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ABSTRACT

The study of associating the groups in group theory with the graphs in graph

theory are widely done by many researchers. Since the algebraic properties of groups

can be studied through the structures of graphs, then it is common to find certain

graph invariants and graph properties. Nevertheless, the graph polynomials are also

significant in the study of the graphs but have not yet determined for the graphs

associated to groups. Graph polynomials, such as the independence polynomial, the

clique polynomial, and the domination polynomial are used to store the combinatorial

information of a graph. An independence polynomial of a graph is the polynomial

in which its coefficients are the number of independent sets in the graph. A clique

polynomial of a graph is the polynomial containing coefficients that represent the

number of cliques in the graph. Meanwhile, a domination polynomial of a graph

is the polynomial that contains coefficients representing the number of dominating

sets in the graph. In the first part of this research, these three polynomials are

determined for five types of graphs for three types of groups. The graphs considered

are the conjugacy class graphs, the conjugate graphs, the commuting graphs, the

noncommuting graphs, and the center graphs associated to the dihedral group, the

generalized quarternion group, and the quasidihedral group. All these graphs are

found and expressed in general in the form of the union and join of some complete

graphs, complete bipartite graphs, and also complete multipartite graphs. Then, the

graph polynomials associated to groups are obtained from these common types of

graphs by using the properties of the graph polynomials. The results obtained are

some polynomials of certain degrees. In the second part of this research, the roots of

all the graph polynomials associated to the finite groups that have been computed are

determined. The independence polynomial of the graphs associated to groups have real

roots that are always negative. The clique polynomials have roots that are always real

but may not be integers. Meanwhile, the domination polynomials always have a zero

root and the other roots may be complex numbers. In the last part of this research, two

types of new graph polynomials are defined and determined for the graphs mentioned

earlier. The new graph polynomials are called the clique-independence polynomial

and the clique-domination polynomial. The clique-independence polynomial of a

graph is the polynomial containing coefficients that represent the number of clique-

independent sets in the graph. The clique-domination polynomial of a graph is the

polynomial in which its coefficients are the number of clique-dominating sets in the

graph. The clique-independence polynomials are obtained for the conjugacy class

graph, the conjugate graph, the commuting graph, the noncommuting graph, and the

center graph associated to the dihedral group because these graphs contain clique-

independent sets and are suitable to be expressed in the form of clique-independence

polynomials. Meanwhile, the clique-domination polynomials are determined only for

the noncommuting graph associated to the dihedral group since clique-dominating sets

exist only for connected graphs.
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ABSTRAK

Kajian yang mengaitkan kumpulan dalam teori kumpulan dengan graf dalam

teori graf telah dilakukan secara meluas oleh ramai penyelidik. Oleh kerana sifat

aljabar bagi kumpulan boleh dikaji melalui struktur graf, maka ia adalah perkara

biasa untuk mencari graf tak varian dan sifat graf yang tertentu. Walaupun begitu,

polinomial graf juga adalah penting dalam kajian mengenai graf tetapi belum

pernah ditentukan untuk graf yang berkaitan dengan kumpulan. Polinomial graf,

seperti polinomial ketakbersandaran, polinomial klik, dan polinomial dominasi

digunakan dalam penyimpanan maklumat kombinatorik bagi suatu graf. Polinomial

ketakbersandaran bagi graf ialah polinomial yang pekalinya adalah bilangan set tak

bersandar bagi graf. Polinomial klik bagi graf ialah polinomial yang mengandungi

pekali yang mewakili bilangan klik dalam graf tersebut. Sementara itu, polinomial

dominasi bagi graf ialah polinomial yang mempunyai pekali mewakili bilangan set

berdominan bagi graf. Pada bahagian pertama penyelidikan ini, ketiga-tiga polinomial

ini ditentukan untuk lima jenis graf bagi tiga buah kumpulan. Graf yang terlibat ialah

graf kelas kekonjugatan, graf konjugat, graf berkalis tukar tertib, graf tak berkalis

