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ABSTRACT 

The study of fluid motion in fluid mechanics is useful in many engineering 

applications. Fundamental studies based on physics law on fluid motion could be done 

by mathematical formulation. Effects based on thermal energy such as heat source and 

heat absorber with its transferring mode can also be formulated into a mathematical 

system. Due to this reason, a boundary layer nanofluid flow near a stagnation point 

region of a three-dimensional body is studied in this thesis. Here, nanofluid containing 

copper nanoparticles and hybrid nanofluid containing copper and alumina 

nanoparticles with water as a base fluid are considered. In addition, a 

microgravitational field environment known as g-jitter is also considered. The main 

purpose of this study is to investigate theoretically the effect of thermal radiation and 

heat generation on fluid characteristics, heat transfer behaviour, and concentration 

distribution of the fluid flow system. In this study, the mathematical models that 

govern the fluid flow consist of continuity, momentum, energy, and concentration 

equations. These nonlinear partial differential equations are initially reduced into a 

dimensionless system of equations using the similarity transformation technique. The 

resulting dimensionless governing systems are then solved numerically using the 

Keller-box method. The numerical values of the skin friction coefficients, Nusselt 

number, and Sherwood number as well as the velocity, temperature, and concentration 

profiles are obtained for various values of the curvature ratio, amplitude of modulation, 

frequency of oscillation, nanoparticle volume fraction, heat generation parameter and 

thermal radiation parameter. The results from the analysis in relation to the studied 

physical parameters are graphically displayed and validated by comparing them to 

those of previous studies. The current study shows that the curvature parameter had a 

significant effect on the skin friction coefficient where planar and axisymmetric 

stagnation point flow occurred in a specified range of this parameter. On the other 

hand, increasing the modulation's amplitude causes all the physical quantities to 

fluctuate. It is observed that, when a higher frequency of oscillation is induced, the 

physical quantities are seen to be reduced. The addition of a small amount of copper 

nanoparticle in the fluid results in enhancement of conductivity of the thermal, as 

demonstrated by the Nusselt number. However, a contradictory behaviour was noticed 

on Sherwood number as copper nanoparticle was considered in the fluid problem. The 

internal heat generation has caused the temperature profile to increase, while the heat 

flux to decrease. Also, thermal radiation is found to improve the rate of heat transfer. 

Moreover, the addition of other nanoparticles which are alumina, further increased the 

thermal characteristic of the fluid system. 
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ABSTRAK 

Kajian gerakan bendalir dalam mekanik bendalir adalah berguna dalam banyak 

aplikasi kejuruteraan. Kajian asas berdasarkan prinsip fizik ke atas gerakan bendalir 

boleh dilakukan melalui perumusan matematik. Kesan berdasarkan tenaga terma 

seperti punca haba dan penyerap haba bersama dengan mod pemindahannya boleh 

juga dirumuskan dalam sistem matematik. Oleh sebab itu, aliran nanobendalir lapisan 

sempadan berhampiran kawasan titik genangan bagi badan tiga-dimensi telah dikaji 

dalam tesis ini. Di sini, nanobendalir yang mengandungi nanozarah tembaga dan hibrid 

nanobendalir yang mengandungi nanozarah tembaga dan alumina dengan air sebagai 

bendalir asas telah dipertimbangkan. Disamping itu, persekitaran medan mikrograviti 

yang dikenali sebagai ketar-g juga dipertimbangkan. Tujuan utama kajian ini adalah 

untuk mengkaji secara teori kesan sinaran terma dan penjanaan haba ke atas ciri 

bendalir, tingkah laku pemindahan haba dan taburan kepekatan bagi sistem aliran 

bendalir. Dalam kajian ini, model matematik yang mentadbir aliran bendalir adalah 

terdiri daripada persamaan keselanjaran, momentum, tenaga dan kepekatan. 

