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ABSTRACT 

Activated carbon nanofibers (ACNFs) is a newly modified structure of carbon-

based adsorbent that could adsorb carbon dioxide (CO2) due to its high specific surface 

area (SSA), wide distribution of pores as well as high volume of active sites on its 

fibrous structure. Meanwhile, graphene is a single layer of pure carbon atoms known 

for its great properties such as high SSA, high thermal and chemical stability, and high 

electrical and thermal conductivities. It is hypothesized that the incorporation of 

graphene as nanofiller in the polyacrylonitrile (PAN)-based ACNFs may improve the 

overall properties of the ACNFs. Nevertheless, pure graphene has been found to be 

very expensive and this factor hindered its utilization in wide range of applications. 

Due to that, rice husk which is known as abundantly available agricultural waste was 

introduced in this study to obtain cost-effective graphene-based materials. Herein, the 

main highlight of this current study is to fabricate PAN-based graphene composited 

activated carbon nanofibers (gACNFs) with enhanced physicochemical properties and 

to evaluate its adsorption performance behaviours towards CO2, especially in flue gas. 

The study was performed by varying several experimental and adsorption parameters 

including the PAN to graphene ratio (0, 1, 5, 10% of graphene-derived rice husk char 

(GRHC) relative to PAN weight), types of graphene-based materials (GRHC and 

reduced graphene oxide (rGO)), polyethyleneimine (PEI)-impregnated and non-

impregnated gACNFs, as well as variation of pressure (5, 10, and 15 bar) and 

temperature of adsorption (0, 25, 50 °C). The resultant gACNFs with 1 wt.% of GRHC 

displayed the greatest improvement in their porous structure including largest SSA up 

to 597 m2/g and highest micropore volume (0.2606 cm3/g) which was twice the values 

of pristine ACNFs (202 m2/g and 0.0976 cm3/g). These tailorable surface properties 

are superior factors for effective CO2 adsorption. Additionally, gACNFs with diameter 

ranging between 250-350 nm was obtained, which was smaller than the pristine 

ACNFs. This was due to electrical conductivity contributed by the GRHC that 

enhanced the solution conductivity during electrospinning, resulting in fibers with 

smaller diameter. Moreover, under the activation temperature of 700 °C, the yield of 

gACNFs obtained (44.5%), was almost double the value of pristine ACNFs (25.1%) 

due to the thermal stability properties of GRHC. The resultant GRHC/ACNF0.01 with 

the best porous structures and physicochemical properties exhibited the highest 

volume of CO2 uptakes among other samples up to 3.1 mmol/g at atmospheric pressure 

and 25 °C. Meanwhile, the PEI-gACNFs have shown increment in CO2 uptake from 

3.1 to 4.8 mmol/g under the same conditions. Notably, the adsorption performance of 

CO2 was directly proportional with the pressure increment, however it was inversely 

proportional with the increased temperature. Interestingly, both gACNFs and PEI-

gACNFs fitted the pseudo-first order kinetic model (physisorption) at 1 bar, however, 

best fitted the pseudo-second order kinetic model (chemisorption) at 15 bar. Both 

gACNFs samples obeyed the Langmuir adsorption isotherm model. The stability 

performance of both gACNFs was reduced up to 23% after 5 complete cycles at 50 °C 

and atmospheric pressure.  
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ABSTRAK 

Gentian nano karbon teraktif (ACNFs) adalah struktur penjerap berasaskan 

karbon yang baharu diubahsuai yang boleh menjerap karbon dioksida (CO2) kerana 

luas permukaan tentunya (SSA) yang tinggi, serakan struktur pori yang luas, serta 

jumlah bahagian aktif yang tinggi pada struktur gentiannya. Sementara itu, grafin 

adalah satu lapisan atom karbon tulen yang terkenal dengan sifatnya yang bagus seperti 