tukar tertib, dan graf pusat yang terkait dengan kumpulan dwihedron, kumpulan

kuaternion teritlak, dan kumpulan kuasidwihedron. Kesemua graf ini telah dijumpai

dan dinyatakan secara am dalam bentuk gabungan dan cantuman bagi beberapa

graf lengkap, graf bipartit lengkap, dan juga graf multipartit lengkap. Kemudian,

polinomial graf yang berkaitan dengan kumpulan diperoleh daripada graf-graf jenis

biasa tersebut dengan menggunakan sifat-sifat bagi polinomial graf. Keputusan

yang didapati adalah polinomial-polinomial yang mempunyai darjah tertentu. Pada

bahagian kedua penyelidikan ini, punca-punca bagi kesemua polinomial graf yang

berkaitan dengan kumpulan terhingga yang telah diperoleh awalnya ditentukan.

Polinomial ketakbersandaran bagi graf yang berkaitan dengan kumpulan mempunyai

punca nombor nyata yang sentiasa bernilai negatif. Polinomial klik mempunyai punca

nyata tetapi tidak semestinya nombor bulat. Sementara itu, polinomial dominasi

sentiasa mempunyai punca sifar dan punca yang selebihnya adalah nombor kompleks.

Pada bahagian akhir penyelidikan ini, dua jenis polinomial graf baharu diperkenal dan

ditentukan bagi graf-graf yang telah dinyatakan sebelumnya. Polinomial graf baharu

tersebut dinamakan polinomial klik-ketakbersandaran dan polinomial klik-dominasi.

Polinomial klik-ketakbersandaran bagi suatu graf ialah polinomial yang mempunyai

pekali yang mewakili bilangan set klik-tak bersandar dalam graf. Polinomial klik-

dominasi bagi suatu graf ialah polinomial yang pekalinya adalah bilangan set klik-

berdominan dalam graf. Polinomial klik-ketakbersandaran diperoleh bagi graf kelas

kekonjugatan, graf konjugat, graf berkalis tukar terib, graf tak berkalis tukar tertib,

dan graf pusat yang berkaitan dengan kumpulan dwihedron kerana graf-graf ini

mengandungi set klik-tak bersandar dan sesuai dinyatakan dalam bentuk polinomial

klik-ketakbersandaran. Sementara itu, polinomial klik-dominasi ditentukan hanya

bagi graf tak berkalis tukar tertib yang berkaitan dengan kumpulan dwihedron

memandangkan set klik-berdominan hanya wujud untuk graf berkait.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In algebra, the research on the graphs associated to groups have brought great

interests to many researchers for the past few years. The algebraic properties of

the groups from group theory can be represented by graph structures and usually

correspond to certain types of graphs from graph theory, such as the complete

graph, complete bipartite graph and multipartite graph. These graphs have certain

properties that are used to class them. Graph properties that are being identified when

investigating on certain graphs are the graph invariants which include the independence

number, the clique number, the domination number and the chromatic number.

In group theory, various types of graphs associated to finite groups have been

established. Some examples of those graphs are the conjugate graph, the commuting

graph, the noncommuting graph, the orbit graph and the center graph. The names

of these graphs are referring to certain properties of the group that are used in the

definitions of the graphs. For example, the center graph of a group contains the

elements of the group as its vertices and the edges are formed if and only if the product

of any two vertices belong to the center of the group. Other than the graph invariants,

other research topics that are also commonly discussed for the graphs associated to

groups are the energy of graph, the topological index of graph and the spectrum of

graph. Among all the studies related to the graphs of groups, none focus in finding the

graph polynomials.
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In general, graph polynomials from graph theory are established for analyzing

various aspects of combinatorial graph invariants and characterizing the structure

concerning graphs. They contain coefficients that represent certain informations and

properties of the graphs. There are many types of graph polynomials that have been

studied by other researchers such as the independence polynomial, the matching

polynomial, the clique polynomial, the domination polynomial and the chromatic

polynomial that are generalized for many common types of graphs from graph theory.

