leakage in long-term retention time. 

However, due to high-k optimization of high-k dielectric materials based on their 

characteristics, the physical thickness of VARIOT considered thicker tunnel oxide 

compared with SiO2 layer which expected degrading the P/E performance for memory 

devices.

1.3 Research Objective

The significant contributions in this research can be highlighted as follow:

1. To simulate and analyses the memory performance characteristics of graphene- 

based FG flash memory cell in terms of data retention and data endurance by 

using Silvaco TCAD Tools.

2. To analyse the reliability of graphene-based FG memory cell by using Variable 

Oxide Thickness (VARIOT) combination with different high-k materials in 

terms of data retention and data endurance.
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1.4 Scopes of study

The scopes of this research involve the simulation of the graphene FG flash 

memory; from virtually fabricate the FG flash memory to analyzation of their memory 

performances. The simulation will be done by using Silvaco TCAD Tools. The 

structure parameters of a graphene FG flash memory cell which includes thickness, 

doping, band gap and others are determined by referring to the published data from 

[23-25]. The dimensions of device are shown in Table 1.2 and the voltage biases is 

from -14V to -20V for erasing and 14V to 20V for programming.

Table 1.2 Device dimension for graphene FG flash memory cell [23].

Gate length, Lg (nm) 600

Tunnel oxide thickness, tox (nm) 8 (SiO2)

Blocking oxide thickness, tIPD (nm) 22 (Al2O3)

FG thickness, tFG (nm) 5

Control gate thickness, tCG (nm) 15 (TiN)

The analysation of P/E operation, MW, data retention and also data endurance 

are validated with the previous work of [23]. The literature review was performed to 

understand the physical mechanism and electrical characteristics of graphene 

including graphene properties, current-voltage (I-V) characteristics, P/E operation 

with both models of hot electron injection (HEI) and Fowler-Nordheim (FN) 

tunnelling model. Introduction of high-k materials into tunnel barrier using VARIOT 

will be more interesting to the performance of flash memory. The tunnel barrier 

engineering (TBE) in flash memory using asymmetric structure (low-k/high-k) using 

SiO2 as low-k and Aluminium Oxide (AhO3), Silicon Nitride (Si3N4), Hafnium Oxide 

(HfO2) and Zirconium Oxide (ZrO2) as high-k for tunnel barrier oxide in flash memory 

cell to study the data retention and data endurance.
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1.5 Research Contribution

The research contributions in this study can be highlighted as follow:

1. VARIOT Optimization: The optimization of VARIOT tunnel layer for multiple 

high-k dielectric materials where asymmetric combination of low-k/high-k 

stack is performed to determine the best asymmetric combination with 

optimum effective oxide thickness (EOT) and oxide thickness (Tox).

2. Graphene floating gate with high-k tunnel barrier : Introduction of graphene- 

based material with high-k tunnel oxide show the best combination in flash 

memory cell to improve the P/E characteristics, its data retention as well as its 

data endurance.

1.6 Thesis Organization

This research study is conducted through simulation method and divided into

5 chapters. Chapter 1 is where to memory device background and development are 

discussed starting with types of memory, their importance in industry and demand to 

technology. Then, flash memory issues and challenges are highlighted in which the 

research’s problem statements are determined. Based on the problem statements, the 

objectives of the research are proposed and the scope of the work has been identified. 

Finally, the research contributions have been highlighted and summarized in this 

chapter.

Chapter 2 is discussed on literature review of research on flash memory 

technology which discussed the graphene-based memory cell of flash memory 

structures are identified and its characteristics are being highlighted. The fundamentals 

of graphene material are discussed including the graphene properties and its demand 

to future technology. Furthermore, the concept of tunnel barrier engineering is 

discussed including introduction on high-k material that applied on the memory cell 

are explained.

10



Chapter 3 explained to the methodology of research including flow chart, 

equation, parameter and validated work from previous review. This chapter covers the 

research method of this work on simulation for validation from previous research. The 

research simulation work in this chapter are presented such as dielectric material, 

device dimension and other parameters. Lastly, the flow to characterize the memory 

device’s reliability is summarized in the flowchart and discussed analytically.

Chapter 4 which result and discussion are demonstrated. The simulation results 

are presented and discussed in detail which includes the P/E characteristics, data 

retention and data endurance with aided of figures and tables. The introduction of 

graphene-based floating gate with VARIOT in flash memory cell are explained with 

presence of high-k materials.

Finally, Chapter 5 conclude all the findings in this research and the research 

contributions are highlighted again. Future works of this work are proposed to make 

sure the continuation of the research and contributions to the society.

11
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