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ABSTRACT 

The incoming fifth generation (5G) technology requires antennas with a greater 

capacity, wider wireless spectrum utilisation, high gain, and beam steering ability. This is due 

to the cramped spectrum utilisation in the previous generation. As a matter of fact, 

conventional antennas are unable to serve the new frequency due to the limitations in 

fabrication and installation mainly for smaller sizes. The use of graphene material promises 

antennas with smaller sizes and thinner dimensions, yet capable of emitting higher frequencies. 

Graphene is a unique material that can display tuning characteristics. This characteristic 

originates from its surface complex conductivity, which is controlled by a chemical potential. 

Most characteristics of tunable graphene antenna have been studied on terahertz frequency 

range, thus making it difficult to be realised practically. Besides, the standard antenna that uses 

switching components may have trouble during installation, and size consuming as it can be 

seen in the reconfigurable antenna. Due to that, another study to produce graphene with 

excellent properties is vital for the advancement of wireless communication system. In this 

thesis, graphene antennas for fifth generation applications are conducted in three parts of 

studies. In the first part, the graphene antenna properties are studied in different curing 

temperatures and times. The curing temperatures are 250°C, 300°C, and 350°C, then each 

temperature is set with curing times of 20 minutes, 30 minutes, 1 hour, 2 hours, and 3 hours to 

manufacture graphene based antenna with different properties. The proposed graphene based 

antenna properties are then respectively investigated using performance network analyser 

(PNA), vector network analyser (VNA), field-emission scanning electron microscope 

(FESEM), and Raman spectroscopy. From analyses on the dielectric, conductivity and 

characterisation on graphene’s physique, the antenna properties exhibit a tunability through its 

resonance frequency and main beam direction of the radiation pattern by the variation obtained 

in curing temperature and time. In the same time, the gain of the antennas can also be varied. 

The second part is the study of graphene antennas at a frequency of 15 GHz in both single and 

array elements. The high-frequency antenna contributes to a large bandwidth and is excited by 

coplanar waveguide for easy fabrication on one surface via screen printing method. The 

defected ground structure is applied in an array element to improve the radiation and increase 

the gain. The results show that the printed graphene antenna for single element produces an 

impedance bandwidth, gain, and efficiency of 48.63%, 2.99 dBi, and 67.44%, respectively. 

Meanwhile, the array element produces slightly better efficiency (72.98%), approximately the 

same impedance bandwidth as the single element (48.98%), but higher gain (8.41 dBi). 

Moreover, it provides a beam width of 21.2° with scanning beam capability from 0° up to 

39.05°. The last part is a tunable antenna based on graphene operating at microwave frequency 

range is proposed. The antenna is designed and fabricated at 15 GHz with a gate electrode 

placed behind it. They are connected to external direct current (DC) bias during the 

measurement. The biasing is applied from 0 V to 30 V. The result shows that the resonance 

frequency is tuned to 20 MHz and reflection coefficient magnitude improves by 1.24 dB. 

Following this, an analytical calculation on chemical potential is also derived to enhance the 

graphene tunability. It is shown that at least 2.85 kV of the gate voltage is needed to vary the 

chemical potential and less than 0.29 µm of dielectric thickness is suitable for tuning purpose 

with a given condition. Based on the three parts of studies on antenna design and 

characterisation, graphene can be a good alternative material for future communication. It is 

due to the exhibited performances are comparable with conventional material and could act 

beyond the common antenna properties under the influence of tunability, which is owned by 

graphene.  
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ABSTRAK 

Teknologi generasi kelima (5G) yang akan datang memerlukan antena dengan lebih 

kapasiti, penggunaan spektrum tanpa wayar yang lebih luas, gandaan yang tinggi, dan kebolehan 

pengemudian alur. Ini disebabkan oleh penggunaan spektrum yang sempit pada generasi terdahulu. 

