GEOGENIC RADON AND THORON POTENTIAL MAPPING IN JOHOR STATE, MALAYSIA

RAKIYA HARUNA

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

> Faculty of Science Universiti Teknologi Malaysia

> > MARCH 2021

DEDICATION

This thesis is dedicated to my late father Alhaji Haruna Makarfi, who would have given me all the required support if alive, my mother Hajiya Mairo Ibrahim Makarfi for her tireless prayers and support all through my life. And my dearest son Haruna Adamu Dada for enduring my absence while I am away from him during this study.

ACKNOWLEDGEMENT

My sincere gratitude to Allah (SWT), whose help and guidance took me through this programme. May the benediction, blessings and peace of Allah (SWT) be with His noble servant, prophet and messenger Muhammad (SAW), members of his household and his companions, amin.

I would like to express my profound gratitude and appreciation to my supervisors, Associate Prof. Dr. Muneer Aziz Saleh, Associate Prof. Suhairul bin Hashim, Associate Prof. Khaidzir Bin Hamzah and Dr. Mohamad Syazwan Mohd Sanusi, who have infused a sense of style, soft approach, kind mentorship, and invaluable contributions to the success and quality of this work.

My appreciation also goes to my research colleagues, Habila Nuhu and Nur Fadhilla Bint Ismail. Am thankful to the staff of Nuclear Laboratory, Department of Physics, Universiti Teknologi Malaysia especially Mr Saiful Bin Rashid and Nuclear physics laboratory of University Industry research laboratory.

My sincere gratitude goes to the management of Federal College of Education, Zaria, Nigeria for providing financial support through Tertiary Education Trust Fund (TETFUND) for my study.

Special gratitude and appreciation go to my mother and her entire family members especially my uncle Aliyu Ibrahim Makarfi for their support, encouragement and above all prayers. The same goes to my brother-inlaw Professor Lawal Saidu Makarfi, my siblings (Aunty Zainab, Aliyu Ibrahim, Musa Ibrahim, Hauwa Haruna, Ibrahim Haruna, Aliyu Haruna, Sulaiman Haruna and Maimuna Haruna), and friends Hajara Musa, Ahmad Umar Ahmad, Dr. Jibrin Muazu Musa and many others for their tireless unreserved support, care and love towards the success of my study.

My fellow postgraduate student should also be recognized for their support. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am grateful to all my family members.

ABSTRACT

Public radiation exposure to natural ionizing radiation is due to radon and its progeny. Knowledge of natural radioactivity exposure level is significant for making policy regarding radiological protection of the environment and humans. This study aims at establishing baseline data and identifying areas with the probability of high radon (²²²Rn/²²⁰Rn) exposure in Johor State, Malaysia. Therefore, The RAD7 alpha detector coupled to air sampling accessories, soil gas probe and RAD-H₂O was used to measure the activity concentrations of ²²²Rn/²²⁰Rn in outdoor air, ²²²Rn /²²⁰Rn in soil gas and ²²²Rn in water, respectively. The RAD7 recorded the average temperature and relative humidity during measurement of ²²²Rn/²²⁰Rn in soil gas. The data for soil gas permeability was obtained with RADON-Joke equipment. The terrestrial gamma dose rate was measured using a portable NaI (Tl) survey meter. The specific activity of ²²⁶Ra, ²³²Th, and ⁴⁰K in the soil samples was determined using a high purity germanium detector (HPGe). The established data range from minimum detectable activity (MDA) to 127.25 \pm $3.00 \text{ Bq } \text{L}^{-1}$ for ²²²Rn and MDA to $159.07 \pm 3.40 \text{ Bq } \text{L}^{-1}$ for ²²⁰Rn in soil gas, respectively. The data for 222 Rn and 220 Rn in outdoor air range from MDA to 3850 ± 180 mBq L⁻¹ and MDA to 600 ± 17 mBq L⁻¹, respectively. The measured data categorized according to the study area's geological formations show that higher values of 222 Rn / 220 Rn in both soil gas and outdoor air were obtained in regions underlain with Triassic and Intrusive rock geological formations. The soil gas permeability data has a mean value of 1.9×10^{-12} m². The field data obtained from the measurement of ²²²Rn in soil gas and soil gas permeability were used to estimate the geogenic radon potential (GRP) of this study area. Three high categories of GRP values were identified (53.667, 53.252 and 47.826). Statistical correlation analysis indicates that the estimated GRP data is strongly correlated with the measured ²²²Rn/²²⁰Rn in soil gas and soil gas permeability. In contrast, an insignificant relationship was obtained between the measured ²²²Rn/²²⁰Rn in soil gas and the measured ²²⁶Ra/²³²Th in the surface soil. The recorded relative humidity was found to have a moderately negative correlation with ²²²Rn in soil gas. The measured data of ²²²Rn activity concentrations in water varies from 80 ± 110 to 5400 ± 1100 mBq L⁻¹ in surface water and spring water source, respectively, with a mean value of 1227 mBq L^{-1} from all samples. The water samples measured activity concentration was found to be below the maximum permissible limit for ²²²Rn in water referring to United States Environmental Protection Agency (EPA) and World Health Organisation which is 1100 mBq L^{-1} and 10⁵ mBq L^{-1} , respectively. The mean activity concentration of ²²²Rn in spring water is five times higher than that of surface water. The mean values of the annual effective dose due to inhalation of ²²²Rn in spring water and surface water, were 2.15 μ Sv y⁻¹ and 0.423 μ Sv y⁻¹, respectively. Hence, the inhalation doses estimated were well below the recommended limit set by United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) of 1260 µSv y⁻¹. The maps of spatial distribution of ²²²Rn/²²⁰Rn in soil gas and soil gas permeability are created and indicates that higher values of ²²²Rn and ²²⁰Rn were obtained from Ledang, Muar and Johor Bahru districts.

ABSTRAK

Pendedahan sinaran orang awam terhadap sinaran mengion semula jadi adalah disebabkan oleh radon dan progeninya. Pengetahuan mengenai tahap dedahan keradioaktifan semula jadi adalah penting untuk membuat dasar berkaitan perlindungan radiologi terhadap alam sekitar dan manusia. Kajian ini bertujuan untuk menetapkan data asas dan mengenal pasti kawasan dengan kebarangkalian dedahan radon (222Rn / 220Rn) yang tinggi di negeri Johor, Malaysia. Oleh itu, pengesan alfa RAD7 yang digabungkan dengan aksesori pensampelan udara, kuar gas tanah dan RAD-H₂O masing-masing digunakan untuk mengukur kepekatan aktiviti ²²²Rn /²²⁰Rn di udara luar, ²²²Rn / ²²⁰Rn di dalam gas tanah dan ²²²Rn di dalam air. RAD7 mencatatkan suhu purata dan kelembapan relatif semasa pengukuran ²²²Rn / ²²⁰Rn di dalam gas tanah. Data untuk kebolehtelapan gas tanah diperoleh dengan peralatan RADON-Joke. Kadar dos gama daratan diukur menggunakan meter tinjau NaI (Tl) mudah alih. Keaktifan tertentu untuk ²²⁶Ra, ²³²Th, dan ⁴⁰K di dalam sampel tanah ditentukan menggunakan pengesan germanium ketulenan tinggi (HPGe). Julat data yang diperoleh masing-masing bermula dari keaktifan minimum boleh kesan (MDA) sehingga 127.25 ± 3.00 Bq L⁻¹ untuk ²²²Rn dan MDA sehingga 159.07 \pm 3.40 Bq L⁻¹ untuk ²²⁰Rn dalam gas tanah. Data untuk ²²²Rn dan ²²⁰Rn di udara luar berjulat dari MDA sehingga $3850 \pm 180 \text{ mBq } \text{L}^{-1}$ dan MDA sehingga $600 \pm$ 17 mBq L⁻¹. Data yang diukur dikategorikan menurut bentukan geologi kawasan kajian ini menunjukkan bahawa nilai ²²²Rn / ²²⁰Rn yang lebih tinggi di kedua-dua gas tanah dan udara luar diperolehi di kawasan teralas dengan bentukan geologi Trias dan Batuan Rejahan. Data kebolehtelapan gas tanah mempunyai nilai min 1.9×10^{-12} m². Data lapangan yang diperoleh dari pengukuran ²²²Rn dalam gas tanah dan kebolehtelapan gas tanah digunakan untuk menganggar potensi radon geogenik (GRP) kawasan kajian ini. Tiga kategori nilai GRP yang tinggi telah dikenal pasti (53.667, 53.252 dan 47.826). Analisis korelasi statistik menunjukkan bahawa anggaran data GRP sangat berkorelasi dengan ²²²Rn/²²⁰Rn yang diukur di dalam gas tanah dan kebolehtelapan gas tanah. Sebaliknya, hubungan yang tidak signifikan diperoleh di antara ²²²Rn /²²⁰Rn yang diukur dalam gas tanah dan ²²⁶Ra/²³²Th yang diukur di permukaan tanah. Kelembapan relatif yang direkodkan didapati mempunyai korelasi negatif yang sederhana dengan²²²Rn dalam gas tanah. Kepekatan keaktifan²²²Rn yang diukur di dalam air berubah masing-masing dari 80 ± 110 sehingga 5400 ± 1100 mBq L⁻¹ di permukaan air dan sumber mata air, dengan nilai min 1227 mBq L⁻¹ dari semua sampel. Kepekatan keaktifan sampel air yang diukur didapati berada di bawah had maksimum yang dibenarkan untuk ²²²Rn dalam air merujuk kepada Agensi Perlindungan Alam Sekitar Amerika Syarikat (EPA) dan Pertubuhan Kesihatan Sedunia, yang masing-masing adalah 1100 mBq L^{-1} dan 10⁵ mBq L^{-1} . Min kepekatan keaktifan ²²²Rn dalam mata air adalah lima kali lebih tinggi daripada permukaan air. Nilai min dos berkesan tahunan disebabkan oleh penyedutan 222Rn di dalam mata air dan permukaan air masing-masing adalah 2.15 μ Sv v⁻¹ dan 0.423 μ Sv v⁻¹. Oleh itu, dos penyedutan yang dianggarkan berada jauh di bawah had yang disyorkan oleh Jawatankuasa Saintifik Pertubuhan Bangsa-Bangsa Bersatu mengenai Kesan Sinaran Atom (UNSCEAR) iaitu 1260 μ Sv y⁻¹. Peta taburan ruangan ²²²Rn/²²⁰Rn di dalam gas tanah dan kebolehtelapan gas tanah dihasilkan dan menunjukkan bahawa nilai ²²²Rn dan ²²⁰Rn yang lebih tinggi diperoleh dari daerah Ledang, Muar dan Johor Bahru.