This research is concerning in obtaining the graph polynomials for some graphs

associated to certain finite nonabelian groups. The graph polynomials included in this

research are the independence polynomial, the clique polynomial and the domination

polynomial that are determined for the conjugacy class graph, the conjugate graph, the

commuting graph, the noncommuting graph and the center graph associated to three

finite nonabelian groups, namely the dihedral group, the generalized quaternion group

and the quasidihedral group. The roots of these graph polynomials are also found in

this research.

The three groups that are considered are not isomorphic to each other since

each of them has their own structures that differ between one another, such as the

order of the elements in the group. However, the similarity between them is that they

belong to the isomorphism classes of groups of order 2n with nilpotency class n − 1.

In addition to that, two new types of graph polynomials are also introduced in

this research. The first one is the clique-independence polynomial of a graph and the

second one is the clique-domination polynomial of a graph.

In this chapter, the introduction of the whole research is presented. The

research background, problem statement, research objectives, scope of the study and

significance of findings are stated.
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1.2 Research Background

There are many types of graph polynomials that have been introduced and

studied by many researchers since the past fifty years. Some examples of graph

polynomials that are studied are the chromatic polynomial [1], the cycle polynomial

[2], the dependence polynomial [3], the independence polynomial [4], the path

polynomial [5], the domination polynomial [6] and the vertex polynomial [7]. In this

research, three types of graph polynomials are of interest, namely the independence

polynomial, the clique polynomial and the domination polynomial.

The three graph polynomials are brought into consideration as they are the

most relevant types of polynomials for the five types of graphs of groups included in

this research. Those graph polynomials have been expressed in general forms that are

sufficient to be applied onto the graphs. Since this research is a pioneer in computing

the graph polynomials associated to groups, then these three graph polynomials are the

most suitable ones to be considered.

The concept of the independence polynomial of a graph is studied by Hoede

and Li [4] in 1994, together with the concept of the clique polynomial of a graph.

The independence polynomial of a graph is the polynomial in which the coefficient

is the number of the independent sets of the graph. While the clique polynomial

is defined as the polynomial in which the coefficient is the number of cliques

of the graph. In 2005, Levit and Mandrescu [8] published a survey paper on

the independence polynomial of graph that mentioned some ways to compute the

independence polynomial, the unimodalitiy of the independence polynomials and

other important results concerning the roots of the independence polynomials. Later,

Ferrin [9] established the independence polynomials of some graphs including the

complete graph, the complete bipartite graph, the cycle graph and the star graph.

The clique polynomial is first introduced in 1990 by Fisher and Solow [3] but

with a different name, namely the dependence polynomial which contains alternate
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sign coefficients. Later, the term clique polynomial appears in the research by Hoede

and Li [4] with the condition that coefficients of the polynomial are always positive.

The study of the clique polynomial is later extended by Hajiabolhassan and Mehrabadi

in [10] that focused on the largest negative root of the clique polynomial of a graph

and how it is related with its subgraph. Furthermore, the unique smallest root of the

clique polynomial of graph is examined in a research by Goldwurm and Santini [11].

Another type of graph polynomial that is included in this research is the

domination polynomial, introduced by Alikhani in [6]. The domination polynomial

of a graph is the polynomial whose coefficient is the number of the dominating sets

in the graph. In [12], Akbari et al. studied on the characterization of graphs by using

the domination polynomials in which the graphs are characterized by how many roots

their domination polynomials have. Few years later, in [13], Alikhani established the

domination polynomials of some graph operations. The domination polynomial of the

lexicographic product or the composition of specific graphs are then discovered by

Alikhani and Jahari in [14].

Note that throughout this research, the graphs considered are all simple graphs,

without loops or multiple edges, and from now on will be referred only as graphs.

The graphs associated to groups that are included in this research are the conjugacy

class graph, the conjugate graph, the commuting graph, the noncommuting graph and

the center graph. These five types of graphs, when associated to the finite nonabelian

groups considered in this research, can be expressed in specific general forms that are

compatible with the graph polynomials selected.

