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ABSTRACT

Public radiation exposure to natural ionizing radiation is due to radon and its progeny. 
Knowledge of natural radioactivity exposure level is significant for making policy regarding 
radiological protection of the environment and humans. This study aims at establishing baseline 
data and identifying areas with the probability of high radon (222Rn/220Rn) exposure in Johor 
State, Malaysia. Therefore, The RAD7 alpha detector coupled to air sampling accessories, soil 
gas probe and RAD-H2O was used to measure the activity concentrations of 222Rn/220Rn in 
outdoor air, 222Rn /220Rn in soil gas and 222Rn in water, respectively. The RAD7 recorded the 
average temperature and relative humidity during measurement of 222Rn/220Rn in soil gas. The 
data for soil gas permeability was obtained with RADON-Joke equipment. The terrestrial 
gamma dose rate was measured using a portable NaI (Tl) survey meter. The specific activity of 
226Ra, 232Th, and 40K in the soil samples was determined using a high purity germanium detector 
(HPGe). The established data range from minimum detectable activity (MDA) to 127.25 ±
3.00 Bq L-1 for 222Rn and MDA to 159.07 ± 3.40 Bq L-1 for 220Rn in soil gas, respectively. The 
data for 222Rn and 220Rn in outdoor air range from MDA to 3850 ± 180 mBq L-1 and MDA to 
600 ± 17 mBq L-1, respectively. The measured data categorized according to the study area's 
geological formations show that higher values of 222Rn /220Rn in both soil gas and outdoor air 
were obtained in regions underlain with Triassic and Intrusive rock geological formations. The 
soil gas permeability data has a mean value of 1.9 x 10-12 m2. The field data obtained from the 
measurement of 222Rn in soil gas and soil gas permeability were used to estimate the geogenic 
radon potential (GRP) of this study area. Three high categories of GRP values were identified 
(53.667, 53.252 and 47.826). Statistical correlation analysis indicates that the estimated GRP 
data is strongly correlated with the measured 222Rn/220Rn in soil gas and soil gas permeability. 
In contrast, an insignificant relationship was obtained between the measured 222Rn/220Rn in soil 
gas and the measured 226Ra/232Th in the surface soil. The recorded relative humidity was found 
to have a moderately negative correlation with 222Rn in soil gas. The measured data of 222Rn 
activity concentrations in water varies from 80 ± 110 to 5400 ± 1100 mBq L-1 in surface water 
and spring water source, respectively, with a mean value of 1227 mBq L-1 from all samples. 
The water samples measured activity concentration was found to be below the maximum 
permissible limit for 222Rn in water referring to United States Environmental Protection Agency 
(EPA) and World Health Organisation which is 1100 mBq L-1 and 105 mBq L-1, respectively. 
The mean activity concentration of 222Rn in spring water is five times higher than that of surface 
water. The mean values of the annual effective dose due to inhalation of 222Rn in spring water 
and surface water, were 2.15 |iSv y-1 and 0.423 |iSv y-1, respectively. Hence, the inhalation 
doses estimated were well below the recommended limit set by United Nations Scientific 
Committee on the Effects of Atomic Radiation (UNSCEAR) of 1260 |iSv y -1. The maps of 
spatial distribution of 222Rn/220Rn in soil gas and soil gas permeability are created and indicates 
that higher values of 222Rn and 220Rn were obtained from Ledang, Muar and Johor Bahru 
districts.
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ABSTRAK