TABLE OF CONTENTS

PAGE

TITLE

	DEC	LARATION				ii
	DED	ICATION				iii
	ACK	NOWLEDGE	M	ENT		iv
	ABS	FRACT				v
	ABS	ſRAK				vi
	TAB	LE OF CONT	EN	NTS		vii
	LIST	OF TABLES			2	kiii
	LIST	OF FIGURES	5			xv
	LIST	OF ABBREV	IA	TIONS	2	xix
	LIST	OF SYMBOI	ĴS			XX
	LIST	OF APPEND	IC	ES	3	xxi
СНАРТЕ	R 1	INTRODUC	[T]	ION		
	1.1	Background of	of	the study		1
	1.2	Problem State	em	ent		5
	1.3	Objectives of	th	e study		6
	1.4	Scopes of the	R	esearch		6
	1.5	Significance	of	the Research		7
	1.6	Theses Outlin	ıe			8
СНАРТЕ	R 2	LITERATU	RF	E REVIEW		
	2.1	Introduction				11
		2.1.1 Radio	ac	tivity		11
		2.1.1.	1	Alpha Decay		12
		2.1.1.	2	Beta Decay		12
		2.1.1.	3	Gamma Emission		12

	2.2	Radioactive Decay Equations	13
		2.2.1 Specific Activity	15
	Radio	active Decay Equilibrium	16
		2.2.2 No Equilibrium	17
		2.2.3 Transient Equilibrium	17
		2.2.4 Secular Equilibrium	18
	2.3	Radioactivity of Natural Origin	19
		2.3.1 Cosmic Radiation	19
		2.3.2 Terrestrial Radiation	20
	2.4	Radon/thoron measurement devices	20
	2.5	Activity Concentrations of ²²² Rn and ²²⁰ Rn in Soil Gas	23
	2.6	Activity Concentration of ²²² Rn in Water	30
	2.7	Activity Concentration of ²²² Rn and ²²⁰ Rn in Malaysia	34
	2.10	Mapping Strategies Adopted by different Countries	37
	2.8	Spatial Interpolation	38
	2.9	Research Gap	39
	2.10	Theory and principles of equipment	39
		2.10.1 Principle of Radon-Jok equipment	39
		2.10.2 RAD7 Alpha detector	40
	2.11	High purity Germanium detector (HPGe)	42
		2.11.1 Calibration of Germanium Detector Systems	43
		2.11.1.1 Energy Calibration	43
		2.11.1.2 Efficiency Calibration	44
СНАРТЕ	CR 3	RESEARCH METHODOLOGY	
	3.1	Introduction	45
	3.2	Study Area	45
		3.2.1 Digitization of soil and geological maps	45
		3.2.2 Sampling Strategy	46
		3.2.3 Geological formations in Johor State	48

	3.2.4 Soil types of Johor State	50
3.3	Recording the coordinates of sampling points	52
3.4	Soil Sampling and Preparation for Gamma Spectroscopy	52
3.5	Water sampling for measurement of ²²² Rn	52
3.6	Measurement of Terrestrial Gamma Dose	53
3.7	Measurement of soil gas permeability with Radon-JOK	53
3.8	Quality assurance and quality control protocols of RAD7	56
3.9	²²² Rn and ²²⁰ Rn Measurements in the Outdoor Air	56
3.10	²²² Rn and ²²⁰ Rn Measurement in the Soil Gas	58
3.11	Gamma Spectroscopy	62
	3.11.1 Energy Calibration of HPGe	63
	3.11.2 Efficiency Calibration of HPGe	63
	3.11.3 Sample Counting and Analysis with HPGe	63
	3.11.4 Activity concentration of the radionuclide	64
3.12	Estimation of Doses Due to ²²² Rn in Water	65
	3.12.1 Annual Effective dose due to ²²² Rn water	65
3.13	Estimation of Geogenic Radon Potential (GRP)	66
3.14	Statistical Analysis	66
	3.14.1 Descriptive statistics	67
	3.14.2 Kruskal-Wallis test	67
	3.14.3 Spearman's correlation analysis	68
3.15	Mapping	68
	3.15.1 Spatial Interpolation	69
CHAPTER 4	RESULT AND DISCUSSION	
4.1	Introduction	71
4.2	Statistics of the measured parameters	72
	4.2.1 ²²² Rn activity concentrations in soil gas	72
	4.2.2 ²²² Rn activity concentrations in outdoor air	74
	4.2.3 ²²⁰ Rn activity concentrations in soil gas	75

	4.2.4	²²⁰ Rn acti	vity concentrations in outdoor air	77
	4.2.5	Soil gas p	permeability	78
	4.2.6	Geogenic	radon potential	81
	4.2.7	Relative	Humidity	83
	4.2.8	Average	Temperature	83
4.3	Measu	ired param	eters for each District	85
	4.3.1	²²² Rn acti District	ivity concentrations in soil gas for each	85
	4.3.2	²²² Rn act each Dist	ivity concentrations in outdoor air for rict	89
	4.3.3	²²⁰ Rn acti District	ivity concentrations in soil gas for each	92
	4.3.4	²²⁰ Rn act each Dist	ivity concentrations in outdoor air for rict	95
	4.3.5	GRP data	distribution for administrative districts	98
4.4	Measu	ired param	eters for each geological formation	101
	4.4.1	²²² Rn acti geologica	ivity concentrations in soil gas for each l formation	101
		4.4.1.1	Hypothesis test on ²²² Rn activity concentrations in soil gas based on Geological formation	105
	4.4.2	²²² Rn act each geol	ivity concentrations in outdoor air for ogical formation	106
	4.4.3	²²⁰ Rn acti geologica	ivity concentrations in soil gas for each ll group	109
		4.4.3.1	Hypothesis test on ²²⁰ Rn concentration in soil gas based on geological types	112
	4.4.4	²²⁰ Rn act each geol	ivity concentrations in outdoor air for ogical formation	113
	4.4.5	The GRP	data for each geological formation	116
		4.4.5.1	Hypothesis test on GRP data based on geological formations	119
4.5	Measu	ired param	eters for each soil type	120

	4.5.1	²²² Rn act soil types	ivity concentrations in soil gas for each	120
		4.5.1.1	Hypothesis test on ²²² Rn activity concentrations in soil gas based on soil type	124
	4.5.2	²²² Rn act each soil	ivity concentrations in outdoor air for type	127
	4.5.3	²²⁰ Rn act soil type	ivity concentrations in soil gas for each	130
		4.5.3.1	Hypothesis test on ²²⁰ Rn concentration in soil gas based on soil type	134
	4.5.4	²²⁰ Rn act each soil	ivity concentrations in outdoor air for type	136
	4.5.5	The GRP	data for each soil type	139
		4.5.5.1	Hypothesis test on GRP data based on soil type	142
4.6	The st with n	atistical reneasured p	elationship between ²²² Rn/ ²²⁰ Rn in soil gas arameters	144
	4.6.1	Relations paramete	ship between ²²⁰ Rn and other measured rs	144
	4.6.2	Relations paramete	ship between ²²⁰ Rn and other measured rs	145
4.7	Relati param	onship be eters	etween of GRP with other measured	147
	4.7.1	Relations concentra	ship between GRP and ²²² Rn activity ations in soil gas	148
	4.7.2	Relations concentra	ship between GRP and ²²² Rn activity ations in outdoor air	148
	4.7.3	Relations concentra	whip between GRP and ²²⁰ Rn activity ations in soil gas	149
	4.7.4	Relations concentra	ship between GRP and ²²⁰ Rn activity ations in outdoor air	149
	4.7.5	Relations permeabi	ship between GRP and soil gas lity	149
	4.7.6	Relations dose	ship between GRP and outdoor gamma	150

	4.7.7	Relationship between GRP and ²²⁰ Rn in the soil	150
	4.7.8	Relationship between GRP and ²³² Th in the soil	150
4.8	²²² Rn a	activity concentrations in water	150
	4.8.1	The effective dose of inhalation due to ²²² Rn in water	155
4.9	Spatia	Distribution of measured parameters	155
	CON	TI LISION AND DECOMMENDATIONS	
CHAPTER 5	CUN	LUSION AND RECOMMENDATIONS	
CHAPTER 5 5.1	Conclu	usion	163
5.1 5.2	Conclu Recom	usion and RECOMMENDATIONS	163 165
CHAPTER 5 5.1 5.2 REFERENCES	Conclu Recom	usion and RECOMMENDATIONS	163 165 167

LIST OF TABLES

TABLE NO.	TITLE	PAGE
Table 2. 1	Classification of radon measurement devices	22
Table 2. 2	²²² Rn and ²²⁰ Rn Activity Concentration in Soil Gas	28
Table 2.3	Activity Concentration of ²²² Rn in Water	33
Table 2. 4	^{222}Rn and ^{220}Rn activity concentrations with outdoor gamma dose rate in Malaysia	35
Table 3. 1	Main geological formations of Johor State, Malaysia (Director- General of Geological Survey Malaysia, 1985)	49
Table 3. 2	Soil types of Johor State, Malaysia	51
Table 4. 1	Statistical summary of ²²² Rn activity concentrations in soil gas	73
Table 4. 2	Summary statistic of ²²² Rn activity concentrations in outdoor air	75
Table 4. 3	Summary statistic of ²²⁰ Rn activity concentrations in soil gas	76
Table 4. 4	Summary statistic for $^{\rm 220}{\rm Rn}$ activity concentrations in outdoor air	78
Table 4. 5	Summary statistic for soil gas permeability	80
Table 4. 6	Summary statistic for geogenic radon potential	82
Table 4. 7	Summary statistics of the relative humidity	83
Table 4. 8	Summary statistics of the average temperature	84
Table 4. 9	Hypothesis test summary for ²²² Rn across geological formations	105
Table 4. 10	Pairwise comparisons of ²²² Rn activity concentrations in soil gas among geological formations	106
Table 4. 11	Hypothesis test summary for ²²⁰ Rn across geological formations	112
Table 4. 12	Pairwise comparisons of ²²⁰ Rn activity concentrations in soil gas among the geological formations	112