The conjugacy class graph was first introduced by Bertram et al. in [15].

Later, Mahmoud et al. [16] obtained the general form of the conjugacy class graphs

of some finite groups. In addition to that, Erfanian and Tolue [17] introduced the

conjugate graph of finite groups and later, Erfanian et al. [18] extended the concept

to generalized conjugate graph. Other than that, the commuting graph has been

introduced by Segev [19]. Then, Raza and Faizi [20] discussed on certain properties

4



of the commuting graphs of the dihedral groups. Furthermore, Neumann [21] has

investigated the problem initiated by Paul Erdos that lead to the introduction of the

noncommuting graph. Abdollahi et al. [22] and Talebi [23] studied on some properties

of the noncommuting graph of certain types of groups. Meanwhile, Balakrishnan et

al. [24] introduced the center graph of a group and later, this concept has been extended

to n-th central graph of a group by Karimi et al. [25].

In association between the study of graphs with groups, the graph polynomials

have not yet being considered to be determined for the graphs associated to groups.

Therefore, in this research, the independence polynomial, the clique polynomial and

the domination polynomial associated to the five types of graphs mentioned earlier

that are associated to some finite groups are computed and to be expressed in general

form. The finite groups include the dihedral group, the generalized quaternion group

and the quasidihedral group. These three groups are not isomorphic to each other but

certain types of graphs associated to them are isomorphic to each other. Thus, the

graph polynomials together with their roots obtained in this research are analyzed to

establish any connection among the groups.

Moreover, two new types of graph polynomials are defined and expressed

in general forms for some graphs associated to the dihedral group. The clique-

independence polynomial is established for the conjugacy class graph, the conjugate

graph, the commuting graph, the noncommuting graph and the center graph of the

dihedral group. Meanwhile, the clique-domination polynomial is determined only

for the noncommuting graph of the dihedral group since the clique-dominating sets

that are required to form the polynomial exist only in a connected graph. The new

graph polynomials are determined only for the dihedral group because throughout this

research, since the graph polynomials associated to groups with order 2n are always

equal, then it is deduced that the graph polynomials associated to the dihedral group is

enough to represent the graph polynomials for the other two groups.
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Many researchers state that it is quite obvious that if two graphs are isomorphic,

then their graph polynomials will also be equal. Or, under certain conditions, if

the graph polynomials of two types of graphs are equal, then usually the graphs are

isomorphic. On the contrary, in this research, the graphs of two dihedral groups with

different order that have different vertices and edges but they produce equal clique-

independence polynomials.

1.3 Problem Statement

In previous researches, only several number of graphs associated to the dihedral

group, the generalized quaternion group and the quasidihedral group have been

expressed in general forms. Thus, for a few other graphs of groups that are not yet

expressed generally, they are determined throughout this research. The general forms

of those graphs are necessary in computing the graph polynomials in this research.

A group that has many elements, when represented by a graph, will have a very

large vertex set. This lead to difficulties in computing the graph invariants one by one

in order to determine its graph polynomials. Instead of finding the properties of a graph

associated to group direct from itself, the graph polynomials are practically useful in

simplifying the process by determining the general forms of the graph polynomials

using the general forms of graphs associated to the three finite nonabelian groups.

Even though it is common for other researchers when establishing a graph

of group, the graph invariants such as the independence number, the clique number

and the domination number are also determined. However, by finding the graph

polynomials, more graph structures like the number of independent sets, the number

of cliques and the number of dominating sets are also discovered.
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Furthermore, other than the existing graph polynomials, there are two new

types of graph polynomials that are introduced in this research. The clique-

independence polynomial and the clique-domination polynomial are defined and

determined for some graphs associated to the dihedral group. A few additional

properties of those graphs are well-described through the new graph polynomials.

Moreover, numerous studies done by other researchers on the roots of graph

polynomials are usually characterizing the roots as negative or positive, real or

complex, and even or odd. Therefore, the roots for the graph polynomials obtained in

this research are also found. The roots that have been determined represent important

findings in graph theory in which certain conjectures from previous studies are proven

to be true for some of the graphs polynomials associated to some finite groups.