Persamaan pembezaan separa tak linear ini pada awalnya dikurangkan menjadi sistem 

persamaan tak bermatra menggunakan teknik jelmaan keserupaan. Sistem persamaan 

pembezaan separa tak bermatra yang diperoleh seterusnya diselesaikan secara 

berangka menggunakan kaedah kotak-Keller. Nilai berangka bagi pekali geseran kulit, 

nombor Nusselt dan nombor Sherwood serta profil halaju, suhu dan kepekatan 

diperoleh untuk pelbagai nilai nisbah kelengkungan, modulasi amplitud, ayunan 

frekuensi, pecahan isipadu nanozarah, parameter penjanaan haba dan parameter terma 

sinaran. Keputusan daripada analisis berkaitan dengan parameter fizikal yang dikaji 

telah dipaparkan secara grafik dan disahkan dengan membandingkannya dengan 

kajian terdahulu. Kajian semasa menunjukkan bahawa, parameter kelengkungan 

mempunyai kesan yang signifikan ke atas pekali geseran kulit di mana aliran titik 

genangan satah dan simetri sepaksi  berlaku di dalam ruang yang tertentu bagi 

parameter ini. Sebaliknya, peningkatan modulasi amplitud menyebabkan semua 

kuantiti fizikal berubah-ubah. Adalah diperhatikan bahawa, apabila saiz ayunan 

frekuensi yang tinggi teraruh, kuantiti fizikal dilihat menurun. Penambahan sedikit 

nanozarah tembaga mengakibatkan kekonduksian dipertingkat di fluks haba, seperti 

yang ditunjukkan oleh nombor Nusselt. Walau bagaimanapun, tingkah laku yang 

bercanggah diperhatikan pada nombor Sherwood apabila nanozarah tembaga 

dipertimbangkan didalam masalah aliran bendalir. Penjanaan haba dalaman telah 

menyebabkan profil suhu meningkat, manakala fluks haba berkurangan. Juga, sinaran 

haba didapati dapat meningkatkan kadar pemindahan haba. Tambahan pula, 

penambahan nanozarah yang lain iaitu alumina telah meningkatkan lagi ciri termal 

sistem bendalir.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Research Background 

Fluid mechanics is an important discipline in physics to understand the 

mechanical motion of the fluid itself. In most engineering applications such as 

automotive manufacturing, cooling system, food processing, biomedical application, 

plant design, and operation, the knowledge of fluid mechanics plays a very significant 

role in optimizing the machine durability and also enhancing the production numbers. 

Mathematics is closely related to all engineering sectors since most of the laws and 

principles of physics are expressed by using the language of mathematics. Navier-

Stokes equation is the fundamental formula applied in describing the motion of 

inviscid viscous incompressible fluid. It was firstly developed by Claude-Louis Navier 

and then improved by Sir George Gabriel Stokes [1]. This balance differential equation 

was idealized from Newton’s second law of motion together with the stress tensor 

assumption. Most of the phenomena in science and engineering such as water flow in 

pipe and air flow at airplane wings are well described by using this equation.  

In fluid mechanics, there is a subdiscipline known as boundary layer flow 

where the fluid flow velocity is subjected to the sheering forces. It was first introduced 

by Prandtl [2] in 1904 at the Third International Mathematics Congress where he stated 

that the effect of friction is only experienced by the fluid near to the surface of the 

object. This small revolutionization later contributed massively to the advancement of 

the aerodynamic and fluid dynamics sector. The range of the boundary layer flow 

velocity varies from zero at the surface of the body to the maximum velocity at the 

free stream. The geometrical shape, body motion, body surface characteristic, and 

orientation of the body surface are the factors that influence the flow behaviour at the 

boundary layer. Besides that, the physical properties of the fluid such as density, 

viscosity, plasticity, thermal conductivity, and so on also contribute to the 
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characteristic of the fluid flows. Fluids are commonly divided into two categories; the 

Newtonian fluid follows Newton’s law of viscosity whereas the non-Newtonian fluid 

disobeys the law [3]. Theoretical study on Newtonian fluid has received a lot of 

attention from worldwide researchers as the adaptability and the importance of the 

analysis results in the industrial manufacturing process [4], [5]. However, analysis of 

the non-Newtonian fluid such as second-grade fluid, Casson fluid, and micropolar 

fluid is also being concerned due to the limitation hold by the Newtonian fluid in real 

application [6]–[8]. All the studies conducted will contribute to the advancement 

knowledge that needed in providing a better technology innovation platform in future.  