Table 4. 13	Hypothesis test summary for GRP data across the geological formations	119
Table 4. 14	Comparison of median values Of GRP across the geological formations	119
Table 4. 15	Hypothesis test summary for ²²² Rn across soil types	124
Table 4. 16	Pairwise comparisons of ²²² Rn activity concentrations in soil gas among the soil types	125
Table 4. 17	Hypothesis test summary for ²²⁰ Rn across soil type	134
Table 4. 18	Comparison of ²²⁰ Rn activity concentrations in soil gas among the soil type	135
Table 4. 19	Hypothesis test summary for GRP data across the soil types	142
Table 4. 20	Comparison of the median value of GRP across the soil types	143
Table 4. 21	Correlation ²²² Rn concentration in soil gas and other measured parameters	145
Table 4. 22	Correlation between ²²⁰ Rn in soil gas and other measured parameters	146
Table 4. 23	Spearman's correlation between GRP and other measured parameters	148
Table 4. 24	Measured ²²² Rn activity concentrations in water and type water source	151
Table 4. 25	Summary statistics of ²²² Rn activity concentrations in spring and surface waters	152
Table 4. 26	Comparing the measured ²²² Rn activity concentrations in water with other studies	154
Table 4. 27	Summary statistics of the calculated effective dose of inhalation	155

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
Figure 2. 1	Technique and Instrument to measure radon and its progeny	21
Figure 2. 2	RAD7 alpha particle detector (Durridge, 2015).	41
Figure 2. 3	A chart of RAD7 basic principle	42
Figure 3. 1	Research methodology flow chart	47
Figure 3. 2	Map of geological formations of Johor State with sampling point	48
Figure 3. 3	Map of soil types of Johor State with sampling points	50
Figure 3. 4	Setup for measurement of soil gas permeability	54
Figure 3. 5	The procedure for soil gas permeability measurement	55
Figure 3. 6	Setup for measurement of ²²² Rn in water (Durridge, 2015).	61
Figure 3. 7	Procedure for measurement of ²²² Rn in water	62
Figure 4. 1	Frequency distribution of ²²² Rn activity concentrations in soil gas	73
Figure 4. 2	Frequency distribution of ²²² Rn activity concentrations in outdoor air	74
Figure 4. 3	Frequency distribution of ²²⁰ Rn activity concentrations in soil gas	76
Figure 4. 4	Frequency distribution of ²²⁰ Rn activity concentrations in outdoor air	77
Figure 4. 5	Frequency distribution of soil gas permeability	80
Figure 4. 6	Frequency distribution of the geogenic radon potential data	82
Figure 4. 7	²²² Rn activity concentrations in soil gas data for each administrative district, and the overall median value	87
Figure 4. 8	Mean activity concentrations of ²²² Rn in soil gas for each administrative district	88
Figure 4. 9	²²² Rn activity concentrations in outdoor air for each administrative district with the overall median value	90

Figure 4. 10	Mean activity concentrations of ²²² Rn in outdoor air for each administrative distric	91
Figure 4. 11	²²⁰ Rn activity concentrations for each administrative district	93
Figure 4. 12	Mean activity concentrations of ²²⁰ Rn in soil gas for each administrative distric	94
Figure 4. 13	²²⁰ Rn activity concentrations in outdoor air for each administrative district with the overall median value	96
Figure 4. 14	Mean activity concentrations of ²²⁰ Rn in outdoor air for each administrative district	97
Figure 4. 15	Geogenic radon potential for each geological formation, Neznal <i>et al.</i> , (2004) GRP classification with the overall median GRP value	99
Figure 4. 16	Mean values of Geogenic radon potential for each administrative district	100
Figure 4. 17	²²² Rn activity concentrations in soil gas data for each geological formations, and the overall median value	103
Figure 4. 18	Mean activity concentrations of ²²² Rn in soil gas for each geological formation	104
Figure 4. 19	²²² Rn activity concentrations in outdoor air for each geological formation with the overall median value	107
Figure 4. 20	Mean activity concentrations of ²²² Rn in outdoor air for each geological formation	108
Figure 4. 21	²²⁰ Rn activity concentrations in soil gas data for each geological formation with the overall median value	110
Figure 4. 22	Mean activity concentrations of ²²⁰ Rn in soil gas for each geological formation	111
Figure 4. 23	²²⁰ Rn activity concentrations in outdoor air for each geological formation	114
Figure 4. 24	Mean activity concentrations of ²²⁰ Rn in outdoor air for Geological formation	115
Figure 4. 25	Geogenic radon potential for each geological formation, Neznal <i>et al.</i> , (2004) GRP classification with the overall median GRP value.	117
Figure 4. 26	Mean geogenic radon potential for each geological formation	118

Figure 4. 27	²²² Rn activity concentrations in soil gas for different soil types with the overall median value	122
Figure 4. 28	Mean activity concentrations of ²²² Rn in soil gas for each soil type	123
Figure 4. 29	²²² Rn activity concentrations in outdoor air for each soil type with the overall median value	128
Figure 4. 30	Mean activity concentrations of ²²² Rn in outdoor air for each soil type	129
Figure 4. 31	²²⁰ Rn activity concentrations in soil gas for each soil type and the overall median value	132
Figure 4. 32	Mean activity concentrations of ²²⁰ Rn in soil gas for each soil type	133
Figure 4. 33	²²⁰ Rn activity concentrations in outdoor air for each soil type	137
Figure 4. 34	Mean activity concentrations of ²²⁰ Rn in outdoor air for each soil type	138
Figure 4. 35	Geogenic radon potential for each soil type, Neznal <i>et al.</i> , (2004) GRP classification with the overall median GRP value	140
Figure 4. 36	Mean geogenic radon potential for each soil type	141
Figure 4. 37	Spatial distribution of ²²² Rn activity concentrations in soil gas of Johor State, Malaysia	158
Figure 4. 38	Classification of soil gas permeability values in Johor State, Malaysia	159
Figure 4. 39	Classification of radon risk areas in Johor State, Malaysia	160
Figure 4. 40	Spatial distribution of ²²⁰ Rn in soil gas of Johor State, Malaysia	161

LIST OF ABBREVIATIONS

FWHM	Full width Half Maximum
GRP	Geogenic Radon Potential
HPGe	High Purity Germanium Detector
ICRP	International Commission on Radiological Protection
IDW	Inverse Distance Weighting
SPSS	Statistical Package for Social Sciences
UNSCEAR	United Nations Scientific Committee on the effect of Atomic Radiation
WGS	World Geodic Coordinate System
WHO	World Health Organization

LIST OF SYMBOLS

²²⁰ Rn	Thoron
²²² Rn	Radon
²²⁶ Ra	Radium-226
²³² Th	Thorium-232
²³⁸ U	Uranium-238
40 K	Potassium-40
Bq	Becquerel
cpm	Count per minutes
cps	Count per second
DCF	Dose conversion factor
$\mathbf{D}_{\mathrm{Einh}}$	Effective dose for inhalation
E_{f}	Equilibrium factor
Eγ	Energy of the gamma-ray
Ν	Number of radionuclide at time t
N_0	Number of radionuclide time at $t = 0$
N _{sam}	Net count of the radionuclide in the sample
\mathbf{P}_{E}	Gamma-ray emission probability (gamma yield)
$R_{a\mathrm{W}}$	Ratio of ²²² Rn in the air to ²²² Rn in water
t _{1/2}	Half-life
To	The average occupancy time per individual
3	Efficiency of a detector
λ	Radioactive decay constant

LIST OF APPENDICES

APPENI	DIX TITLE	PAGE
Appendix A	²²² Rn activity concentration in soil gas for Each District	181
Appendix B	²²⁰ Rn activity concentration in soil gas for each District	182
Appendix C	²²² Rn activity concentration in outdoor air for Each District	183
Appendix D	²²⁰ Rn activity concentration in outdoor air for each District	184
Appendix E	Soil Gas permeability for each district	185
Appendix F	Geogenic radon potential (GPR) for each district	186
Appendix G	²²² Rn activity concentration in soil gas for each geological-formatio	on 187
Appendix H	²²⁰ Rn activity concentration in soil gas for each geological-formatio	on 188
Appendix I	²²² Rn activity concentration in outdoor air for each geologica formation	1- 189
Appendix J	²²⁰ Rn activity concentration in outdoor air for each geologica formation	1 - 190
Appendix K	²²² Rn activity concentration in soil gas for each soil type	191
Appendix L	²²⁰ Rn activity concentration in soil gas for each soil type	192
Appendix M	²²² Rn activity concentration in outdoor air for each soil type	193
Appendix N	²²⁰ Rn activity concentration in outdoor air for each soil type	194
Appendix O	Coordinates of sampling locations with soil types and geological f	ormations
		194

XX

CHAPTER 1

INTRODUCTION

1.1 **Background of the study**

Radon is a naturally occurring radioactive gas that can be found everywhere in our environment. It is chemically inert; it's odour can neither be seen nor perceived in the environment. It has several isotopes, but the isotopes of interest for this study are ²²²Rn (radon) and ²²⁰Rn (thoron) due to their availability in the environment and adverse health impacts on human (WHO, 2009). ²²²Rn with a half-life of 3.82 days belongs to the natural decay series of uranium-238 (²³⁸U) with a half-life of 4.47×10^9 y. Thoron (²²⁰Rn), with a half-life of 55.6 s belongs to the natural decay series of thorium-232 (232 Th) of 14.1 × 10¹⁰ y half-life. The parent nuclide of ²²²Rn (²³⁸U) originates from uranium ores, igneous and metamorphic rocks such as granite, gneiss, shale, phosphate rock and schist. It can also be found in a small amount in common rocks such as limestone (Kusky, 2005). The parent nuclide of ²²⁰Rn (²³²Th) originates from various types of rocks: veins of thorite, thorianite, monazite in granites, syenitespegmatites and other acidic intrusions. It is also present in monazite in quartz-pebble conglomerates, sandstones, fluviatile, and beach placers (Ramachandran, 2010). These natural radioactive gases transfer from their origin by diffusion and for longer distances by advection dissolving either in water or carrier gases, before finally blowing out into the atmosphere. Their discharge mainly depends on ²²⁶Ra and ²³²Th content and mineral grain size, geophysical and geochemical parameters that ruled their transport in the earth, and the hydrometeorological environments (Etiope et al., 2002).