Pendedahan sinaran orang awam terhadap sinaran mengion semula jadi adalah 
disebabkan oleh radon dan progeninya. Pengetahuan mengenai tahap dedahan keradioaktifan 
semula jadi adalah penting untuk membuat dasar berkaitan perlindungan radiologi terhadap 
alam sekitar dan manusia. Kajian ini bertujuan untuk menetapkan data asas dan mengenal pasti 
kawasan dengan kebarangkalian dedahan radon (222Rn / 220Rn) yang tinggi di negeri Johor, 
Malaysia. Oleh itu, pengesan alfa RAD7 yang digabungkan dengan aksesori pensampelan 
udara, kuar gas tanah dan RAD-H2O masing-masing digunakan untuk mengukur kepekatan 
aktiviti 222Rn /220Rn di udara luar, 222Rn / 220Rn di dalam gas tanah dan 222Rn di dalam air. 
RAD7 mencatatkan suhu purata dan kelembapan relatif semasa pengukuran 222Rn / 220Rn di 
dalam gas tanah. Data untuk kebolehtelapan gas tanah diperoleh dengan peralatan RADON- 
Joke. Kadar dos gama daratan diukur menggunakan meter tinjau NaI (Tl) mudah alih. Keaktifan 
tertentu untuk 226Ra, 232Th, dan 40K di dalam sampel tanah ditentukan menggunakan pengesan 
germanium ketulenan tinggi (HPGe). Julat data yang diperoleh masing-masing bermula dari 
keaktifan minimum boleh kesan (MDA) sehingga 127.25 ± 3.00 Bq L-1 untuk 222Rn dan MDA 
sehingga 159.07 ± 3.40 Bq L-1 untuk 220Rn dalam gas tanah. Data untuk 222Rn dan 220Rn di 
udara luar berjulat dari MDA sehingga 3850 ± 180 mBq L-1 dan MDA sehingga 600 ± 
17 mBq L-1. Data yang diukur dikategorikan menurut bentukan geologi kawasan kajian ini 
menunjukkan bahawa nilai 222Rn / 220Rn yang lebih tinggi di kedua-dua gas tanah dan udara 
luar diperolehi di kawasan teralas dengan bentukan geologi Trias dan Batuan Rejahan. Data 
kebolehtelapan gas tanah mempunyai nilai min 1.9 x 10-12 m2. Data lapangan yang diperoleh 
dari pengukuran 222Rn dalam gas tanah dan kebolehtelapan gas tanah digunakan untuk 
menganggar potensi radon geogenik (GRP) kawasan kajian ini. Tiga kategori nilai GRP yang 
tinggi telah dikenal pasti (53.667, 53.252 dan 47.826). Analisis korelasi statistik menunjukkan 
bahawa anggaran data GRP sangat berkorelasi dengan 222Rn/220Rn yang diukur di dalam gas 
tanah dan kebolehtelapan gas tanah. Sebaliknya, hubungan yang tidak signifikan diperoleh di 
antara 222Rn /220Rn yang diukur dalam gas tanah dan 226Ra/232Th yang diukur di permukaan 
tanah. Kelembapan relatif yang direkodkan didapati mempunyai korelasi negatif yang 
sederhana dengan 222Rn dalam gas tanah. Kepekatan keaktifan 222Rn yang diukur di dalam air 
berubah masing-masing dari 80 ± 110 sehingga 5400 ± 1100 mBq L-1 di permukaan air dan 
sumber mata air, dengan nilai min 1227 mBq L-1 dari semua sampel. Kepekatan keaktifan 
sampel air yang diukur didapati berada di bawah had maksimum yang dibenarkan untuk 222Rn 
dalam air merujuk kepada Agensi Perlindungan Alam Sekitar Amerika Syarikat (EPA) dan 
Pertubuhan Kesihatan Sedunia, yang masing-masing adalah 1100 mBq L-1 dan 105 mBq L-1. 
Min kepekatan keaktifan 222Rn dalam mata air adalah lima kali lebih tinggi daripada permukaan 
air. Nilai min dos berkesan tahunan disebabkan oleh penyedutan 222Rn di dalam mata air dan 
permukaan air masing-masing adalah 2.15 ^Sv y-1 dan 0.423 ^Sv y-1. Oleh itu, dos penyedutan 
yang dianggarkan berada jauh di bawah had yang disyorkan oleh Jawatankuasa Saintifik 
Pertubuhan Bangsa-Bangsa Bersatu mengenai Kesan Sinaran Atom (UNSCEAR) iaitu 
1260 p,Sv y 1. Peta taburan ruangan 222Rn/220Rn di dalam gas tanah dan kebolehtelapan gas 
tanah dihasilkan dan menunjukkan bahawa nilai 222Rn dan 220Rn yang lebih tinggi diperoleh 
dari daerah Ledang, Muar dan Johor Bahru.
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CHAPTER 1