SSA yang tinggi, kestabilan yang tinggi terhadap haba dan bahan kimia, dan 

konduktiviti elektrik dan haba yang tinggi. Berdasarkan hipotesis, penggabungan 

grafin sebagai pengisi-nano dalam ACNFs yang berasaskan poliakrilonitril (PAN) 

dapat meningkatkan sifat keseluruhan ACNFs. Walaupun begitu, grafin tulen adalah 

sangat mahal dan ini merupakan faktor yang menghalang penggunaannya di dalam 

pelbagai aplikasi. Kajian ini telah memperkenalkan bahan berasaskan grafin daripada 

sisa-sisa pertanian yang mudah diperoleh dan murah seperti sekam padi. Perkara utama 

yang ditekankan di dalam kajian ini adalah untuk membuat komposit grafin dan 

gentian nano karbon teraktif (gACNFs) berasaskan PAN dengan peningkatan sifat 

fizikokimia dan menilai kebolehan penjerapannya terhadap CO2, terutamanya gas 

serombong. Kajian ini dilakukan dengan mempelbagaikan beberapa parameter ujikaji 

dan penjerapan termasuklah nisbah PAN kepada grafin (0, 1, 5, 10% grafin berasaskan 

arang sekam padi (GRHC) berbanding dengan berat PAN), jenis-jenis bahan yang 

berasaskan grafin (GRHC dan grafin kurang oksida (rGO)), gACNFs yang diresapi 

dan tidak diresapi dengan polietilenaimina (PEI), serta pelbagai tekanan (5, 10, 15 bar) 

dan suhu penjerapan (0, 25, 50 °C). gACNFs yang dihasilkan dengan berat GRHC 1% 

menunjukkan peningkatan terbesar dalam struktur berliang termasuklah SSA yang 

terbesar sehingga 597 m2/g dan isipadu liang mikro yang tertinggi (0.2606 cm3/g) yang 

menunjukkan peningkatan dua kali ganda berbanding nilai ACNFs asli (202 m2/g dan 

0.0976 cm3/g). Sifat permukaan yang diubahsuai ini merupakan penyumbang utama 

untuk penjerapan CO2 yang lebih berkesan. Selain itu, diameter gACNFs yang 

diperoleh di antara 250-350 nm adalah lebih kecil berbanding diameter ACNFs asli. 

Ini disebabkan oleh kekonduksian elektrik yang disumbangkan oleh GRHC telah 

meningkatkan kekonduksian larutan semasa proses putaran elektro yang dapat 

menghasilkan gentian dengan diameter yang lebih kecil. Tambahan pula, pada suhu 

pengaktifan 700 °C, hasil gACNFs yang diperoleh (44.5%) hampir dua kali ganda nilai 

ACNFs asli (25.1%) yang disebabkan oleh sifat kestabilan haba GRHC. 

GRHC/ACNF0.01 yang dihasilkan dengan struktur berliang dan sifat fizikokimia yang 

terbaik menunjukkan jumlah penjerapan CO2 tertinggi iaitu 3.1 mmol/g berbanding 

sampel lain pada tekanan atmosfera dan 25 °C. Sementara itu, PEI-gACNFs 

menunjukkan peningkatan penjerapan CO2 daripada 3.1 kepada 4.8 mmol/g dalam 

keadaan yang sama. Prestasi penjerapan CO2 berkadar terus dengan kenaikan tekanan, 

namun berkadar songsang dengan kenaikan suhu. Menariknya, kedua-dua gACNFs 

dan PEI-gACNFs sesuai dengan model kinetik pseudo tertib pertama (penjerapan 

fizikal) pada 1 bar, namun menunjukkan kesesuaian dengan model kinetik pseudo 

tertib kedua (penjerapan kimia) pada 15 bar. Kedua-dua sampel gACNFs ini mematuhi 

model isoterma penjerapan Langmuir. Prestasi kestabilan kedua-dua gACNFs 

berkurang sehingga 23% selepas 5 kali kitaran lengkap pada suhu 50 °C dan tekanan 

atmosfera.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

The massive emissions of anthropogenic carbon dioxide (CO2) gas into the 

atmosphere are considered as the main reason for the occurrence of global warming 

and climate change (Acevedo et al., 2019; Huang et al., 2019). Human activities such 

as combustion of fossil fuels in industry, especially power generation sector, is one of 

the major emission sources of CO2 to the atmosphere (Bains et al., 2019; Acevedo et 

al., 2020). In mid-August 2020, according to the latest update from Mouna Loa 

Observatory (2020), the increment of CO2 concentration was recorded as 3.02 ppm 

from August 2019 to August 2020 and reached up to 412.97 ppm as compared to the 

previous year concentration, i.e., 409.95 ppm, which is an alarming rate since CO2 