The most stable isotope of radon is ²²²R, which decays to short-lived daughters (²¹⁸Po and ²¹⁴Po), contributing to the maximum risk associated with radon exposure by inhalation in general. When ²²²Rn and ²²⁰Rn isotopes set down in the lungs, the emitted alpha radiation from them can affect the lung's tissue. ²²²Rn exposure accounts for more than 50% of the lifetime

radiological dose to a person, while ²²⁰Rn contribution is about ten times smaller than ²²²Rn (Li *et al.*, 2010). However, some studies revealed that in some circumstances, doses from ²²⁰Rn and its decay products can be analogous to those from ²²²Rn and its decay products, or even larger (Cinelli *et al.*, 2015; Khokhar *et al.*, 2008; Porstendorfer, 1994; Steinhzlusler, 1996). The link between radon exposure and lung cancer is well-established (Yamada *et al.*, 2006; Brauner *et al.*, 2012; Sethi *et al.*, 2012; Zhang *et al.*, 2012). Studies in Asia, Europe and North America provide convincing proof that a significant number of lung cancers were caused by indoor radon exposure. Recent estimates of the number of lung cancers due to radon range from 3 to 14%, subject to the calculation method employed and the mean radon concentration in the country concerned. The analysis show that the risk of lung cancer is directly proportional to radon exposure. Majority of the lung cancers related to radon were due to exposure to low and moderate radon concentrations rather than higher radon concentrations. (WHO, 2009).

Previous studies have revealed the soil gas permeability, which is closely related to the migration of radon gas, determine the rate at which radon escape to the atmosphere (Andersen, 1999; Alonso et al., 2019). The grain size and porosity of a given terrain greatly influence the soil permeability, which increases with the existence of structural discontinuity and karst phenomena. The derived radon flux can fluctuate significantly with soil gas's permeability; hence, the soil gas's ²²²Rn activity concentration also varies. The soil gas permeability is greatly affected by soil wetness, which at once is influenced by other factors like phreatic level and pluviometry variations (Alonso et al., 2019). A sharp decrease in the ²²²Rn activity concentration in soil gas can be found as the amount of water in soil rises and advances towards saturation level due to the sudden reduction in the soil gas permeability level (Alonso et al., 2019; Menetrez et al., 1997). The occurrence of an apparent low permeable soil layer indicates a rise in the accumulation of ²²²Rn below (Alonso et al., 2019; Johner and Surbeck, 2001). It may as well lead to a significant reduction in the soil-atmosphere ²²²Rn flux. The reduction of soil-atmosphere radon flux can arise due to diverse reasons, such as water composition near the saturation level or the natural origin of the material if soil comprises clay and blacktop (Alonso et al., 2019; Wiegand 2001).

The harmful health impact of ²²²Rn is well documented. Therefore, it has been considered necessary to know the geographical extent of the hazard (radon risk) associated with it, for regulation and alleviation purposes. The term 'radon risk' is defined as the natural cause of the hazard over a given geographical location (Szabó et al., 2014). To prevent radon exposure to the public, numerous nations have addressed identifying regions most at risk of ²²²Rn exposure by establishing diverse ²²²Rn mapping techniques. The created maps are valuable in understanding and interpreting the spatial variation of ²²²Rn in a given location and serve as a predictive tool when planning housing developments. The map can also help identify areas with dwellings that are likely to be at high risk of ²²²Rn exposure (ICRP, 1993; Kemski et al., 2001; Kemski et al., 2009). The radon-risk mapping was previously done by extensive indoor radon measurement (Miles, 1998; Andersen, 1999). However, indoor measurement requires a large number of measurements over a long time. Also, indoor radon measurement considers the complex function of numerous factors, for instance, the geological nature of the area, building materials, presence and type of basement or cellar underneath the house and lifestyles of the inhabitant of a given dwelling. Methods such as airborne gamma-ray spectrometry in combination with geological data were also used (Appleton et al., 2011; Ford et al., 2001; Smethurst et al., 2008). Evaluation of gamma dose based on the correlation of ²²²Rn level in the soil gas with ²³⁸U or ²²⁶Ra level in soils and rocks has also been implemented (Ielsch *et al.*, 2010; García-Talavera et al., 2013a). However, the primary sources of ²²²Rn and ²²⁰Rn in houses are soil and underlying bedrocks upon which houses are built. The rate of emission from these sources and the potential for concentration within houses vary considerably with location. ²²²Rn in the soil air was considered a good predictor of a given site's radon potential. (Nazaroff et al., 1988; Mose et al., 1992; Kardos et al., 2015). In practice, radon exhalation's direct measurement towards indoor air seems to be best in characterizing a given site's radon potential. However, direct measurement of this factor requires prolonged intervals. Therefore, a combined measurement of ²²²Rn activity concentration in soil gas and soil gas permeability has been considered a superior standard in mapping radon risk region (Kemski et al., 2001; Neznal et al., 2004).

²²²Rn is soluble in water and therefore exist in the waters that pass through soils and rocks of uranium and thorium content. The dissolved ²²²Rn in water mainly originate from ²²⁶Ra

that either dissolve in water or localized in a porous and permeable rock aquifer or soil materials in contact with water. When ²²²Rn atoms are produced in soil or rocks, they have the potency to be expelled from the soil grain by alpha-recoil and transported to groundwater or void air and seep through the atmosphere (Abdallah et al., 2007; Somlai et al., 2007; Tabar and Yakut, 2014; Marques et al., 2004). Numerous studies were conducted to investigate the relationship between ²²²Rn activity concentration in water and the geological environment. Elevated ²²²Rn levels are commonly found in the ground and spring waters discharging from metamorphic and granitic rocks (Michel, 1990; Durrani, 1999; Weise et al., 2001; Aleissa et al., 2012; Freiler et al., 2016). Moreno et al. (2014) reported that Felsic granites contain an excessive concentration of the parent element of the ²²²Rn decay series (²³⁸U). Most of the spring waters in Johor State are found in the region of intrusive rocks of granitic origin (Director-General of Geological Survey Malaysia, 1985). The associated hazard of ²²²Rn ingestion is less than that of inhalation of ²²²Rn that exhale into the air from the same water (Crawford-Brown, 1990; DURRIDGE Company Inc., 2011; Duggal et al., 2020). Therefore, it is considered necessary to quantify ²²²Rn in water and evaluate the associated doses of inhalation due to ²²²Rn in water to ensure the dwellers' safety near the waters.

The level of 222 Rn in the outdoor air is generally low and poses no problem, ranging from 0.005 to 0.015 Bq L⁻¹ (WHO, 2016). However, radon in the outdoor air may also contribute to indoor radon levels, as in some geographical locations, outdoor radon levels are higher than indoors (Vaupotič *et al.*, 2010). Therefore, assessment of radon in the outdoor air is also necessary.

Since both ²²²Rn and ²²⁰Rn are ubiquitous and presents a significant health hazard to the populace, there is a need to identify areas with possible high exposure for radiological assessment and establishment of national policy concerning their exposure. Therefore, this research hopes to establish baseline data and identify those areas with high ²²²Rn and ²²⁰Rn exposure probability. This finding may be useful in setting a safety standard for exposure to ²²²Rn and ²²⁰Rn in Malaysia's Johor state.

1.2 **Problem Statement**

Despite the significant radiation dose contributed by ²²²Rn in the environment (more than 50 % of natural radiation dose), baseline data for ²²²Rn and ²²⁰Rn activity concentration in the Johor State has not been established. Therefore to identify areas most at risk of ²²²Rn and ²²⁰Rn exposure in Johor state, a baseline data is needed for both ²²²Rn and ²²⁰Rn activity concentration as doses from ²²⁰Rn exposure can be analogues to that of ²²²Rn or even higher (Cinelli *et al.*, 2015; Khokhar *et al.*, 2008; Porstendorfer, 1994; Steinhzlusler, 1996). Therefore, exposure to ²²²Rn and ²²⁰Rn cannot be considered safe no matter the amount as prolonged exposure to lower doses has been associated to the occurrence of lung cancer (WHO, 2009; Dubois *et al.*, 2010). Moreover, lung cancer is considered the leading cause of cancer-related deaths worldwide (Lee *et al.*, 2011; Sethi *et al.*, 2012).

Most of the previous studies conducted in the Johor State were concerned with assessing natural radionuclides in the surface soil and terrestrial gamma dose, For example, (Ramli *et al.*, 2005; Saleh *et al.*, 2014, 2013a, 2013b, 2013c). However, in identifying the radon risk region, studies on natural radionuclide in the surface soil cannot provide adequate information about a given area's radon risk. The concentration of 222 Rn/ 220 Rn depends on several factors, other than the concentration of their parent nuclides, among which soil gas permeability is considered the most significant factor (Alonso *et al.*, 2019). Therefore, to assess an area's radon risk, a combined measurement of soil gas radon and soil gas permeability needs to be conducted (Neznal *et al.*, 2004).

Based on the map of the geological survey of Peninsular Malaysia (Director-General of Geological Survey Malaysia, 1985) most of the spring waters in Johor State are outflowing from granitic rock aquifers. The rock aquifers of granitic type have been associated with a high concentration of ²²²Rn precursors (Michel, 1990; Durrani, 1999; Weise *et al.*, 2001; Aleissa *et al.*, 2012; Freiler *et al.*, 2016). These spring waters serve as recreational centres and the origin for most surface waters (WWF Malaysia, 2011). Although the harmful effect of ²²²Rn exposure is well established, a ²²²Rn data on this natural and useful water source of Johor State has not been found in the literature.