INTRODUCTION

1.1 Background of the study

Radon is a naturally occurring radioactive gas that can be found everywhere in our 

environment. It is chemically inert; it’s odour can neither be seen nor perceived in the 

environment. It has several isotopes, but the isotopes of interest for this study are 222Rn (radon) 

and 220Rn (thoron) due to their availability in the environment and adverse health impacts on 

human (WHO, 2009). 222Rn with a half-life of 3.82 days belongs to the natural decay series of 

uranium-238 (238U) with a half-life of 4.47 x 109 y. Thoron (220Rn), with a half-life of 55.6 s 

belongs to the natural decay series of thorium-232 (232Th) of 14.1 x 1010 y half-life. The parent 

nuclide of 222Rn (238U) originates from uranium ores, igneous and metamorphic rocks such as 

granite, gneiss, shale, phosphate rock and schist. It can also be found in a small amount in 

common rocks such as limestone. (Kusky, 2005). The parent nuclide of 220Rn (232Th) originates 

from various types of rocks: veins of thorite, thorianite, monazite in granites, syenites- 

pegmatites and other acidic intrusions. It is also present in monazite in quartz-pebble 

conglomerates, sandstones, fluviatile, and beach placers (Ramachandran, 2010). These natural 

radioactive gases transfer from their origin by diffusion and for longer distances by advection 

dissolving either in water or carrier gases, before finally blowing out into the atmosphere. Their 

discharge mainly depends on 226Ra and 232Th content and mineral grain size, geophysical and 

geochemical parameters that ruled their transport in the earth, and the hydrometeorological 

environments (Etiope et al., 2002).

The most stable isotope of radon is 222R, which decays to short-lived daughters (218Po 

and 214Po), contributing to the maximum risk associated with radon exposure by inhalation in 

general. When 222Rn and 220Rn isotopes set down in the lungs, the emitted alpha radiation from 

them can affect the lung’s tissue. 222Rn exposure accounts for more than 50% of the lifetime

1



radiological dose to a person, while 220Rn contribution is about ten times smaller than 222Rn ( 

Li et al., 2010). However, some studies revealed that in some circumstances, doses from 220Rn 

and its decay products can be analogous to those from 222Rn and its decay products, or even 

larger (Cinelli et al., 2015; Khokhar et al., 2008; Porstendorfer, 1994; Steinhzlusler, 1996). The 

link between radon exposure and lung cancer is well-established (Yamada et al., 2006; Brauner 

et al., 2012; Sethi et al., 2012; Zhang et al., 2012). Studies in Asia, Europe and North America 

provide convincing proof that a significant number of lung cancers were caused by indoor radon 

exposure. Recent estimates of the number of lung cancers due to radon range from 3 to 14%, 

subject to the calculation method employed and the mean radon concentration in the country 

concerned. The analysis show that the risk of lung cancer is directly proportional to radon 

exposure. Majority of the lung cancers related to radon were due to exposure to low and 

moderate radon concentrations rather than higher radon concentrations. (WHO, 2009).

Previous studies have revealed the soil gas permeability, which is closely related to the 

migration of radon gas, determine the rate at which radon escape to the atmosphere (Andersen, 

1999; Alonso et al., 2019). The grain size and porosity of a given terrain greatly influence the 

soil permeability, which increases with the existence of structural discontinuity and karst 

phenomena. The derived radon flux can fluctuate significantly with soil gas's permeability; 

hence, the soil gas's 222Rn activity concentration also varies. The soil gas permeability is greatly 

affected by soil wetness, which at once is influenced by other factors like phreatic level and 

pluviometry variations (Alonso et al., 2019). A sharp decrease in the 222Rn activity 

concentration in soil gas can be found as the amount of water in soil rises and advances towards 

saturation level due to the sudden reduction in the soil gas permeability level (Alonso et al., 