Sebagai hakikatnya, antena konvensional tidak mampu untuk menyediakan frekuensi baru 

disebabkan oleh batasan fabrikasi dan pemasangan terutamanya untuk saiz yang lebih kecil. 

Penggunaan bahan graphene menjanjikan antena dengan ukuran yang lebih kecil dan dimensi yang 

lebih nipis, namun mampu memancarkan frekuensi yang lebih tinggi. Graphene adalah satu bahan 

unik yang boleh memaparkan ciri penalaan. Ciri ini berasal dari kekonduksian kompleks 

permukaannya, yang dikawal oleh potensi kimia. Kebanyakan ciri antena graphene boleh tala telah 

dikaji pada julat frekuensi terahertz, oleh itu menjadikannya sukar untuk direalisasikan secara 

praktikal. Di samping itu, antena piawai yang menggunakan komponen pensuisan mungkin 

mengalami masalah semasa pemasangan, dan mengambil saiz seperti yang boleh dilihat dalam 

antena boleh konfigurasi semula. Oleh sebab itu, satu lagi kajian untuk menghasilkan graphene 

dengan sifat yang sangat baik adalah penting untuk kemajuan sistem komunikasi tanpa wayar. 

Dalam tesis ini, antena graphene untuk aplikasi generasi kelima dikendalikan kepada tiga bahagian 

kajian. Pada bahagian pertama, sifat antena graphene dikaji pada suhu dan masa pengawetan 

berbeza. Suhu pengawetan adalah 250°C, 300°C, dan 350°C, kemudian setiap suhu ditetapkan 

dengan masa pengawetan selama 20 minit, 30 minit, 1 jam, 2 jam, dan 3 jam untuk menghasilkan 

antena berasaskan graphene dengan ciri yang berbeza. Ciri antena berasaskan graphene yang 

dicadangkan kemudiannya masing-masing disiasat menggunakan penganalisis rangkaian prestasi 

(PNA), penganalisis rangkaian vektor (VNA), mikroskop elektron pengimbasan pemancaran 

medan (FESEM), dan spektroskopi Raman. Dari analisis dielektrik, kekonduksian dan pencirian 

pada sifat graphene, sifat antena menunjukkan keupayaan boleh tala melalui frekuensi resonans 

dan arah alur utama pola sinaran dengan perubahan yang diperolehi di dalam suhu dan masa 

pengawetan. Pada masa yang sama, gandaan antena juga boleh diubah. Bahagian kedua ialah kajian 

terhadap antena graphene pada frekuensi 15 GHz dalam kedua-dua elemen tunggal dan 

tatasusunan. Antena frekuensi tinggi menyumbang kepada lebar jalur yang besar dan diuja oleh 

pandu gelombang sesatah untuk lebih memudahkan fabrikasi pada satu permukaan melalui teknik 

percetakan skrin. Struktur pembumian cacat digunakan dalam elemen tatasusunan untuk 

memperbaiki radiasi dan meningkatkan gandaan. Keputusan menunjukkan bahawa antena 

graphene yang dicetak untuk elemen tunggal menghasilkan lebar jalur galangan, gandaan, dan 

kecekapan masing-masing sebanyak 48.63%, 2.99 dBi dan 67.44%. Sementara itu, elemen 

tatasusunan menghasilkan kecekapan yang sedikit lebih baik (72.98%), kira-kira lebar jalur 

galangan yang sama seperti elemen tunggal (48.98%), tetapi gandaan yang lebih tinggi (8.41 dBi). 