1.3 **Objectives of the study**

This research aims at identifying the radon risk areas in Johor State Malaysia using the measurement of ²²²Rn in soil gas and soil gas permeability. The objectives of the study are:

- (a) To establish a baseline data on ²²²Rn and ²²⁰Rn activity concentrations in soil gas, ²²²Rn and ²²⁰Rn activity concentrations in outdoor air and soil permeability for Johor State Malaysia.
- (b) To estimate the geogenic radon potential data and establish the radon potential map of Johor State.
- (c) To classify radon and thoron based on the geological formations and the soil types of Johor State.
- (d) To find the statistical relationship between the estimated data of the geogenic radon potential and other measured parameters (²²²Rn in soil gas, ²²⁰Rn in soil gas, ²²²Rn in outdoor air, ²²⁰Rn in outdoor air, soil gas permeability, ²²⁶Ra in soil, ²³²Th in soil, and gamma dose rate, respectively).
- (e) To measure the activity concentrations of ²²²Rn in spring, lake and river waters and estimate the effective dose due to ²²²Rn inhalation.

1.4 Scopes of the Research

This research was conducted in Johor State Malaysia, covering six geological formations, seven soil types, and ten administrative districts within Johor State.

The study focused on in situ measurements of ²²²Rn and ²²⁰Rn activity concentration, outdoor air, soil gas, and soil gas permeability. The internal temperature and relative humidity

of RAD7, during measurements of ²²²Rn/²²⁰Rn in soil gas and ²²²Rn/²²⁰Rn in outdoor air, were recorded. Measurements of ²²²Rn activity concentration in water samples and terrestrial gamma dose rate measurement at 1 m from the soil surface were also conducted. Soil samples were collected from 111 sampling points for determination of the specific activity of ²²⁶Ra, ²³⁵Th and ⁴⁰K in the laboratory. The geographical coordinates of each sampling locations were also recorded.

The geogenic radon potential (GRP) and the effective dose of inhalation due to ²²²Rn in water were estimated. Kruskal-Wallis test was conducted to verify any significant differences among the soil types and geological formations on the measured data for ²²²Rn in soil gas, ²²⁰Rn in soil gas and the estimated GRP data.

The estimated GRP data other measured parameters (²²²Rn/²²⁰Rn in soil gas ²²²Rn/²²⁰Rn in outdoor air, soil gas permeability, the specific activity of ²²⁶Ra, ²³⁵Th And ⁴⁰K in the soil and terrestrial gamma dose) were subjected to Spearman's correlation test to estimate the statistical relationship among the measured data sets.

Spatial interpolation of the measured data for ²²²Rn/²²⁰Rn soil gas, GRP, and soil gas permeability was done to obtain a map of each data set's spatial distribution.

1.5 Significance of the Research

This research work aims to delineate the radon (²²²Rn/²²⁰Rn) risk areas in Johor State and produce maps that can help identify those areas above the internationally acceptable level. Identifying regions most at risk of radon exposure serves as a key to policy on environmental carcinogen control (García-Talavera *et al.*, 2013). A map of radon-prone areas will provide management instruments for helping establishments take appropriate decisions and target actions in priority areas, such as building regulations to prevent new structures with high radon levels (Demoury *et al.*, 2013). Therefore, this study's findings will be very significant to environmental protection agencies, radiological protection agencies, and the populace in the Johor state. This is because geographical-based, radon surveys estimate the distribution of radon in various areas. Also, the radon potential map established can be valuable data in executing radon policy. It can be useful in optimizing the search for high radon concentrations and identifying areas that require individual preventive actions during new construction (WHO, 2009).

1.6 **Theses Outline**

The thesis consists of five chapters arranged in chronological order. The first chapter provides the background of the research work, statement of the problem, aims, and objectives of the research, significance of the study and scope of the study.

Chapter 2 contains a relevant literature review on; radioactivity, types of radiation, radioactivity in the environment, radioactive decay law, and radioactive equilibrium. The chapter also presents studies on ²²²Rn and ²²⁰Rn activity concentrations in the soil gas, ²²²Rn and activity concentrations in water, done in different countries and Malaysia.

Chapter 3 describes the study area as well as the methodology adopted to achieve the stated objectives. It includes measurements of, ²²²Rn and ²²⁰Rn in air, ²²²Rn and ²²⁰Rn in soil gas and ²²²Rn in water with Durridge RAD7 alpha particle detector, together with in situ gamma dose-rate measurement, soil permeability measurement, geographical coordinate measurement, and soil sample collection and preparation for gamma spectroscopy with HPGe. The chapter also comprises equations to evaluate the radiological health hazards and the study location's geogenic radon potential.

Chapter 4 presents the summary statistics of all the measured parameters (²²²Rn/²²⁰Rn in soil gas, ²²²Rn/²²⁰Rn in outdoor air, soil gas permeability, estimated GRP data, relative humidity, and the recorded temperature). The chapter also presents the distribution and discussion of the measured parameter based on Administrative Districts, geological formations, and soil types. The result of the correlation between the measured parameter is also presented

and discussed. The statistical summary and discussion of the measured ²²²Rn in water with the estimated inhalation dose are also presented. Maps that show the spatial distribution of the measured ²²²Rn in soil gas ²²⁰Rn in soil gas, soil gas permeability, and the geogenic radon potential are displayed in this chapter.

Chapter 5 presents the conclusion drawn from this study as well as the recommendations.

REFERENCES

- Abdallah, S. M., Habib, R. R., Nuwayhid, R. Y., Chatila, M. and Katul, G. (2007) 'Radon measurements in well and spring water in Lebanon', *Radiation Measurements*, 42(2), pp. 298–303.
- AbdulRahman, A. T. A. and Ramli, A. T. (2007) 'Radioactivity levels of ²³⁸U and ²³²Th, the and activities and associated dose rates from surface soil in Ulu Tiram, Malaysia', *Journal of Radioanalytical and Nuclear Chemistry*, 273(3), pp. 653–657.
- Ahmad, N., Jaafar, M. S., Saad Alsaffar, M., Nisar Ahmad* and Mohamad Suhaimi Jaafar,
 M. S. A. (2015) 'Study of radon concentration and toxic elements in drinking and
 irrigated water and its implications in Sungai Petani, Kedah, Malaysia', *Journal of Radiation Research and Applied Sciences*, 8, pp. 294–299.
- Ajiboye, Y., Isinkaye, M. O. and Khanderkar, M. U. (2018) 'Spatial distribution mapping and radiological hazard assessment of groundwater and soil gas radon in Ekiti State, Southwest Nigeria', *Environmental Earth Sciences*, 77(14), p. 545.
- Al-Nafiey, M. S., Jaafar, M. S., Bauk, S. and Cameron, T. T. (2014) 'Measuring Radon Concentration and Toxic Elements in the Irrigation Water of the Agricultural Areas in Cameron Highlands, Malaysia', *Sains Malaysiana*, 43(2), pp. 227–231.
- Aleissa, K. A., Alghamdi, A. S., Almasoud, F. I. and Islam, M. S. (2012) 'Measurement of radon levels in groundwater supplies of riyadh with liquid scintillation counter and the associated radiation dose', *Radiation Protection Dosimetry*, 154(1), pp. 95–103.
- Almayahi, B. A., Tajuddin, A. A. and Jaafar, M. S. (2011) 'In-Situ Radon Level Measurement for a Tropical Country', *International Conference on Chemical, Ecology and Environmental Sciences (ICCEES'2011) Pattaya Dec. 2011*, (May), pp. 415–417.
- Almayahi, B. A., Tajuddin, A. A. and Jaafar, M. S. (2012) ¹¹⁰Pb , ²³⁵U , ¹³⁷Cs , ⁴⁰K and ²²²Rn Concentrations in Soil Samples After 2010 Thai and Malaysian Floods', *Asia Pacific Conference on Environmental Science and Technology Advances in Biomedical Engineering*, 6, pp. 593–598.

- Almayahi, B. A., Tajuddin, A. A. and Jaafar, M. S. (2013) 'In situ soil ²²²Rn and ²²⁰Rn and their relationship with meteorological parameters in tropical Northern Peninsular Malaysia', *Radiation Physics and Chemistry*, 90, pp. 11–20.
- Almayahi, B. A., Tajuddin, A. A. and Jaafar, M. S. (2013) 'In Situ Soil Rn-222 and Rn-220 and their Relationship with Meteorological Parameters in Tropical Northern
 Peninsular Malaysia', *Radiation Physics and Chemistry*. Elsevier, 90, pp. 11–20.
- Almayahi, B. A., Tajuddin, A. A. and Jaafar, M. S. (2014) 'Calibration technique for a CR-39 detector for soil and water radon exhalation rate measurements', *Journal of Radioanalytical and Nuclear Chemistry*, 301(1), pp. 133–140.
- Alonso, H., Rubiano, J. G. G. G., Guerra, J. G. G. G., Arnedo, M. A. A. A., Tejera, A. and Martel, P. (2019) 'Assessment of radon risk areas in the Eastern Canary Islands using soil radon gas concentration and gas permeability of soils', *Science of the Total Environment*. Elsevier B.V., 664, pp. 449–460.
- Andersen, C. E. (1999) 'Numerical Modelling of Radon-222 Entry Into Houses: An Outline of Techniques and Results', in *Science of the Total Environment*, pp. 33–42.
- Appleton, J. D., Miles, J. C. H. H. and Young, M. (2011) 'Comparison of Northern Ireland Radon Maps Based on Indoor Radon Measurements and Geology with Maps Derived by Predictive Modelling of Airborne Radiometric and Ground Permeability Data', *Science of the Total Environment*, 409(8), pp. 1572–1583.
- Aswood, M. S., Jafaar, M. S., Salih, N. (2017) 'Estimation of Radon Concentration in Soil Samples from Cameron Highlands, Malaysia', *International Journal of Science*, *Technology and Society*, 5(1), p. 9.
- Ball, T. K., Cameron, D. G., Colman, T. B. and Roberts, P. D. (1991) 'Behaviour of radon in the geological environment: A review', *Quarterly Journal of Engineering Geology*, 24(2), pp. 169–182.
- Baskaran, M. (2016) 'Radon: A Tracer for Geological, Geophysical and Geochemical Studies', in *Radon: A Tracer for Geological, Geophysical and Geochemical Studies*.
- Bear, J. (1975) 'Dynamics of Fluids in Porous Media', Soil Science, 120(2), pp. 162-163.
- Brauner, E. V. B., Andersen, C. E., Sørensen, M., Andersen, Z. J., Gravesen, P., Ulbak, K.,
 Hertel, O., Pedersen, C., Overvad, K., Tjønneland, A. and Raaschou-Nielsen, O.
 (2012) 'Residential Radon and Lung Cancer Incidence in a Danish Cohort', *Environmental Research*, pp. 1–7.