2019; Menetrez et al., 1997). The occurrence of an apparent low permeable soil layer indicates 

a rise in the accumulation of 222Rn below (Alonso et al., 2019; Johner and Surbeck, 2001). It 

may as well lead to a significant reduction in the soil-atmosphere 222Rn flux. The reduction of 

soil-atmosphere radon flux can arise due to diverse reasons, such as water composition near the 

saturation level or the natural origin of the material if soil comprises clay and blacktop (Alonso 

et al., 2019; Wiegand 2001).
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The harmful health impact of 222Rn is well documented. Therefore, it has been 

considered necessary to know the geographical extent of the hazard (radon risk) associated with 

it, for regulation and alleviation purposes. The term ‘radon risk’ is defined as the natural cause 

of the hazard over a given geographical location (Szabo et al., 2014). To prevent radon exposure 

to the public, numerous nations have addressed identifying regions most at risk of 222Rn 

exposure by establishing diverse 222Rn mapping techniques. The created maps are valuable in 

understanding and interpreting the spatial variation of 222Rn in a given location and serve as a 

predictive tool when planning housing developments. The map can also help identify areas with 

dwellings that are likely to be at high risk of 222Rn exposure (ICRP, 1993; Kemski et al., 2001; 

Kemski et al., 2009). The radon-risk mapping was previously done by extensive indoor radon 

measurement (Miles, 1998; Andersen, 1999). However, indoor measurement requires a large 

number of measurements over a long time. Also, indoor radon measurement considers the 

complex function of numerous factors, for instance, the geological nature of the area, building 

materials, presence and type of basement or cellar underneath the house and lifestyles of the 

inhabitant of a given dwelling. Methods such as airborne gamma-ray spectrometry in 

combination with geological data were also used (Appleton et al., 2011; Ford et al., 2001; 

Smethurst et al., 2008). Evaluation of gamma dose based on the correlation of 222Rn level in 

the soil gas with 238U or 226Ra level in soils and rocks has also been implemented (Ielsch et al., 

2010; Garcia-Talavera et al., 2013a). However, the primary sources of 222Rn and 220Rn in 

houses are soil and underlying bedrocks upon which houses are built. The rate of emission from 

these sources and the potential for concentration within houses vary considerably with location. 

222Rn in the soil air was considered a good predictor of a given site's radon potential. (Nazaroff 

et al., 1988; Mose et al., 1992; Kardos et al., 2015). In practice, radon exhalation's direct 

measurement towards indoor air seems to be best in characterizing a given site's radon potential. 

However, direct measurement of this factor requires prolonged intervals. Therefore, a combined 

measurement of 222Rn activity concentration in soil gas and soil gas permeability has been 

considered a superior standard in mapping radon risk region (Kemski et al., 2001; Neznal et al., 

2004).

222Rn is soluble in water and therefore exist in the waters that pass through soils and

rocks of uranium and thorium content. The dissolved 222Rn in water mainly originate from 226Ra
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that either dissolve in water or localized in a porous and permeable rock aquifer or soil materials 

in contact with water. When 222Rn atoms are produced in soil or rocks, they have the potency 

to be expelled from the soil grain by alpha-recoil and transported to groundwater or void air 

and seep through the atmosphere (Abdallah et al., 2007; Somlai et al., 2007; Tabar and Yakut, 

2014; Marques et al., 2004). Numerous studies were conducted to investigate the relationship 

between 222Rn activity concentration in water and the geological environment. Elevated 222Rn 

levels are commonly found in the ground and spring waters discharging from metamorphic and 

granitic rocks (Michel, 1990; Durrani, 1999; Weise et al., 2001; Aleissa et al., 2012; 

Freiler et al., 2016). Moreno et al. (2014) reported that Felsic granites contain an 

excessive concentration of the parent element of the 222Rn decay series (238U). Most of the 

spring waters in Johor State are found in the region of intrusive rocks of granitic origin 

(Director-General of Geological Survey Malaysia, 1985). The associated hazard of 222Rn 

ingestion is less than that of inhalation of 222Rn that exhale into the air from the same water 

(Crawford-Brown, 1990; DURRIDGE Company Inc., 2011; Duggal et al., 2020). Therefore, it 

is considered necessary to quantify 222Rn in water and evaluate the associated doses of 

inhalation due to 222Rn in water to ensure the dwellers' safety near the waters.