concentration in the atmosphere at <350 ppm is considering safe (Willard, 2014). Even 

though, there was a temporary reduction in daily global CO2 emissions during the 

COVID-19 forced confinement in April 2020 reported by Le Quéré et al. (2020), it 

does not really reflect the structural changes in the economic, transport or energy 

systems. Up to now, various agreements are developed among nations worldwide 

including Kyoto Protocol and Paris Agreement to face the challenges caused by carbon 

emissions, especially CO2 emission. Accordingly, it has encouraged many research 

efforts around the globe to develop advanced materials, techniques and strategies to 

address the problems associated with CO2 emission including the health problems. 

Popular strategies have been explored and adopted including the utilization of low 

carbon fuels and renewable energy sources, and CO2 capture, storage and utilization 

(CCSU) from their source points (Chen et al., 2015).  
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CCSU is a promising approach to mitigate the anthropogenic CO2 with the 

capacity to reduce up to 22% of CO2 emissions in 2035 (Bains et al., 2017). In this 

technology, there are three basic CO2 capture scenarios can be adopted which are post-

combustion capture, pre-combustion capture, and oxy-fuel combustion. The main 

focus of this study is to capture the CO2 from the flue gases after the burning of fossil 

fuels in power plants, post-combustion capture. These past few decades, absorption is 

the common method in post-combustion CO2 capture and separation. However, CO2 

absorption via amine scrubbing possesses apparent disadvantages, such as release of 

toxic gases and chemicals, high energy requirement for regeneration, and extensive 

corrosion of the equipment, which limit the practical application of this technology. 

Due to its disadvantages, this method become less preferable and alternative 

technology processes were developed to overcome the drawbacks of this method. The 

development of practical yet sustainable alternatives are still highly desired (Abbasi et 

al., 2019; Romano et al., 2013). Consequently, other alternative and effective method 

such as adsorption have been suggested due to its simplicity in operation (Huang et 

al., 2019), low energy requirement, ease of regeneration, environmental-friendly, and 

cost-effective (Singh and Kumar, 2016). Moreover, adsorption can be done under 

ambient pressure at elevated temperatures which makes it suitable adsorbent for post-

combustion CO2 capture. 

In CO2 adsorption, there are various types of commonly employed adsorbents 

such as zeolites and clays-based adsorbents, carbon-based adsorbents, and metal 

organic frameworks (MOF)-based adsorbents (Gibson et al., 2016). Out of these 

mentioned adsorbents, carbon-based adsorbent is the most abundant and can be 

attained from inexpensive carbon precursors. Activated carbon (AC) (Guo et al., 

2006), carbon fibers (CFs), carbon nanotubes (CNTs), graphene (Chowdhury and 

Balasubramaniam, 2016), activated carbon nanofibers (ACNFs) (Othman et al., 2016) 

are examples of carbon-based adsorbents that have been currently used in CO2 

adsorption. Amongst the available carbon-based adsorbents being investigated, porous 

ones such as activated carbons (ACs) were preferred due to its low cost, high surface 

area and porosity, high adsorption capability, high amenability to modify the pore 

structure and functionalize the surface, low energy requirements for regeneration as 

well as hydrophobicity (Pellerano et al., 2009; El-Sharkawy et al., 2015). ACs in 

granular and powdered form are the commonly used adsorbent (El-Sharkawy et al., 
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2015). Generally, ACs have relatively low micropore volume and multimodal pore 

size distribution which are the main factors to limit their adsorption capabilities. 

Conversely, in comparison with the conventional ACs, newly developed fibrous ACs, 

also known activated carbon nanofibers (ACNFs) have shown the improved 

adsorption capacity due to the fibrous structure and presence of accessible micropores 

from their external surface (Lee et al., 2014), which reduce the mass transfer resistance 

for adsorbate diffusion to reach the adsorption sites. Although the developed pristine 

ACNFs has shown the improved adsorption performance as compared with the 

commercial ACs, recent study disclosed that the inclusion of nanofillers/additives 

could further improve the surface area and micropore volume of the modified ACNFs 

(Tavanai et al., 2009). 