1.4 Research Objectives

The objectives of this research are stated in the following:

1. To determine the general forms of the independence polynomial, the clique

polynomial and the domination polynomial for the conjugacy class graph,

the conjugate graph, the commuting graph, the noncommuting graph and the

center graph associated to three types of finite nonabelian groups, namely

the dihedral group, the generalized quaternion group and the quasidihedral

group.

2. To construct two new types of graph polynomials associated to the dihedral

group, namely the clique-independence polynomial for the five types of

graphs as mentioned in Objective 1 and the clique-domination polynomial

for the noncommuting graph.

3. To establish the roots for all the graph polynomials obtained in Objectives 1

and 2.
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1.5 Scope of the Study

This research focuses on the conjugacy class graph, the conjugate graph, the

commuting graph, the noncommuting graph and the center graph associated to three

finite nonabelian groups, specifically the dihedral group of order 2n (denoted by D2n),

the generalized quaternion group of order 4n (denoted by Q4n) and the quasidihedral

group of order 2n (denoted by QD2n). Three types of graph polynomials, namely

the independence polynomial, the clique polynomial and the domination polynomial

are determined for all those graphs mentioned. Additionally, two types of new

graph polynomials are introduced, namely the clique-independence polynomial and

the clique-domination polynomial that are established for the graphs associated to the

dihedral group.

1.6 Significance of Study

Graph polynomial is an important concept in the study of graph theory as

it has been applied in various fields of theoretical physics, theoretical chemistry,

physical chemistry and computer science. For example, the concept of independence

polynomial coincides with the concept of the lattice gas in physics as studied by Scott

and Sokal in [26]. Banderier and Goldwurm [27] implemented the study of clique

polynomial to distinguish some asymptotic properties on the number of prefixes in

trace monoids. Furthermore, the domination polynomial has been studied by Dohmen

and Tittmann [28] to measure new network reliability for some particular kind of

service networks. The dominating concepts are studied by Eslahchi and Ansari in [29],

to be applied in the assignment of structured domains in complex protein structures that

are part of bio-informatics study.

Furthermore, the independence polynomial of a graph carry combinatorial

informations related to the independent sets of the graph and also the independence
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number of the graph. By finding the graph polynomials for the graphs associated

with group theory, its major contribution is in the group theory itself, in which the

algebraic structures of groups that are described through the graph properties can be

studied through the graph polynomials. Other than that, the graph polynomials may

provide a link for group theory with other branches of sciences via graph theory. This

research may also open opportunity to other group theorists and graph theorists to

conduct further related research that may benefit other field of study.

Another major contribution in this research is in introducing two new types

of graph polynomials which are called the clique-independence polynomial and the

clique-domination polynomial, and to compute these new graph polynomials for some

graphs associated to the dihedral group. The new polynomials are significant in

describing several additional properties of the graphs, which give a supplementary

knowledge regarding the information of the graphs associated to groups.

In addition, the roots found for the graph polynomials obtained in this research

are substantial in the study of graph polynomials. Previous works on the roots

of certain types of polynomials have appealing geometrical interpretation and have

led to major progress in other study areas like numerical algebraic geometries [30],

polynomial stability [31] and theoretical computer science [32]. Makowsky et al. [33]

have deduced that the roots of graph polynomials received much concern and are

significant when these polynomials model physical reality. Several preliminary works

state that the location of roots of graph polynomials can give information about the

structures or the families of the graphs such as in [34–36].

1.7 Research Methodology

This research begins with the study of some fundamental concepts in group

theory and graph theory. The basic concepts of the graph polynomials from graph
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theory and the graphs associated with group theory are also studied. In this research,

three types of graph polynomials are computed for five types of graphs associated to

the dihedral group, the generalized quaternion group and the quasidihedral group.