- Choppin, G. R., Liljenzin, J.O. and Rydberg, J. (2002) 'Unstable Nuclei and Radioactive Decay', in *Radiochemistry and Nuclear Chemistry*, pp. 58–93.
- Cinelli, G., Capaccioni, B., Hernández-Ceballos, M. A. A., Mostacci, D., Perghem, A. and Tositti, L. (2015) 'Radiological risk from thoron, a case study: The particularly radonprone area of Bolsena, and the lesson learned', *Radiation Physics and Chemistry*, 116, pp. 381–385.
- Cinelli, G., Tositti, L., Capaccioni, B., Brattich, E. and Mostacci, D. (2015) 'Soil gas radon assessment and development of a radon risk map in Bolsena, Central Italy', *Environmental Geochemistry and Health*. Springer, 37(2), pp. 305–319.
- Cosma, C., Cucoş-Dinu, A., Papp, B., Begy, R. and Sainz, C. (2013) 'Soil and Building Material as Main Sources of Indoor Radon in Bâiţa-ştei Radon Prone Area (Romania)', *Journal of Environmental Radioactivity*, 116, pp. 174–179.
- Cosma, C., Moldovan, M., Dicu, T. and Kovacs, T. (2008) 'Radon in water from Transylvania (Romania)', *Radiation Measurements*, 43(8), pp. 1423–1428.
- Crawford-Brown, D. J. J. (1990) Analysis of the health risk from ingested radon. In Radon, radium and uranium in drinking water. USA: Lewis Publishers.
- Daraban, L., Nita, D., Daraban, L., Iancu, D. and Nita, D. (2013) 'Efficiency Calibration in Gamma Spectrometry by Using 232Th Series Radionuclides', *Romanian Reports in Physics*, 58, pp. S99–S107.
- Department of Statistics Malaysia (2015) 'Department of Statistics Malaysia Official Portal', Department of Statistics, Malaysia.
- Director-General of Geological Survey Malaysia (1985) Geological Map of Peninsular Malaysia.
- Doğan, M., Ganioğlu, E., Sahin, L. and Hafizoğlu, N. (2018) 'Investigation of radon concentrations in some reservoirs, spring and tap waters in İstanbul, Turkey', *Journal* of Radioanalytical and Nuclear Chemistry, 315(3), pp. 653–660.
- Dubois, G., Bossew, P., Tollefsen, T. and De Cort, M. (2010) 'First steps towards a European atlas of natural radiation: Status of the European indoor radon map', *Journal of Environmental Radioactivity*. Elsevier Ltd, 101(10), pp. 786–798.
- Duggal, V., Sharma, S. and Mehra, R. (2020) 'Risk assessment of radon in drinking water in Khetri Copper Belt of Rajasthan, India', *Chemosphere*. Elsevier Ltd, 239, p. 124782.

- Durrani, S. A. (1999) 'Radon concentration values in the field : Correlation with underlying geology', *Radiation Measurements*, 31(1–6), pp. 271–276.
- Durridge (2015) 'Rad7 Radon Detector User Manual', *DURRIDGE Company Inc*, (978), pp. 1–81.
- DURRIDGE Company Inc. (2011) *RAD H₂O User Manual*. https://durri dge.com/produ cts/rad7-radon -detec
- DURRIDGE Company Inc. (2015) Soil gas probe, User Manual. https://durri dge.com/produ cts/rad7-radon -detec
- Elío, J., Crowley, Q., Scanlon, R., Hodgson, J. and Long, S. (2019) 'Rapid radon potential classification using soil-gas radon measurements in the Cooley Peninsula, County Louth, Ireland', *Environmental Earth Sciences*. Springer Berlin Heidelberg, 78(12), pp. 1–16.
- ESRI (2013) 'ArcGIS Desktop: Release 10.2', Redlands CA.
- Etiope, G., Martinelli, G., G. Etiopea, G. M., Etiope, G. and Martinelli, G. (2002) 'Migration of Carrier and Trace Gases in the Geosphere: An Overview', *Physics of the Earth and Planetary Interiors*, 129(3–4), pp. 185–204.
- Fonollosa, E., Peñalver, A., Borrull, F., Aguilar, C., E. Fonollosa, A. Penalver, F. B. ~ *, C. Aguilar, Fonollosa, E., Peñalver, A., Borrull, F., Aguilar, C., E. Fonollosa A. Penalver, F. B. ~ *, C. Aguilar, Fonollosa, E., Peñalver, A., Borrull, F. and Aguilar, C. (2016)
 'Radon in spring waters in the south of Catalonia', *Journal of Environmental Radioactivity*, 151, pp. 275–281.
- Ford, K. L., Savard, M., Dessau, J. C., Pellerin, E., Charbonneau, B. W. and Shives, R. B. K.
 (2001) 'The Role of Gamma-Ray Spectrometry in Radon Risk Evaluation: A Case History from Oka, Quebec', *Geoscience Canada*, 28(2), pp. 59–64.
- Freiler, Á., Horváth, Á., Török, K. and Földes, T. (2016) 'Origin of radon concentration of Csalóka Spring in the Sopron Mountains (West Hungary)', *Journal of Environmental Radioactivity*, 151, pp. 174–184.
- Garba, N. N., Ramli, A. T., Saleh, M. A., Sanusi, M. S., Gabdo, H. T. and Aliyu, A. S. (2016)
 'The potential health hazards of chronic exposure to low-dose natural radioactivity in Terengganu, Malaysia', *Environmental Earth Sciences*. Springer Berlin Heidelberg, 75(5), pp. 1–12.

- García-Talavera, M., García-Pérez, A., Rey, C. and Ramos, L. (2013a) 'Mapping Radon-Prone Areas Using Gamma-Radiation Dose Rate and Geological Information', *Journal of Radiological Protection*, 33(3), pp. 605–620.
- García-Talavera, M., García-Pérez, A., Rey, C. and Ramos, L. (2013b) 'Mapping radon-prone areas using γ-radiation dose rate and geological information', *Journal of Radiological Protection*, 33(3), pp. 605–620.
- George, A. C. (1990) 'An overview of instrumentation for measuring environmental radon and radon progeny', *IEEE Transactions on Nuclear Science*, 37(2), pp. 892–901.
- Gilmore, G. R. and Wiley, J. (2008) Practical gamma-ray spectrometry 2nd edition, John Wiley {&} Sons, Ltd.
- Hamzah, Z., Saat, A. and Kassim, M. (2011) 'Determination of radon activity concentration in water using gamma spectrometry and liquid scintillation counter techniques', in 3rd ISESEE 2011 - International Symposium and Exhibition in Sustainable Energy and Environment, pp. 191–193.
- Harvard University (2018) α , β , γ Penetration and Shielding | Harvard Natural Sciences Lecture Demonstrations, Harvard Natural Science Lecture Demonstrations.
- ICRP (1993) 'Protection Against Radon-222 at Home and at Work', *Annals of the ICRP*, 23(2).
- Ielsch, G., Cushing, M. E. E. E., Combes, P. and Cuney, M. (2010) 'Mapping of the Geogenic Radon Potential in France to Improve Radon Risk Management: Methodology and First Application to Region Bourgogne', *Journal of Environmental Radioactivity*. Elsevier, 101(10), pp. 813–820.
- Johar, S. M., Embong, Z. and Tajudin, S. A. A. (2016) 'The gamma dose assessment and pH correlation for various soil types at Batu Pahat and Kluang districts, Johor, Malaysia', *AIP Conference Proceedings*, 1704(January 2016).
- Johner, H. U. and Surbeck, H. (2001) *Soil gas measurements below foundation depth improve indoor radon prediction*. Science of the Total Environment, 272(1-3), pp. 337-341.
- Kardos, R., Gregorič, A., Jónás, J., Vaupotič, J., Kovács, T. and Ishimori, Y. (2015)
 'Dependence of Radon Emanation of Soil on Lithology', *Journal of Radioanalytical and Nuclear Chemistry*, 304(3), pp. 1321–1327.
- Kemski, J., Klingel, A. R., Siehl, A. A. A., Valdivia-Manchego, A. M., Klingel, R., Siehl, A.A. A. and Valdivia-Manchego, M. (2009) 'From radon hazard to risk prediction-based

on geological maps, soil gas and indoor measurements in Germany', *Environmental Geology*. Springer Berlin Heidelberg, 56(7), pp. 1269–1279.

- Kemski, J., Siehl, A., Stegemann, R. and Valdivia-Manchego, M. (2001) 'Mapping the Geogenic Radon Potential in Germany', *Science of the Total Environment*, 272(1–3), pp. 217–230.
- Khan, A. R., Rafique, M., Rahman, S. U., Basharat, M., Shahzadi, C., Ahmed, I. and Kashmir, A. (2019) 'Geo-spatial analysis of radon in spring and well water using kriging interpolation method', *Water Science and Technology: Water Supply*. IWA Publishing, 19(1), pp. 222–235.
- Khan, F., Ali, N., Khan, E. U. and Khattak, N. U. (2009) 'Radon monitoring in water sources of Balakot and Mansehra cities lying on a geological fault line RADON MONITORING IN W ATER SOURCES OF BALAKOT AND', *Radiation Protection Dosimetry*, 138(October), pp. 174–179.
- Khattak, N. U., Khan, M. A., Shah, M. T. and Ali, N. (2014) 'Radon concentration in drinking water sources of the region adjacent to a tectonically active Karak Thrust, southern Kohat Plateau, Khyber Pakhtunkhwa, Pakistan', *Journal of Radioanalytical* and Nuclear Chemistry, 302(1), pp. 315–329.
- Khokhar, M. S. K., Kher, R. S., Rathore, V. B., Pandey, S. and Ramachandran, T. V. (2008)
 'Comparison of indoor radon and thoron concentrations in the urban and rural dwellings of Chhattisgarh state of India', *Radiation Measurements*, 43(SUPPL.1).
- Kikaj, D., Jeran, Z., Bahtijari, M. and Stegnar, P. (2016) 'Radon in soil gas in Kosovo', Journal of Environmental Radioactivity, 164, pp. 245–252.
- Korany, K. A. A., Shata, A. E. E., Hassan, S. F. and, Nagdy, M. S. E. S. E., and Hassan, S. F. and Nagdy, M. S. E. S. E. (2013) 'Depth and Seasonal Variations for the Soil Radon-Gas Concentration Levels at Wadi Naseib Area, Southwestern Sinai, Egypt', *Journal of Physical Chemistry & Biophysics*. OMICS International, 3(4), pp. 1–6.
- Krishan, G., Rao, M. S. and Kumar, C. P. (2015) 'I ndoor and Built Estimation of radon concentration in groundwater of coastal area in Baleshwar district of Odisha, India', *Indoor and Built Environment*, 24(8), pp. 1147–1152.
- Kumar, A. and Chauhan, R. P. (2014) 'Measurement of indoor radon-thoron concentration and radon soil gas in some North Indian dwellings', *Journal of Geochemical Exploration*, 143, pp. 155–162.