Selain itu, ia memberikan lebar alur 21.2° dengan kemampuan pengimbasan alur dari 0° sehingga 

39.05°. Bahagian terakhir ialah antena boleh tala berasaskan graphene beroperasi pada julat 

frekuensi gelombang mikro dicadangkan. Antena direka bentuk dan difabrikasi pada 15 GHz 

dengan elektrod get yang diletakkan di belakangnya. Ia disambungkan pada pincangan arus terus 

(DC) luaran semasa pengukuran. Pincangan digunakan dari 0 V hingga 30 V. Hasilnya 

menunjukkan bahawa frekuensi resonans ditala kira-kira 20 MHz dan magnitud pekali pantulan 

meningkat 1.24 dB. Berikutan itu, pengiraan analisis ke atas potensi kimia juga diterbitkan untuk 

meningkatkan keupayaan boleh tala graphene. Ia menunjukkan bahawa sekurang-kurangnya 2.85 

kV voltan get diperlukan untuk mengubah potensi kimia dan kurang daripada 0.29 μm ketebalan 

dielektrik adalah sesuai untuk tujuan penalaan dengan keadaan tertentu. Berdasarkan ketiga-tiga 

bahagian kajian ke atas reka bentuk dan pencirian, graphene boleh menjadi bahan alternatif yang 

baik untuk komunikasi masa hadapan. Ini kerana, prestasi yang ditunjukkan adalah sebanding 

dengan bahan konvensional dan boleh bertindak melangkaui ciri antenna biasa di bawah pengaruh 

kebolehan boleh tala yang dimiliki oleh graphene. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

Wireless communication technology evolves in every ten years. The evolution 

occurs to serve the improvement service for current requirement so that interaction 

between people can be implemented properly from time to time. Historically, wireless 

communication technology has started in 1981 with analogue system. At the moment, 

the phone only limited for voice communication [1] and this era is known as the first 

generation (1G). Then in 1992, a digital system was introduced where users can start 

employ short message service (SMS) text messaging [2]. The existed system is 

categorised as second generation (2G). Next, in year 2001, the third generation (3G) 

has started by expanding digital technology through multimedia transmission [3] in 

mobile phone, laptop and computers. The multimedia consists of high-speed internet 

access, highly-improved video and audio streaming capabilities [1]. While in 2011 

until recent, fourth generation (4G) has taken place to provide high bandwidth access 

and it is recognised as Long Term Evolution-Advanced (LTE-A) [1], [4]. The 4G LTE 

technology has become the world information, social media and news can be reached 

instantly, able facilitating our daily work and life [5] likes online shopping, learning, 

meeting or even handling business, home work, leisure, and transportation [6] with 

just in our fingertips by simply using smart phones. 

In the coming of 2020 and beyond, the researchers and scientists anticipate that 

fifth generation (5G) comes with greater capacity and implement new spectrum [7]. 

The 5G is depicted that it will involve new complementary technologies such as 

machine-type communication or known as Internet of Thing (IoT), beamforming, front 

and backhaul, hot spots and small cells [8]. As reported in [9], it states that 5G will 

support stringent latency, reliability, wide range of data rates, and network scalability 

and flexibility. Thus, there are a huge number of antenna devices will be installed in 
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the extending of 5G technology [10] likes on-body [11], building or any constructions 

[6], electrical appliances [12], and private or public transport [13]. Based on these 

scenarios, the 5G antenna in mobile terminal should have good properties for 

supporting this new features such as high gain [14], antenna array [15], multiple 

antenna [16], switched antenna [16], beam-forming [17], and high-directivity beam 

steering [12]. Figure 1.1 shows the communication evolution from 1G to 5G. 

 

Figure 1.1 The service provided by 1G to 4G is limited for people whereas 5G 

covers people and things [18] 

Therefore, in the 5G antenna design, it is not enough to utilise conventional 

materials at all kind of 5G applications. It is because some applications appropriate to 

certain materials in order to keep the aesthetic value, comfortability, and quality. These 

scenarios become a big challenge in the antenna design. Accordingly, it is time for 

researchers and scientists in the antenna field to make a paradigm shift. The antenna 

design is not just made by common conductive and substrate, but can be developed 

from others potential materials which benefits in the antenna performance as will be 

introduced in this work that is graphene. 
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1.2 Problem Statement 

With the development of wireless communication technology towards 5G by 

2020, the total of device will become larger and could hit up to ten or hundreds billions 

[4]. This fact is supported by [19] where the huge number is came from machine-to-

machine (M2M) applications. That means, the mobile phone that subscribes mobile 

broadband every year can reach more than one hundred fold. The rise number of 

machine as a result of people desire the Internet access for immediate communication 

and access information [10]. Hence, this situation bring to a limit which make the 

current communication unable to support the mobile data traffic.  