The level of 222Rn in the outdoor air is generally low and poses no problem, ranging 

from 0.005 to 0.015 Bq L-1 (WHO, 2016). However, radon in the outdoor air may also 

contribute to indoor radon levels, as in some geographical locations, outdoor radon levels are 

higher than indoors (Vaupotic et al., 2010). Therefore, assessment of radon in the outdoor air 

is also necessary.

Since both 222Rn and 220Rn are ubiquitous and presents a significant health hazard to the 

populace, there is a need to identify areas with possible high exposure for radiological 

assessment and establishment of national policy concerning their exposure. Therefore, this 

research hopes to establish baseline data and identify those areas with high 222Rn and 220Rn 

exposure probability. This finding may be useful in setting a safety standard for exposure to 

222Rn and 220Rn in Malaysia's Johor state.
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1.2 Problem Statement

Despite the significant radiation dose contributed by 222Rn in the environment (more 

than 50 % of natural radiation dose), baseline data for 222Rn and 220Rn activity concentration in 

the Johor State has not been established. Therefore to identify areas most at risk of 222Rn and 

220Rn exposure in Johor state, a baseline data is needed for both 222Rn and 220Rn activity 

concentration as doses from 220Rn exposure can be analogues to that of 222Rn or even higher 

(Cinelli et al., 2015; Khokhar et al., 2008; Porstendorfer, 1994; Steinhzlusler, 1996). Therefore, 

exposure to 222Rn and 220Rn cannot be considered safe no matter the amount as prolonged 

exposure to lower doses has been associated to the occurrence of lung cancer (WHO, 2009; 

Dubois et al., 2010). Moreover, lung cancer is considered the leading cause of cancer-related 

deaths worldwide (Lee et al., 2011; Sethi et al., 2012).

Most of the previous studies conducted in the Johor State were concerned with assessing 

natural radionuclides in the surface soil and terrestrial gamma dose, For example, (Ramli et 

al., 2005; Saleh et al., 2014, 2013a, 2013b, 2013c). However, in identifying the radon risk 

region, studies on natural radionuclide in the surface soil cannot provide adequate information 

about a given area's radon risk. The concentration of 222Rn/220Rn depends on several factors, 

other than the concentration of their parent nuclides, among which soil gas permeability is 

considered the most significant factor (Alonso et al., 2019). Therefore, to assess an area's radon 

risk, a combined measurement of soil gas radon and soil gas permeability needs to be conducted 

(Neznal et al., 2004).

Based on the map of the geological survey of Peninsular Malaysia (Director-General of 

Geological Survey Malaysia, 1985) most of the spring waters in Johor State are outflowing 

from granitic rock aquifers. The rock aquifers of granitic type have been associated with a high 

concentration of 222Rn precursors (Michel, 1990; Durrani, 1999; Weise et al., 2001; Aleissa et 

al., 2012; Freiler et al., 2016). These spring waters serve as recreational centres and the origin 

for most surface waters (WWF Malaysia, 2011). Although the harmful effect of 222Rn exposure 

is well established, a 222Rn data on this natural and useful water source of Johor State has not 

been found in the literature.
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1.3 Objectives of the study

This research aims at identifying the radon risk areas in Johor State Malaysia using the 

measurement of 222Rn in soil gas and soil gas permeability. The objectives of the study are:

(a) To establish a baseline data on 222Rn and 220Rn activity concentrations in soil gas, 

222Rn and 220Rn activity concentrations in outdoor air and soil permeability for Johor 

State Malaysia.

(b) To estimate the geogenic radon potential data and establish the radon potential map 

of Johor State.

(c) To classify radon and thoron based on the geological formations and the soil types 

of Johor State.

(d) To find the statistical relationship between the estimated data of the geogenic radon 

potential and other measured parameters (222Rn in soil gas, 220Rn in soil gas, 222Rn 

in outdoor air, 220Rn in outdoor air, soil gas permeability, 226Ra in soil, 232Th in soil, 

and gamma dose rate, respectively).

(e) To measure the activity concentrations of 222Rn in spring, lake and river waters and 

estimate the effective dose due to 222Rn inhalation.

1.4 Scopes of the Research

This research was conducted in Johor State Malaysia, covering six geological 

formations, seven soil types, and ten administrative districts within Johor State.