The characteristic of the boundary layer fluid flow is significantly affected by 

either influence at the boundary or inside the fluid itself. The flow near the stagnation 

point was found highly effect the fluid characteristic due to the non-moving fluid that 

exists at the stagnation point. Based on Bernoulli's principle, the stagnation point holds 

the highest local pressure in the fluid flow [9]. The presence of a stagnation point in a 

boundary layer problem has produced a complicated field of fluid flow behaviour.  

Studies on boundary layer flow are not limited to only investigating the 

behavior of the fluid flow, but also of the heat transfer properties. The heat transfer 

analysis in the fluid is also indispensable. Three modes in heat transferring are 

conduction, convection and radiation that transfer heat in a different way. The 

convection flow could be classified into two groups; natural convection flow is caused 

by gravitational force while forced convection flow occurs by an additional external 

force. It is known that mass transfer can only occur with the presence of heat transfer, 

but the heat transfer can occur alone without mass transfer. This knowledge is 

commonly applied in engineering application towards understanding the physical and 

chemical processes of a species involving diffusive and convective transport. 

Enhancement of the heat transfer in a fluid is necessary for machine production 

to ensure the compatibility and durability of the machine in maximizing production. 

The durability of the machine could be increased by having a good cooling system. 

Fluids with higher thermal conductivity are found to have a better heat transportation 

property. The thermal conductivity of the conventional liquid such as water and 
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ethanol can be enhanced by adding nanosized particles; this kind of fluid is called 

nanofluid. An experimental study by Choi [10] in 1995 found that the addition of a 

small number of copper (Cu) nanoparticles into water can increase the thermal 

conductivity of water. For the boundary layer flow problem, two well-known 

nanofluid models have been used theoretically for studying the characteristic of fluid 

flow and heat transfer. The Buongiorno nanofluid model takes into account the 

Brownian motion and thermophoresis effect [11]. On the other hand, the nanofluid 

model focuses on the effect of the types of nanoparticles utilized and the nanoparticle 

volume fraction [12].  

Gravitational force is known as one of the forces that contribute to the body 

forces affecting the transportation matter. Since all objects on earth are restricted to a 

body mass, gravitational force thus plays a very important role and provides significant 

information when conducting an experimental study. In some experimental and 

manufacturing procedures such as the production of semiconductor, a defect final 

product due to doping process is caused by gravity. Interestingly, a fluctuating 

microgravity effect which is a non-existent effect on earth has been identified during 

space experiments. The fluctuating gravitational field is later known as the g-jitter 

effect and is found to significantly affect the experimental result obtained in outer 

space [13]. Thus, the assumed zero gravity environment then changes to microgravity 

environment due to the small gravity disturbance. Some experimental studies have 

concluded that crew motion and machine vibration are the sources of this effect where 

transient and oscillatory acceleration are arisen [14]. Therefore, the g-jitter effect has 

received a lot of attention in the fluid mechanic field since the analysis of this effect 

helps in producing a better mechanism in crystal growth [15]. 

Besides that, the presence of a heat source in the fluid will significantly affect 

the transport phenomenon that occurs at the boundary layer region. Exothermic 

condition happens when a heat source exists inside the fluid while the endothermic 

reaction occurs when a heat sink is inside of the fluid. In most cases, heat source and 

heat sink happen due to the chemical reaction generating or absorbing heat. In most 

cases, heat source and heat sink happen due to the chemical reaction that generating or 

absorbing heat. Studies on heat generation effect on boundary layer problem either for 
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two-dimensional or three-dimensional cases have been conducted by various 

researchers [16], [17]. As for studies conducted on a three-dimensional stagnation 

point flow, presence of heat generation effect increases the fluid flow motion [18]. On 

the other hand, some researchers have extended the analysis of heat generation or 

absorption effect to the concentration distribution. By applying nanofluid boundary 

layer problem together with heat generation effect, the analysis shows an enhancement 

in Nusselt number that define the rate of change of heat transfer.  

Many theoretical studies of the boundary layer field have been conducted in 

analyzing the fluid flow, heat, and mass transfer. There are some analytical and 

numerical analysis are performed in understanding the effect on different shape of 

geometrical body that locate the stagnation point itself. From the literature review on 

g-jitter, the effect of thermal radiation and internal heat generation significantly 

affecting the fluid characteristic. Thus, the aim of the present study is to investigate 

the effects of internal heat generation and thermal radiation near a stagnation point of 

nanofluid flow under the influence of g-jitter. All the important terminology discussed 

above related to this study are given in detail as follow 

1.1.1 Fluid Mechanics 

Fluid is defined as a substances that has no fixed shape and yields to external 

pressure. Fluids that are concerned with their own mechanics are known as fluid 

mechanics i.e. an important discipline in physics for understanding the mechanical 

motion of liquids, gases, or plasmas as illustrated in Figure 1.1.  