The first problem is identified that the [12] predicted the data traffic will go 

beyond 17 exabytes (17 x 1018 bytes) per month with combining mobile phones, 

laptops, tablets, and M2M. While in [7] mentioned that the heavy data is coming from 

video where mobile users start watching television programs and movies through 

streaming video. Due to that, the mobile traffic will reach 291.8 exabytes in a year by 

2019 [7], [20]. The forecast will become worst as the available frequency spectrum 

allocated, that is lower than 3 GHz has been fully utilised [19]. The same limitation 

was also presented in [21] where the frequency below 6 GHz is extremely crowded 

with mobile systems, broadcasting and satellite. This situation brings the spectrum 

enter the maximum usage [11] thus make the lower frequency unable to serve high 

bandwidth anymore [10], [14]. 

Based on this limitation, the demand on higher capacity can be solved by 

providing broad range of frequency or large bandwidth in order to provide high data 

rate service [21]. The data rate must exceed 1 Gbps [1], [8], [11], [12] and could reach 

50 Gbps [22] which means the possible bandwidth is  1 GHz [7], [12], [22]. Due to 

cramped utilisation at low frequency, a new frequency spectrum need to be explored 

and proposed for the future communication. It is supported by [22] where the greater 

bandwidth can be obtained at higher frequency which able to support higher speed. 

Several high frequencies have been proposed. Samsung’s technology has designed 

frequency near to millimeter wave (mm-Wave) which range from 30 GHz to 300 GHz 

[11]. Whilst the other researchers has proposed several tens of gigahertz (GHz), such 
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as 28 GHz and 38 GHz [1], [12], [23], [24], free licensed of 60 GHz [14], and E band; 

71 GHz to 76 GHz, 81 GHz to 86 GHz and 92 GHz to 95 GHz [7], [12], [15], [25]. 

Besides that, the World Radio Conference, Geneva in 2019 (WRC 19) has regulated 

that 24.5 GHz to 86 GHz can be used for future development of International Mobile 

Telecommunication (IMT) [26]. Since all the spectrum is not defined yet, thus the 

frequency that can be considered is band above 6 GHz as stated in the Office of 

Communications (Ofcom), United Kingdom [22]. However, this work considers 

frequency in between 6 GHz to 20 GHz because it is not explored as much as mm-

Wave, while equipment and facilities in this frequency can be obtained easily. 

The second problem is, the conventional indoor antenna commonly has 

omnidirectional radiation in between -8 dBi to 0 dBi [14]. The gain is too low in order 

to support the forthcoming 5G system which involves an indoor communication within 

80 % compared to outdoor in about 20 % [10], [25], [27]. While that, mm-Wave will 

experience some disturbances compared to lower frequency because, the signal 

becomes weak during penetration on solid material or building wall [1], absorbed or 

scattered by gases, rain, foliage [11], and flora [27]. The path loss also will affect the 

data rate, spectral efficiency, and energy [10]. In conjunction, the lower frequency 

band resulting larger antenna size, if the antenna array is designed at this frequency for 

solving the interference or increasing gain. The antenna will be bulky and not practical 

for current devices. Furthermore, a very high frequency will face a challenge in 

manufacturing antenna [8] since the antenna size is inversely proportional to the 

operating frequency. Due to that, a conventional material and fabrication method used 

in common antenna also has limitation to manufacture a smaller antenna size which 

has gap of 0.1 mm. 