The main results of this research are divided into four parts. To begin with,

the first part is on the computation of the graph polynomials associated to the dihedral

group, and is divided into two subparts. In the first subpart, the general form of the

conjugate graph of the dihedral group is first constructed by using the definition of the

conjugate graph, considering that the conjugacy class graph, the commuting graph, the

noncommuting graph and the center graph of dihedral groups have been obtained in

previous studies. In the second subpart, by using those general forms of the graphs

associated to the dihedral group, the independence polynomials are computed for the

five types of graphs. The computations are done by utilizing some existing properties

such as the independence polynomials of some common types of graphs. The clique

polynomials and the domination polynomials for the same five types of graphs are also

computed, also by making use of the existing preliminaries from graph theory.

The second and third part of this research is on the computation of the graph

polynomials associated to the generalized quaternion group and the quasidihedral

group, respectively. The computations are using the same approaches as in the first part

of this research which are through the use of existing properties of the independence

polynomial, the clique polynomial and the domination polynomial.

In the fourth and last part of this research findings, based on the fundamental

concepts in graph theory related to the clique-independent sets and the clique-

dominating sets, two new types of graph polynomials are defined. The first new

type of polynomial is the clique-independence polynomial and by the definition,

some propositions concerning the clique-independence polynomials of some graphs

from graph theory are determined. Then, by using those propositions, the clique-

independence polynomials for some graphs associated to dihedral group are computed.

The graphs involved are the same five types of graphs as in previous parts. The
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second new type of polynomial is the clique-domination polynomial that is defined

and through the definition, the clique-domination polynomial of the noncommuting

graph associated to dihedral group is obtained.

Simultaneously, for all the graph polynomials obtained, their roots are also

computed and identified to be in the form of integers or non-integers. The

computations are done by letting the graph polynomials to be equal to zero and the

roots are determined through finding the solutions of the equations. In the case where

the non-integer roots cannot be obtained in exact values, then the bounds of the roots

are found using some fundamental concepts from Calculus, related to the Bolzano’s

Theorem and the first derivative test.

The research methodology of this thesis is illustrated in Figure 1.1.

1.8 Thesis Organization

There are seven chapters in this thesis and the thesis organization is illustrated

in Figure 1.2.

Chapter 1 is the introduction chapter that explains the whole thesis. It contains

the research background, problem statement, research objectives, scope of research,

significance of research, research methodology and thesis organization.

Chapter 2 provides the literature review of this research and is divided into

three sections. In the first section, some fundamental concepts in group theory and

graph theory are presented. Some preliminaries on the graph polynomials that are used

throughout this research are shown in the second section. The third section consists

of some preliminaries on the graphs associated to the groups that are helpful in the

computation of the graph polynomials associated to the groups.
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In Chapter 3, by considering the conjugacy class graphs, the conjugate graphs,

the commuting graphs, the noncommuting graphs and the center graphs associated

to the dihedral group, this chapter is divided into three sections. Each section

represents the independence polynomials, the clique polynomials and the domination

polynomials of those five graphs, respectively. Those graph polynomials are computed

and expressed in general forms and their real roots are determined.

Chapter 4 contains the same types of graphs and polynomials from previous

chapter, but the results are computed for the generalized quaternion group. The roots

of the graph polynomials obtained are also determined.

In Chapter 5, the three types of graph polynomials from the previous two

chapters are computed for the graphs associated to the quasidihedral group, and their

real roots are also established. The same five types of graphs from Chapter 3 and 4 are

considered.

In Chapter 6, two new types of graph polynomials are defined and computed for

the graphs associated to the dihedral group. The clique-independence polynomials are

introduced for the conjugacy class graph, the conjugate graph, the commuting graph,

the noncommuting graph and the center graph. Meanwhile, the clique-domination

polynomial is introduced for the noncommuting graph of the dihedral group. The

roots for these polynomials are also found.

Finally, the summary of the whole thesis is provided in Chapter 7. Some

suggestions for future research are also proposed.
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Figure 1.1 Research methodology
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Figure 1.2 Thesis organization
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52. Cvetković, D. M., Doob, M., Gutman, I. and Torgašev, A. Annals of Discrete
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