 

Figure 1.1 Fluid categories 



 

5 

1.1.1.1 Boundary Layer Theory 

Boundary layer flow is a subdiscipline of fluid mechanics, defined as a thin 

layer of fluid flow near the body surface whereby the fluid flow velocity is subjected 

to the sheering forces. Figure 1.2 shows the most common illustration of boundary 

layer that flows, i.e. the thermal and concentration boundary layer.  

 

Figure 1.2 Velocity, thermal and concentration boundary layer 

1.1.1.2 Stagnation Point 

In fluid mechanics, a stagnation point is defined as a point on the surface of an 

object that has zero local velocity value. Thus, the study of fluid dynamics near the 

point is known as stagnation point flow. In most of the fluid flow cases, stagnation 

point flow occurs either in normal or oblique and forward or reverses conditions with 

some example shown in Figure 1.3 [19]. The pattern of stagnation point flows is highly 

affected by the geometry of the body surface.  
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Figure 1.3 Types of stagnation point flow 

1.1.1.3 Heat and Mass Transfer 

Thermodynamics is a branch of physics that deals with heat, work, and 

temperature together with their relation to energy. The three modes in heat transference 

are conduction, convection and radiation as shown in Figure 1.4. Close contact 

between objects is applied to transfer heat via conduction where the heat energy is 

transferred as the collision between molecules occurs. On the other hand, thermal 

radiation is the transference of heat through an electromagnetic wave generated from 

the thermal motion. The changes of fluid density in a system due to a temperature 

gradient generate a fluid circulation in the system which allows for possible alterations 

in heat energy; this phenomenon is known as natural convection. Mass transfer is 

defined as the transportation of energy in the fluid system through a particle from one 

point to another based on the different concentrations.  

1.1.1.4 Conventional and Hybrid Nanofluid 

Nanofluid is a solid-liquid substances material. The nanofluid is found to 

enhance the thermal properties of the system and its production is cost-effective. 

Another innovative class of nanofluids is known as hybrid nanofluids. These types of 

fluidic systems are synthesized by two or more types of nanoparticles in one base fluid 

or a hybrid composite. 



 

7 

 

Figure 1.4 Modes of heat transfer 

1.1.1.5 g-Jitter 

When Yuri Gagarin became the first human to travel into space, the idea about 

experimenting without gravitational effect had inspired researchers. Since then, a 

fluctuating microgravity effect which is a non-existent effect on earth has been 

identified known as g-jitter. It is defined as the fluctuating gravitational field and found 

to significantly affect the experimental result obtained in outer space.  Some examples 

of microgravity application are parabolic aircraft, space shuttle and International Space 

Station as shown in Figure 1.5 with varying periods of microgravity.  

   
(a) (b) (c) 

Figure 1.5 Microgravity environment applications (a) parabolic aircraft, (b) space 

shuttle and (c) Space Station 
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1.1.1.6 Internal Heat Generation 

The presence of heat source inside the fluid known as internal heat generation 

will generate heat into the fluid system. The heat sink, on the other hand, is called heat 

absorbtion where both of this conditions can be classified as exothermic and 

endorthemic reactions. Exothermic reactions feel warm or hot or may even be 

explosive such as freezing water into ice cube, respiration, rain forming from water 

vapor in clouds and dissolving laundry detergent in water. On the other hand, 

endorthermic reaction occur when dissolving salt, converting frost to water vapor, 

baking bread and even cooking an egg.  

1.1.1.7 Thermal Radiation 

Thermal radiation is an electromagnetic radiation emitted from a material due 

to the heating of the material. An example of thermal radiation is the infrared radiation 

emitted by a common household radiator or electric heater. A person near a raging 

bonfire will feel the radiated heat of the fire, even if the surrounding air is very cold. 