Related to the problem above, the indoor communication requires higher 

penetration of radiation. A signal can penetrate with higher gain by implementing 

antenna array [11] and considering the beam steering and narrow beam [14]. Thus, the 

gain should be achieved by mobile terminal is near to 12 dBi [28]. In the antenna array 

design, the isolation for each S-parameter between antenna elements and radiation 

pattern must be obtained properly in order to obtain high gain. Thus, a technique of 

mutual coupling reduction can be implemented to reduce side lobe level (SLL) and 
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improve gain. In the production of antenna either single element or array, this study 

will integrate with alternative materials, graphene as conducting element. It is due to 

the difference application commonly requires particular material mainly to save cost, 

besides being flexible, easy, fast, suitable for small size production, and lightweight. 

Some devices may even be down-scaled [29] in size because of the higher frequency 

spectrum utilisation. Thus graphene is one of the alternative selection since it has an 

advantage to produce small dimension which means can be fabricated from 

nanometers to centimeters [30], [31], and promising candidates to decrease the antenna 

size [32]. In addition, graphene also can produce broad bandwidth to solve the first 

problem aforementioned.  

The third problem is spotted on multifunctional and multipurpose devices in 

future communication. The feature is important since the current environment forces 

people to perform many types of communication and execute many tasks 

simultaneously involving an antenna which is adaptive with any situation or frequency 

needed. Due to that, a combination antenna from several frequencies will enlarge the 

antenna size. In addition, the thickness of cellular phone printed circuit boards (PCBs) 

are not more than 1 mm thus any increase in the PCB thickness is directly related to 

rise the production costs and size of the design in the fiercely competitive consumer 

electronics arena [14]. The difficulties may occurred because the communication 

device, installation and maintenance should be cheap and reduce cost [12]. 

Accordingly, a tunable antenna is suitable because its performance is the same 

as that of a multiple antenna. Since it can cover multiple operating frequencies, then it 

tends to reduce the system size and number of components [33] besides to serve the 

device into compact size [34], additional functionalities and attractive features [35], 

respectively. Tunable antennas commonly implement switches [33], [36]–[43] for 

varying operating frequency. However, the switches installation possibly disrupt the 

antenna performance. The other method that presents the same effect employs the 

implementation of certain materials, where they can be in the form of substrate, 

radiating or receiving element or additional antenna layer [34], [35], [44], [45]. Thus 

it is appropriate to envisage the radio frequency integrated circuit (RFIC) with material 

likes silicon, semiconductors or any material embedded [14], [46]–[48] by a direct 
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current (DC) biasing exhibit switching characteristics. It is applicable because 

graphene also has tunable properties [49]. This effect is caused by its surface complex 

conductivity, which is controlled via chemical doping by changing the gate voltage 

applied [49], [50]. 

However, several problems are pointed out on graphene where it exhibits big 

shifted resonance frequency during measurement, broad bandwidth, and unstable 

radiation pattern due to losses on graphene conductivity and uncontrolled graphene 

properties that are obtained after curing process. Then, a small changes of resonance 

frequency and return loss at microwave range [51], [52] are exhibited if tunability is 

studied. Applying a high voltage to tune the resonance frequency or using a tiny 

substrate based on the surface charge density equation [53] can solve the limitation, 

theoretically. Different responses at frequency range near to 1 terahertz (THz) [54] 

indicate a definite change of tuning due to the high dependence on chemical potential 

at THz range [55], which means the conductivity of graphene varies smoothly when a 

chemical potential is changed. Thus, nano-size antenna should be produced for 

obtaining THz range but it only can be achieved with the support of adequate facilities. 

With these deficiencies, there is an alternative method to investigate the 

characteristics of graphene and at the same time to study the tunability of graphene 

antenna that is through the disturbance by external energy, or temperature exposure. 