In comparison with other additives, graphene and graphene oxide with novel 

properties and economical carbon-based materials have been the potential candidates 

for adsorbent materials due to their large theoretical specific surface area (SSA) and 

high porosity (Mishra and Ramaprabhu, 2011; Takeuchi et al., 2017). These excellent 

properties have opened up the utilisation of graphene in wide range of applications 

including supercapacitors, biomedicals, fuel cells, energy storage etc. (Wang et al., 

2017). For instance, the addition of graphene-based materials from agricultural wastes 

such as rice husks as nanofiller have received major attention due to its abundant 

availability, cost-effective, and easy preparation as compared to other precursors. 

Besides that, determination of suitable experimental and fabrication parameters of 

ACNFs such as electrospinning and activation are also very crucial. Electrospinning 

process resulting to the formation of fine, homogenous, smooth, and aligned fibers 

structure under controllable electrospinning parameters with diameter ranging from 

100-300 nm as compared to other NFs fabrication methods (Nayak et al., 2011).  

Besides the fabrication method, the selection of carbon precursor should be 

deeply considered in order to produce ACNFs with excellent properties for CO2 

adsorption (Park and Heo, 2015). Polyacrylonitrile (PAN) has been reported to 

produce yield of high carbon percentage during carbonization process due to its high 

melting point to retain its structure (Yusof and Ismail, 2012; Huang, 2009). 

Furthermore, the physical or chemical activation is another factor that can also increase 
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the porosity and surface area of the resultant ACNFs. In conclusion, it can be said that 

the main point that should be taken into consideration for maximum CO2 adsorption 

performance is depending on the properties of the adsorbent used including the SSA 

and porosity, susceptibility to surface chemistry and structural modifications, 

selectivity towards adsorbates and many more (Osmond, 2000). 

1.2 Problem Statements 

The commercial graphene synthesized by Hummer’s method produced single-

layered pure graphene with high specific surface area (SSA), which makes them 

suitable to be utilized in wide range of applications (Gadipelli and Guo, 2015). 

However, this expensive and complex synthesis method have been the major concerns 

faced by the researchers nowadays. The alternative for abundant and cheap agricultural 

wastes with simple chemical activation method to produce graphene materials has 

been considered. However, another challenge of the synthesized agricultural-based 

graphene such as rice husk char (GRHC), is it’s often suffered from the restacking 

between neighboring layers, due to the van der Waals force of attraction as reported 

by Cui et al. (2014). This led to a serious reduction of the accessible surface area and 

adsorption active sites. In order to prevent restacking in graphene-based materials, this 

GRHC can be used as nanofillers, and were incorporated into polymer activated carbon 

nanofibers (ACNFs). Moreover, the other problems in local agriculture industries 

related to the rice husks is its unmanageable disposal by land filling or open burning, 

which can lead to occupancy of landfill space as well as air pollution.  

Electrospun pristine activated carbon nanofibers (ACNFs) fabricated via a 

simple electrospinning process demonstrated low to moderate CO2 uptake, necessary 

to compete with commercial activated carbon (AC). This is because the pristine 

ACNFs possessed moderate SSA value as compared to AC or modified ACNFs 

resulting from its large fiber diameter. It is believed that fiber with smaller diameter 

can contribute to ACNFs with higher SSA (Wang, 2008). Apparently, these polymeric-

based ACNFs suffered from very low carbon yield. Due to that, incorporation of 

thermally stable graphene is expected to improve the thermal stability of the ACNFs 
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nanocomposites, especially during high activation temperature, thus producing 

graphene incorporated ACNFs (gACNFs) with higher carbon yield. Moreover, the 

resultant gACNFs with highly thermal-stable properties is more preferable in the 

elevated temperature (40-80°C) during post-combustion CO2 capture in power plants. 

It is believed that graphene-based materials with large SSA values, high electrical and 

thermal conductivities, excellent thermal and chemical stabilities can potentially act as 

additive/nanofiller to produce composite ACNFs. The resultant composite ACNFs are 

believed to display smaller fiber diameter, larger SSA, and thermal-stable properties 

as well as enhanced adsorption performances (Gadipelli and Guo, 2015; Papageorgiou 

et al., 2017). 