The study focused on in situ measurements of 222Rn and 220Rn activity concentration, 

outdoor air, soil gas, and soil gas permeability. The internal temperature and relative humidity
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of RAD7, during measurements of 222Rn/220Rn in soil gas and 222Rn/220Rn in outdoor air, were 

recorded. Measurements of 222Rn activity concentration in water samples and terrestrial gamma 

dose rate measurement at 1 m from the soil surface were also conducted. Soil samples were 

collected from 111 sampling points for determination of the specific activity of 226Ra, 235Th and 

40K in the laboratory. The geographical coordinates of each sampling locations were also 

recorded.

The geogenic radon potential (GRP) and the effective dose of inhalation due to 222Rn in 

water were estimated. Kruskal-Wallis test was conducted to verify any significant differences 

among the soil types and geological formations on the measured data for 222Rn in soil gas, 220Rn 

in soil gas and the estimated GRP data.

The estimated GRP data other measured parameters (222Rn/220Rn in soil gas 222Rn/220Rn 

in outdoor air, soil gas permeability, the specific activity of 226Ra, 235Th And 40K in the soil and 

terrestrial gamma dose) were subjected to Spearman’s correlation test to estimate the statistical 

relationship among the measured data sets.

Spatial interpolation of the measured data for 222Rn/220Rn soil gas, GRP, and soil gas 

permeability was done to obtain a map of each data set's spatial distribution.

1.5 Significance of the Research

This research work aims to delineate the radon (222Rn/220Rn) risk areas in Johor State 

and produce maps that can help identify those areas above the internationally acceptable level. 

Identifying regions most at risk of radon exposure serves as a key to policy on environmental 

carcinogen control (Garcia-Talavera et al., 2013). A map of radon-prone areas will provide 

management instruments for helping establishments take appropriate decisions and target 

actions in priority areas, such as building regulations to prevent new structures with high radon 

levels (Demoury et al., 2013). Therefore, this study's findings will be very significant to 

environmental protection agencies, radiological protection agencies, and the populace in the
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Johor state. This is because geographical-based, radon surveys estimate the distribution of radon 

in various areas. Also, the radon potential map established can be valuable data in executing 

radon policy. It can be useful in optimizing the search for high radon concentrations and 

identifying areas that require individual preventive actions during new construction (WHO, 

2009).

1.6 Theses Outline

The thesis consists of five chapters arranged in chronological order. The first chapter 

provides the background of the research work, statement of the problem, aims, and objectives 

of the research, significance of the study and scope of the study.

Chapter 2 contains a relevant literature review on; radioactivity, types of radiation, 

radioactivity in the environment, radioactive decay law, and radioactive equilibrium. The 

chapter also presents studies on 222Rn and 220Rn activity concentrations in the soil gas, 222Rn 

and activity concentrations in water, done in different countries and Malaysia.

Chapter 3 describes the study area as well as the methodology adopted to achieve the 

stated objectives. It includes measurements of, 222Rn and 220Rn in air, 222Rn and 220Rn in soil 

gas and 222Rn in water with Durridge RAD7 alpha particle detector, together with in situ gamma 

dose-rate measurement, soil permeability measurement, geographical coordinate measurement, 

and soil sample collection and preparation for gamma spectroscopy with HPGe. The chapter 

also comprises equations to evaluate the radiological health hazards and the study location's 

geogenic radon potential.

Chapter 4 presents the summary statistics of all the measured parameters (222Rn/220Rn 

in soil gas, 222Rn/220Rn in outdoor air, soil gas permeability, estimated GRP data, relative 

humidity, and the recorded temperature). The chapter also presents the distribution and 

discussion of the measured parameter based on Administrative Districts, geological formations, 

and soil types. The result of the correlation between the measured parameter is also presented
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and discussed. The statistical summary and discussion of the measured 222Rn in water with the 

estimated inhalation dose are also presented. Maps that show the spatial distribution of the 

measured 222Rn in soil gas 220Rn in soil gas, soil gas permeability, and the geogenic radon 

potential are displayed in this chapter.

Chapter 5 presents the conclusion drawn from this study as well as the 

recommendations.
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