- Künze, N., Koroleva, M. and Reuther, C.-D. (2012) ²²²Rn activity in soil gas across selected fault segments in the Cantabrian Mountains, NW Spain', *Radiation Measurements*. Elsevier Ltd, 47(5), pp. 389–399.
- Kusky, T. (2005) 'Encyclopedia of earth science', Choice Reviews Online.
- Lara, E., Rocha, Z., Palmieri, H. E. L., Santos, T. O., Rios, F. J. and Oliveira, A. H. (2015)
 'Radon concentration in soil gas and its correlations with pedologies, permeabilities and 226Ra content in the soil of the Metropolitan Region of Belo Horizonte RMBH, Brazil', *Radiation Physics and Chemistry*. Elsevier, 116, pp. 317–320.
- Lebed, O. O., Lysytsya, A. V, Myslinchuk, V. O., Pryshchepa, A. M. and Dejneka, O. Y. (2018) 'Measurement of radon concentration in soil gas of the city of Rivne (Ukraine)', Ukrainian Journal of Ecology, 8(4), pp. 158–164.
- Lee, Y. J., Kim, J.-H., Kim, K., Ha, S.-J., Mok, T. S., Mitsudomi, T. and Cho, B. C. (2011) 'Lung Cancer in Never Smokers: Change of a Mindset in the Molecular Era', *Lung Cancer*, 72, pp. 9–15.
- Li, C. I., Nishi, N., McDougall, J. A., Semmens, E. O., Sugiyama, H., Soda, M., Sakata, R., Hayashi, M., Kasagi, F., Suyama, A., Mabuchi, K., Davis, S., Kodama, K. and Kopecky, K. J. (2010) 'Relationship between radiation exposure and risk of second primary cancers among atomic bomb survivors', *Cancer Research*, 70(18), pp. 7187– 7198.
- Li, T., Wang, N. and Li, S. (2015) 'Preliminary Investigation of Radon Concentration in Surface Water and Drinking Water in Shenzhen City, South China', *Radiation Protection Dosimetry*, 167(1–3), pp. 59–64.
- Looney, S. W. and Hagan, J. L. (2007) Analyzing Biomarker Data, Essential Statistical Methods for Medical Statistics: A derivative of Handbook of Statistics: Epidemiology and Medical Statistics, Vol. 27. Elsevier B.V.
- Loveland, W., Morrissey, D. J. and Seaborg, G. T. (2006) 'Radioactive Decay Kinetics', in *Modern nuclear chemistry*. Hoboken, NJ, USA: John Wiley & Sons, Inc., p. 671.
- Marques, A. L., Dos Santos, W. and Geraldo, L. P. (2004) 'Direct measurements of radon activity in water from various natural sources using nuclear track detectors', *Applied Radiation and Isotopes*, 60(6), pp. 801–804.

- Mehra, R. and Bala, P. (2014) 'Estimation of Annual Effective Dose Due to Radon Level in Indoor Air and Soil Gas in Hamirpur District of Himachal Pradesh', *Journal of Geochemical Exploration*. Elsevier B.V., 142, pp. 16–20.
- Menetrez, M. Y., Mosley, R. B., Snoddy, R. and Brubaker, S. A. (1997) 'Evaluation of radon emanation from soil with varying moisture content in a soil chamber', in *Environment International*, 22, SUPPL. 1.
- Michel, J. (1990) 'Relationship of radium and radon with geological formations', in *Radon, radium and uranium in drinking water*, pp. 83–95.
- Miles, J. (1998) 'Development of Maps of Radon-Prone Rreas Using Radon Measurements in Houses', in *Journal of Hazardous Materials*, pp. 53–58.
- Miles, J. C. H. H. and Appleton, J. D. (2005) 'Mapping Variation in Radon Potential both between and within Geological Units', *Journal of Radiological Protection*, 25(3), pp. 257–276.
- Ministry of Agriculture peninsular Malaysia (1973) 'Map of soil types in Peninsular
 Malaysia', *Department of Agriculture Peninsular Malaysia*. Kuala Lumpur, Malaysia:
 Director General of Agriculture Malysia (L 40A edition-1 DNMM), p. Sheet1.
- Moreno, V., Bach, J., Baixeras, C. and Font, L. (2014) 'Radon levels in groundwaters and natural radioactivity in soils of the volcanic region of La Garrotxa, Spain', *Journal of Environmental Radioactivity*, 128, pp. 1–8.
- Mose, D. G., Mushrush, G. W. and Chrosniak, C. E. (1992) Soil radon, permeability, and indoor radon prediction, Environmental Geology and Water Sciences, 19(2), 91-96.
- Muhammad, B. G., Jaafar, M. S., Azhar, A. R. and Akpa, T. C. (2012) 'Measurements of222rn activity concentration in domestic water sources in Penang, Northern Peninsular Malaysia', *Radiation Protection Dosimetry*, 149(3), pp. 340–346.
- Nathan, A. J. and Scobell, A. (2012) *How China sees America, Foreign Affairs*, https://www.unscear.org/docs/publications/2017/UNSCEAR_2017_Report.pdf
- Nazaroff, W. W. W., Moed, B. A. A. and Sextro, R. G. G. (1988) 'Soil as a Source of Indoor Radon, Generation, Migration, and Entry', in *Radon and its decay products in indoor W.W. Nazaroff A.V. Nero Jr.*, pp. 57–112.
- Neznal, M. M. and Neznal, M. M. (2005) 'Permeability as an important parameter for radon risk classification of foundation soils', *Annals of Geophysics*, 48(1), pp. 175–180.

- Neznal, M., Neznal, M., Matolín, M., Barnet, I. and Miksova, J. (2004) 'The new method for assessing the radon risk of building sites', *Czech Geol. Survey Special Papers*, (16), p. 47.
- Nguyen, P. T. H., Nguyen, V. T., Vu, N. B., Nguyen, V. D. and Cong, H. L. (2018) 'Soil radon gas in some soil types in the rainy season in Ho Chi Minh City, Vietnam', *Journal of Environmental Radioactivity*. Elsevier, 193–194(August), pp. 27–35.
- Oni, O. M., Yusuff, I. M. and Adagunodo, T. A. (2019) 'Measurement of Radon-222
 Concentration in Soil-Gas of Ogbomoso Southwestern Nigeria using RAD7', *International Journal of History and Scientific Studies Research.*, 1(3), pp. 26–33.
- Papastefanou, C. (2002) 'An overview of instrumentantion for measuring radon in soil gas and groundwaters', *Journal of Environmental Radioactivity*, 63, pp. 271–283.
- Petersell, V., Täht-Kok, K., Karimov, M., Milvek, H., Nirgi, S., and Raha, M., Saarik, K., Raha, M. and and Saarik, K. (2017) 'Radon in the Soil Air of Estonia', *Journal of Environmental Radioactivity*, 166, pp. 235–241.
- Porstendörfer, J. (1994) 'Properties and behaviour of radon and thoron and their decay products in the air', *Journal of Aerosol Science*, 25(2), pp. 219–263.
- QGIS (2018) Spatial Analysis (Interpolation).
- Ramachandran, T. V (2010) 'Environmental thoron (²²⁰Rn): A review', *Iranian Journal of Radiation Research*, 8(3), pp. 129–147.
- Ramli, A. T., Apriantoro, N. H. and Wagiran, H. (2009) 'Assessment of Radiation Dose Rates in the High Terrestrial Gamma Radiation Area of Selama District, Perak, Malaysia', *Applied Physics Research*, 1(2).
- Ramli, A. T., Hussein, A. W. M. A. A. and Wood, A. K. (2005) 'Environmental ²³⁸U and ²³²Th concentration measurements in an area of high level natural background radiation at Palong, Johor, Malaysia', *Journal of Environmental Radioactivity*, 80(3), pp. 287–304.
- Reimann, C., Filzmoser, P., Garrett, R. G. and Dutter, R. (2008) Statistical Data Analysis Explained: Applied Environmental Statistics with R, Statistical Data Analysis Edited by John Wiley & Sons Ltd. Great Britain, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England: Antony Rowe Ltd., Chippenham, Wilts.