However, from previous study conducted by Zhang et al. (2015), they have 

found that carbon-based adsorbents such as activated carbon suffered from low CO2 

adsorption capacity. This could possibly be due to the uncontrollable pore size caused 

by the uncertain structures of various carbon-based precursors. Even though, the SSA, 

Vmicro, and pore size appeared to be the key parameters in the design of porous 

adsorbents for CO2. The surface chemistry also plays vital role that needs to be 

considered. For this issue, the surface properties can be tuned not only by the pre-

design of precursors, but also by the post-modification of existing carbon materials. 

This is because the carbon-based adsorbents possess fewer basic functionalities which 

make the adsorbents do not significantly interact with acidic CO2 molecules. Due to 

that, it is believed by adding the basicity of the adsorbent with amine-based chemicals 

will improve the adsorption capacity of the adsorbents due to high affinity of this 

functional groups towards CO2.  

1.3 Hypotheses 

(a) Incorporation of GRHC with good conductivity and thermal stability properties 

would reduce the fiber diameter during electrospinning and producing ACNFs 

with higher yield after activation at high temperature. 
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(b) By varying the types of graphene-based materials and their loadings during 

synthesis, the gACNFs would possess differences in their physicochemical 

properties. 

(c) CO2 adsorption capacity of gACNFs composites will be enhanced by 

impregnating polyethyleneimine (PEI) due to introduction of basic N-

functionalities that have stronger interaction with CO2 molecules. 

(d) The resultant PEI-gACNFs composites with specific and desirable 

physicochemical properties would give superior adsorption capacity toward 

CO2 via physisorption and chemisorption, simultaneously. 

 

 

 

1.4 Research Objectives 

The aim of this study is to produce low-cost and simple synthesis method of 

graphene-derived rice husk char (GRHC) and its effects on the prepared activated 

carbon nanofibers nanocomposites (ACNFs) for carbon dioxide adsorption. In order 

to accomplish the aim of this study, the completion of each objective mentioned as 

follow need to be done: 

 To optimize the synthesis conditions and method of graphene-derived rice husk 

char (GRHC) as nanofillers in activated carbon nanofibers (ACNFs). 

 To evaluate the effects of GRHC on the physicochemical properties of the 

resultant graphene/activated carbon nanofibers nanocomposites (gACNFs).  

 To improve the gACNFs surface chemistry properties for CO2 adsorption by 

impregnating polyethyleneimine (PEI) on the prepared gACNFs. 

 To examine the CO2 adsorption characteristics of pristine ACNFs and gACNFs 

nanocomposites, as well as PEI-gACNFs via volumetric adsorption method.  
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1.5 Scopes of the Study 

In order to accomplish the aforementioned aim and objectives, the scopes of 

this study were divided accordingly to the aforementioned objectives as enlisted 

below: 

 To optimize the synthesis conditions and method of graphene-derived rice husk 

char (GRHC) as nanofillers in activated carbon nanofibers (ACNFs) by 

considering the following scopes: 

i. Synthesis of graphene derived-rice husk char (GRHC) at different 

stabilization temperatures (100, 200, 300, 400°C) by using different 

RHC:KOH ratio (1:1, 1:2, 1:3,1:4, 1:5). 

ii. Thermal reduction of reduced graphene oxide (rGO) from commercial 

graphene oxide (GO). 

 To evaluate the effects of GRHC on the physicochemical properties of the 

resultant graphene/activated carbon nanofibers nanocomposites (gACNFs), the 

following scopes are conducted: 

i. Preparation of dope solution with different concentration of 

polyacrylonitrile (8, 9, 10% relative to total solution weight) and 

graphene loadings (1, 2.5, 5, 10%). 

ii. Effects of different types of graphene-like materials such as GRHC and 

rGO and their loadings on the properties of nanofibers/graphene 

composites (gNFs). 

iii. Effects of physical activation on the resultant NFs by using carbon 

dioxide (CO2) as activating agents under optimum activation parameters. 
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iv. Characterization of elemental, microstructural, and textural properties of 

the graphene-based materials (GRHC and rGO), pristine ACNFs and 

gACNFs composites by using thermogravimetric analysis (TGA), 

Fourier transform infrared (FTIR), Raman spectra, X-ray diffraction 

(XRD), Brunauer, Emmett and Teller (BET), N2 adsorption/desorption 

isotherm by using BET method, and scanning electron microscopy 

(SEM), transmission electron microscopy (TEM), and elemental 

dispersive X-ray (EDX) analyses. 