Thermal radiation is generated when heat from the movement of charges in the 

material (electrons and protons in common forms of matter) is converted into 

electromagnetic radiation. Sunshine or solar radiation is thermal radiation from the 

extremely hot gasses of the sun which heats the earth. The earth also emits thermal 

radiation but at a much lower intensity because it is cooler. The balance between 

heating by incoming solar thermal radiation and cooling by the earth's outgoing 

thermal radiation is the primary process that determines the earth's overall temperature. 

As such, radiation is the only form of heat transfer that does not require a material to 

transmit the heat. This form of heat transfer is not only a function of the temperature 

difference between the two surfaces, but also of the frequency range of the emitted and 

received energy. As an example, sunlight is composed of the visible light spectrum as 

well as infrared energy and ultraviolet energy. 
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1.2 Problem Statement 

In recent years, theoretical studies have significantly increased the rapid 

development in machine manufacturing, new technology, discovery of new materials 

and advancement in the engineering sector. The study of boundary layer flow in fluid 

mechanics has gained so much attention since it provides a promising result as a 

pioneer guideline in constructing experimental and production processes. The 

boundary layer flow is very important in understanding fluid behaviour theoretically. 

Many studies have been conducted for analyzing the boundary layer flow 

characteristics, heat transfer properties, and also concentration distribution in fluids. 

Stagnation point flow is defined as a region of a flow near to a point on the surface of 

a plane that has a zero-local velocity. In addition, gravitational force plays a significant 

role in fluid mechanics which correspond to fluid behaviour. 

The cooling system is found to be necessary in most machinery applications 

for preventing the system from being overheated. The cooling system in a spacecraft 

is bounded to the g-jitter effect where the gravitational field is different compared to 

that on earth. Some researchers found that the internal heat source may also affect the 

fluid behaviour of the cooling system. In addition, the existence of thermal radiation 

in the cooling system significantly affects the rate of heat transfer. Recently, it was 

discovered that the nanofluid has better thermal propertices compared to the classical 

fluid. The design of the cooling system will then produce a stagnation point where the 

flow near the stagnation point region is affected.  

Therefore, in this research, a fundamental study is conducted to investigate the 

unsteady three-dimensional viscous nanofluid boundary layer flow near the stagnation 

point region in a microgravity environment. Other effects such as internal heat 

generation and thermal radiation are also considered in this study. The problems are 

mathematically formulated based on physical laws and principal and then solved 

numerically using a finite difference approach. The problem is then analyzed 

graphically in terms of profiles and physical quantities. Hence, to achieve the objective 

of this study, several questions need to be answered: 
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1. How does the nature of unsteady free convection nanofluid flow near a three-

dimensional stagnation point region with the effect of g-jitter can be modelled 

through a mathematical modelling perspective? 

2. How do the different values of curvature ratio of stagnation point affect the 

flow characteristic based on velocity profiles and skin friction coefficients? 

3. How does the fluctuation gravitational field caused by the g-jitter effect 

influence the physical quantities of the principle interest on fluid flow 

characteristic, heat transfer and concentration distribution? 

4. How can the nanoparticle volume fraction parameter that presents the 

concentration of nanoparticles added into the conventional fluid enhanced the 

thermal characteristic of the fluid based on temperature profiles and Nusselt 

number? 

5. How does the presence of physical parameter such as internal heat generation 

and thermal radiation provide a significant effect on the boundary layer 

nanofluid flow? 

1.3 Research Objectives 

The purpose of this study is to investigate the effect of g-jitter, nanoparticle 

volume fraction, heat generation and thermal radiation near an unsteady three-

dimensional stagnation point viscous flow numerically. The detailed objectives of the 

study are as follows: 

1. to derive and simplify the mathematical model consisting of a system of partial 

differential equation using boundary layer and Boussinesq approximation 

based on the problem considered, 

2. to develop a computational algorithm to solve the system of equation 

numerically, 

3. to obtain the numerical results of velocity profiles, temperature profile, 

concentration profile, skin frictions, Nusselt number and Sherwood number, 

4. to analyze the behaviour of the flow, heat transfer characteristic and 

concentration distribution by the influence of curvature ratio, amplitude of 
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modulation, frequency of oscillation nanoparticle volume fraction, internal 

heat generation and thermal radiation.  