- Ródenas, C., Gómez, J., Soto, J. and Maraver, F. (2008) 'Natural radioactivity of spring water used as spas in Spain', *Journal of Radioanalytical and Nuclear Chemistry*, 277(3), pp. 625–630.
- Saleh, M. A. (2013) *Environmental radiology of Johor state, Malaysia*. PhD Thesis, Universiti Teknologi Malaysia.
- Saleh, M. A., Nurhaizam bin Syed Othman, S., Bin Hamzah, K., Zainal, J., Aziz, M., Nurhaizam, S. and Bin, K. (2020) 'Vertical distribution of the radon concentration at Batu Pahat district', *Malaysia journal of fundamental and applied sciences*, 16(3), pp. 324–327.
- Saleh, M. A., Ramli, A. T., Alajerami, Y. and Aliyu, A. S. (2013a) 'Assessment of environmental ²²⁶Ra, ²³²Th and ⁴⁰K concentrations in the region of elevated radiation background in Segamat District, Johor, Malaysia', *Journal of Environmental Radioactivity*. Elsevier, 124, pp. 130–140.
- Saleh, M. A., Ramli, A. T., Alajerami, Y. and Aliyu, A. S. (2013b) 'Assessment of natural radiation levels and associated dose rates from surface soils in Pontian district, Johor, Malaysia', *Journal of Ovonic Research*, 9(1), pp. 17–27.
- Saleh, M. A., Ramli, A. T., Alajerami, Y., Aliyu, A. S. and Bt Basri, N. A. (2013) 'Radiological study of Mersing District, Johor, Malaysia', *Radiation Physics and Chemistry*. Elsevier, 85, pp. 107–117.
- Saleh, M. A., Ramli, A. T., Alajerami, Y., Mhareb, M. H. A., Aliyu, A. S., Gabdo, H. T. and Garba, N. N. (2014) 'Assessment of radiological health from ambient environment in the Muar district, Johor, Malaysia', *Radiation Physics and Chemistry*. Elsevier, 103(1), pp. 243–252.
- Saleh, M. A., Ramli, A. T., bin Hamzah, K., Alajerami, Y., Moharib, M., Saeed, I., Hamzah, K. bin, Alajerami, Y., Moharib, M. and Saeed, I. (2015) 'Prediction of terrestrial gamma dose rate based on geological formations and soil types in the Johor State, Malaysia', *Journal of Environmental Radioactivity*, 148, pp. 111–122.
- Saleh, M. A., Ramli, A. T., Hamzah, K. Bin, Zainal, J., Sies, M. M., Gabdo, H. T. and Garba, N. N. (2019) 'In situ measurement of terrestrial gamma dose rates in eastern region of Peninsular Malaysia and its relation to geological formation and soil types', *Radiochimica Acta*, 107(6), pp. 503–516.

- Sanusi, M. S. M., Ramli, A. T., Wagiran, H., Lee, M. H., Heryanshah, A. and Said, M. N. (2016) 'Investigation of geological and soil influence on natural gamma radiation exposure and assessment of radiation hazards in Western Region, Peninsular Malaysia', *Environmental Earth Sciences*, 75(6), pp. 485.
- Sethi, T. K., El-Ghamry, M. N. and Kloecker, G. H. (2012) 'Radon and lung cancer', *Clinical Advances in Hematology and Oncology*, 10(3), pp. 157–164.
- Shivakumara, B. C., Chandrashekara, M. S., Kavitha, E. and Paramesh, L. (2014) ' Studies on 226 Ra and 222 Rn concentration in drinking water of Mandya region, Karnataka State, India ', *Journal of Radiation Research and Applied Sciences*, 7(4), pp. 491–498.
- Singh, B., Kant, K., Garg, M., Singh, A., Sahoo, B. K. and Sapra, B. K. (2019) 'A comparative study of radon levels in underground and surface water samples of Faridabad district of Southern Haryana, India', *Journal of Radioanalytical and Nuclear Chemistry*, 319(3), pp. 907–916.
- Smethurst, M. A., Strand, T., Sundal, A. V. and Rudjord, A. L. (2008) 'Large-Scale Radon Hazard Evaluation in the Oslofjord Region of Norway Utilizing Indoor Radon Concentrations, Airborne Gamma ray Spectrometry and Geological Mapping', *Science of the Total Environment*, 407(1), pp. 379–393.
- Somlai, K., Tokonami, S., Ishikawa, T., Vancsura, P., Gáspár, M., Jobbágy, V., Somlai, J. and Kovács, T. (2007) '222Rn concentrations of water in the Balaton Highland and in the southern part of Hungary, and the assessment of the resulting dose', *Radiation Measurements*, 42(3), pp. 491–495.

Sowoll (2020) JOHOR (Malaysia), Johor (Malaysia), www.sowoll.com/en/port/johor.

- Srinivasa, E., Rangaswamy, D. R. and Sannappa, J. (2015) 'Determination of Radon Activity Concentration in Drinking Water and Evaluation of the Annual Effective Dose in Hassan District, Karnataka State, India', *Journal of Radioanalytical and Nuclear Chemistry*, 305(2), pp. 665–673.
- Steinhäusler, F. (1997) Environmental ²²⁰Rn: A review, Environment International, 22, SUPPL. 1.
- Sulaiman, I. and Omar, M. (2010) Environmnetal Radon/Thoron Concentrations Anad Radiation Levels in Sarawak and Sabah, Journal of Nucear and Related Technology, 7(1), pp. 1-13

- Szabó, K. Z., Jordan, G., Horváth, Á., Szabó, C., Zsuzsanna, K., Jordan, G., Horváth, Á. and Szabó, C. (2014) 'Mapping the Geogenic Radon Potential: Methodology and Spatial Analysis for Central Hungary', *Journal of Environmental Radioactivity*. Elsevier Ltd, 129, pp. 107–120.
- Tabar, E. and Yakut, H. (2014) 'Radon measurements in water samples from the thermal springs of Yalova basin, Turkey', *Journal of Radioanalytical and Nuclear Chemistry*, 299(1), pp. 311–319.
- Teknik, M. and Gama, S. (2011) 'Determination of Radon Activity Concentration in Hot Spring and Surface Water Using Gamma Spectrometry Technique', *The Malaysian Journal of Analytical Sciences*, 15(2), pp. 288–294.
- UNSCEAR (2000) Report of the United Nations Scientific Committee on the effects of atomic radiation to the general assembly, Meditsinskaya Radiologiya I Radiatsionnaya Bezopasnost'.
- UNSCEAR (2008) Sources, Effects and Risks of Ionizing Radiation, United Nations Scientific Commitee on the Effect of Atomic Radiation. New York.
- Vaupotič, J., Gregorič, A., Kobal, I., Zvab, P., Kozak, K., Mazur, J., Kochowska, E. and Grzdziel, D. (2010) 'Radon concentration in soil gas and radon exhalation rate at the Ravne Fault in NW Slovenia', *Nat. Hazards Earth Syst. Sci*, 10, pp. 895–899.
- Vaupotič, J., Kobal, I. and Križman, M. J. (2010) 'Background outdoor radon levels in Slovenia', *Nukleonika*, 55(4), pp. 579–582.
- Vilcapoma, L. L., Herrera, M. E. L., Pereyra, P., Palacios, D. F., Pérez, B., Rojas, J. and Sajo-Bohus, L. (2019) 'Measurement of radon in soils of Lima city - Peru during the period 2016-2017', *Earth Sciences Research Journal*, 23(3), pp. 171–183.
- Vukanac, I., Djurašević, M., Kandić, A., Novković, D., Nadjerdj, L. and Milošević, Z. (2008) 'Experimental Determination of the HPGe Spectrometer Efficiency Curve', *Applied Radiation and Isotopes*, 66(6–7), pp. 792–795.
- Wang, N., Peng, A., Xiao, L. and Chu, X. (2012) 'The Level and Distribution of 220 Rn Concentration in soil Soil-Gas in Guandong Province, China', *Radiation Protection Dosimetry*, 152(1), pp. 204–209.
- Weise, S. M., Bräuer, K., Kämpf, H., Strauch, G. and Koch, U. (2001) 'Transport of mantle volatiles through the crust traced by seismically released fluids: A natural experiment

in the earthquake swarm area Vogtland/NW Bohemia, Central Europe',

Tectonophysics, 336 (1-4), pp. 137-150.

- WHO (2009) WHO Handbook on Indoor Radon: A Public Health Perspective, World Health Organization.
- WHO (2016) WHO | Radon and health, Fact sheet N.º291. World Health Organization.
- Wiegand, J. (2001) 'A guideline for the evaluation of the soil radon potential based on geogenic and anthropogenic parameters', *Environmental Geology*, 40(8), pp. 949–963.
- Wiseman, C. B. (2015) Determination of the Activity Concentrations of Radon-222 and Radon-220 in Water and Soil Samples From Newmont-Akyem Gold Mine USing, BSc Chemistry. University of Ghana, Legon.

WWF Malaysia (2011) Forests | WWF Malaysia, WWF-Malaysia.org.my.

- Yamada, Y., Sun, Q., Tokonami, S., Akiba, S., Zhuo, W., Hou, C., Zhang, S., Ishikawa, T.,
 Furukawa, M., Fukutsu, K. and Yonehara, H. (2006) 'Radon-Thoron Discriminative
 Measurements in Gansu Province, China, and Their Implication for Dose Estimates', *Journal of Toxicology and Environmental Health Part A*, 69(7–8), pp. 723–734.
- Yousef, H. A. and Magdy, A. (2017) 'Radon Levels in Surface Water Samples from Manzala Lake East Nile Delta, Egypt using Nuclear Track Detectors', 7(2), pp. 36–42.
- Zhang, Z., Sun, J., Dong, J., Tian, H., Xue, L., Qin, L. and Tong, J. (2012) 'Residential radon and lung cancer risk: An updated meta-analysis of case-control studies', *Asian Pacific Journal of Cancer Prevention*, 13(6), pp. 2459–2465.
- Zhukovsky, M., Yarmoshenko, I. and Kiselev, S. (2012) 'Combination of Geological Data and Radon Survey Results for Radon Mapping', *Journal of Environmental Radioactivity*. Elsevier Ltd, 112, pp. 1–3.

LIST OF PUBLICATIONS

- Haruna, R., Saleh, M. A., Hashim S., Hamzah, K., Zainal, J., Sanusi, M.S.M. (2020a). Assessment of Geogenic Radon Potential in Johor, Malaysia. Journal of Radioanalytical and Nuclear chemistry, https://doi.org/10.1007/s10967-020-07396-y.
- Haruna, R., Saleh, M. A., Hashim S., Hamzah, K., Zainal, J., Rusli, N., Sanusi, M.S.M. (2020b). The Geogenic Influences on ²²⁰Rn Activity Concentration in Soil Gas of Johor State, Malaysia. Environmental Earth Sciences, https://doi.org/10.1007/s12665-21-09413-z.
- Haruna, R., Saleh, M. A., Hashim S., (2020). Preliminary Investigation of Radon Activity Concentration in Outdoor air of Johor, Malaysia. 4Th Asian International Multidisciplinary Conference (AIMC 2020).