 To improve the gACNFs surface chemistry properties for CO2 adsorption by 

impregnating polyethyleneimine (PEI) on the prepared gACNFs and the 

following scopes are considered: 

i. Preparation of impregnated gACNFs nanocomposites with PEI 

containing N-functionalities by using impregnation method. 

ii. Characterization of chemical, microstructural, and textural properties of 

the PEI-impregnated and non-impregnated gACNFs. 

 To examine the CO2 adsorption characteristics of pristine ACNFs and gACNFs 

nanocomposites, as well as PEI-gACNFs via volumetric adsorption method, 

the following scopes have been conducted: 

i. Evaluation of CO2 adsorption capacity of pristine ACNFs and gACNFs 

from low to moderate pressure conditions (5, 10, 15 bars) at 25°C. 

ii. Evaluation of CO2 adsorption capacity of the impregnated and non-

impregnated ACNFs and gACNFs at atmospheric pressures (1 bar) and 

25°C. 

iii. Evaluation of CO2 adsorption/desorption of the impregnated and non-

impregnated gACNFs at different adsorption temperatures (0, 25, 50°C) 

at atmospheric pressure to mimic the real-life post-combustion 

conditions (> 40 - 80°C, 1 bar). 
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iv. Assessment of CO2 adsorption characteristics; kinetics of the adsorption 

was described using pseudo-first order and pseudo-second order model. 

The adsorption equilibrium data were correlated with Langmuir and 

Freundlich isotherm models. Regeneration of the gACNFs was 

determined after several successive adsorption/desorption cycles at 

atmospheric pressure and 25°C. 

 

 

 

1.6 Significance of the Study 

This newly modified ACNFs with the incorporation of graphene are believed 

to be a potential candidate that will serve as an alternative CO2 storage apart of current 

adsorbents that are available nowadays. This is probably due to its feasibility and high 

gas adsorption capacity. Recently, graphene derived from the agricultural wastes such 

as rice husk char have been found to be good additives in various research applications 

due to its abundant availability, low cost, large specific surface area, and thermally 

stable. Up to now, there is no previous research that have been extensively studied and 

discussed on the effects of incorporation of graphene derived rice husk charchar 

(GRHC) in ACNFs properties and their gas adsorption capacity. There are also only 

limited studies that have been discussed on the effects of incorporation of GRHC in 

the NFs and most of it, are focusing of the preparation of composite NFs and their 

advantages in other applications such as supercapacitor electrodes. Wherefore, this 

proposed study may provide better understanding in the fabrication of gACNFs 

nanocomposites with enhanced properties by selecting suitable graphene precursors 

and loadings by considering the optimum electrospinning and pyrolysis conditions 

from previously reported studies. Moreover, the CO2 adsorption performance was 

improved by impregnating the resultant ACNFs with amine-based chemicals that rich 

in N-functional groups such as polyethyleneimine (PEI). In the end of this study, both 

resultant gACNFs nanocomposites either PEI-impregnated or non-impregnated have 

become potentially excellent adsorbents for CO2 adsorption in post-combustion CO2 

capture step in CCS method. Consequently, mitigate the anthropogenic CO2 emission 

to the atmosphere and reduced the greenhouse effects. 



 

10 

1.7 Limitation of the Study 

(a) The temperature-dependent adsorption/desorption test of the gACNFs and PEI- 

gACNFs were conducted under atmospheric pressure due to the limitation of the 

equipment.  

(b)  The improvement of the surface chemistry of the gACNFs by surface 

functionalization only limited to one type of amine-based chemicals which is 

polyethyleneimine (PEI). 

(c) The mechanical strength of the resultant GRHC and gACNFs were not studied 

in this current work. 

(d) Due to time limitation, the stability study of the gACNFs and PEI-gACNFs were 

performed for only five cycles.  

(e) Studies on kinetic modelling and equilibrium isotherms for adsorption studies 

only limited to two different models, which is pseudo-first order and pseudo-

second order kinetic models, and Langmuir and Freundlich models. 
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