1.4 Scope of the Research 

This study focuses on an unsteady free convection boundary layer problem 

near a three-dimensional stagnation point region. The effect of g-jitter that occurs in a 

microgravity environment is taken into consideration. Furthermore, the effect of heat 

generation and thermal radiation are also examined in this study. Here, nanofluids are 

applied in the study where water (H2O) as the Newtonian based fluid with copper (Cu) 

acts as dispersing nanoparticles. The nanoparticles are suspended inside the water 

where the based fluid and nanoparticles are assumed to be in thermal equilibrium. By 

following the recommendation of Tiwari and Das' [20], nanoparticles with 

thermophysical characteristics are utilized in this study. The mathematical model 

introduced is simplified using Boussinesq and boundary layer approximation. Besides 

that, constant wall temperature and no slip velocity are deliberated. These unsteady 

problems which are discussed in details in Chapters 4 to 8, are as follows: 

1. The effect of g-jitter near a three-dimensional free convection stagnation point 

nanofluid flow. 

2. The effect of g-jitter near a double diffusion three-dimensional free convection 

stagnation point nanofluid flow. 

3. The effect of g-jitter near a double diffusion three-dimensional free convection 

stagnation point nanofluid flow with internal heat generation. 

4. The effect of g-jitter near a double diffusion three-dimensional free 

convection stagnation point nanofluid flow with thermal radiation. 

5. The effect of g-jitter near a three-dimensional free convection stagnation point 

hybrid nanofluid flow. 
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1.5 Significant of Research 

The study of fluid mechanics provides a significant platform for understanding 

the factors that affect the durability of the product, selection of material in machine 

production, the invention of the cooling system, and reduction of production cost. 

Based on the fundamental study of the fluid characteristic in terms of fluid flow 

behaviour, heat transfer properties, and concentration distribution, the determined 

results and analysis can be used in the engineering and production sector as demanded 

in current industries and technologies. Hence, the significance of this study are as 

follow: 

1. The analysis and discussion of the boundary layer fluid flow behaviour near a 

stagnation point is significant in designing a manufacturing cooling system, 

airplane wing, and also the lubricant flow in an automotive, 

2. A better understanding of the g-jitter effect in a microgravity environment is 

necessary to optimize the growth of a crystal and also to ensure the 

effectiveness of the fluid movement of a machine in a spacecraft, 

3. The physical explanation on the enhancement of the heat transfer characteristic 

in a conventional fluid due to the nanoparticles volume fraction, 

4. The effect of the internal heat generation and thermal radiation on the boundary 

layer flow can be detected and provide the perception that the physical 

parameter is highly affecting the thermal characteristic of the fluid,  

5. The computed results can serve as a guideline for a complex model in 

engineering and science application and further, the study can be extended later 

by considering other fluid types or different physical parameters.  

1.6 Thesis Outline 

This thesis consists of nine chapters including this chapter and focuses on 

unsteady free convection viscous boundary layer nanofluid flow near a three-

dimensional stagnation point body with g-jitter, heat generation, and thermal radiation. 

Chapter 1 discusses the research background, problem statement, research objective, 
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the scope of the research and the significance of the research. The literature reviews 

are presented and discussed in Chapter 2. The research methodology in conducting this 

study are discussed in Chapter 3 which include the derivation of the equations and 

solving method.  

The first fluid problem is solved and discussed in Chapter 4 by proposing the 

three-dimensional stagnation point flow problem induced by g-jitter and nanoparticle. 

The problem is analyzed in terms of profiles and physical quantities by taking into 

account each parameter considered in this problem. Chapter 5 is a continuation of 

Chapter 4 whereby the heat and mass transfer are deliberated. The analysis focuses 

more on the concentration profiles and Sherwood number for physical quantity. All 

the results are presented through graphs and tables. Chapter 6 is an extension of 

Chapter 5 with the additional effect of heat generation. A comparison study is 

conducted for validation and verification purposes. Chapter 7 presents the analysis of 

the free convection nanofluid stagnation point flow under the effect of g-jitter and 

thermal radiation. The hybrid nanofluid problem is discussed in Chapter 8 with 

consideration of another type of nanoparticle namely alumina. 

Finally, Chapter 9 summarizes this research along with some suggestions and 

recommendations for future research. The references and appendixes related to this 

study are listed at the end of this thesis.  
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