Since graphene that used in this study have to go through curing process, so it is 

suitable to use temperature as the factor of change. Temperature also is one of the 

variable which can modify the conductivity of graphene besides using chemical 

potential [56]. With the effect of temperature on graphene, the carbon structure of 

graphene can be changed then affected the electrical properties which directly tune the 

antenna properties likes resonance frequency [57], [58], reflection coefficient 

magnitude [59], and radiation pattern if it is in a form of antenna. This mechanism can 

be an alternative way to be integrated in communication device for future technology. 
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1.3 Objectives 

The objectives of the research are : 

(a) To investigate the characteristics of graphene antenna in term of electrical and 

physical properties  

(b) To design, fabricate and test the performance of graphene antenna for single 

and array element to achieve 5G antenna requirement 

(c) To analyse the tunable properties of graphene antenna 

 

1.4 Scopes 

The scopes of the research are : 

(a) The graphene antenna is investigated in a range of temperature and time 

exposed. The investigation covers the same fifteen single antennas that 

classified into three curing temperature; 250°C, 300°C and 350°C. Each curing 

temperature has the curing time at 20 minutes, 30 minutes, 1 hour, 2 hours and 

3 hours. The antenna properties are studied in the variation of curing 

temperature and time. The change of relative complex permittivity and 

structure of graphene are recorded for supporting the study. 

(b) The single element and phased array of graphene antenna are studied at 

frequency of 15 GHz using of coplanar waveguide (CPW). The requirement 

for 5G antenna covers resonance frequency, reflection coefficient magnitude, 

bandwidth, percentage of impedance bandwidth, radiation pattern, gain and 

total efficiency. The array antenna studies are limited to four elements due to 

availability of a four port-external power divider. The defected ground 
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structure (DGS) is implemented as the mutual coupling reduction and beam 

steering ability is examined in simulation only. 

(c) Tunable antenna is analysed using a single element. The antenna operates at 

the same frequency of 15 GHz. A gate electrode is placed at the back side of 

antenna for biasing purpose. The biasing analysed covers from 0 V to 30 V and 

the tunable properties is observed at the resonance frequency and reflection 

coefficient magnitude. Then, an analytic calculation is suggested for the 

possibility value for tuning to be happened. 

 

1.5 Thesis Organisation 

This thesis is distributed into seven chapters. Chapter 1 has introduced the 

background and evolution of 5G, the problem and proposed solution for antenna in 5G 

including the objectives and scopes of the thesis. Chapter 2 presents the literature 

review of 5G and graphene. The 5G covers definition, requirement and 5G antenna 

properties such as bandwidth improvement, gain enhancement, mutual coupling 

reduction, and beam scanning which are reviewed from the previous study. The 

graphene part touches graphene definition, graphene structure, electronic properties, 

tunable characteristics, graphene surface conductivity, and opportunity of graphene in 

5G applications. The graphene antenna which is graphene patch antenna, and tunable 

graphene antenna are reviewed from the previous work. The relation of graphene 

between temperature and microwave absorption is carried out together with previous 

study on graphene affected by temperature. 

Chapter 3 explains the methodology of this research. This chapter contains the 

antenna specification, flow chart, research methodology, antenna design and 

estimation, simulation tools, fabrication process, and measurement process. Chapter 4 

discusses the properties of 5G antenna made by graphene in single and array element. 

This chapter contains antenna design and estimation, design evolution, parametric 

studies, investigation of graphene antenna properties in a range of curing temperature 



 

9 

and time with the justification of dielectric, conductivity, surface morphology, and 

carbon structure, and measurement result for single element. While array element 

analyses mutual coupling reduction, inter-element spacing, measurement results, and 

beam scanning performance. 

Next, in Chapter 5, the study presents tunable graphene antenna using DC 

voltage. Then a calculation is derived to analyse the possible value that can show 

tunability using provided antenna specification. Finally, Chapter 6 concludes the 

findings of all this research, highlights the contribution, and recommendation for 

future work. 
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