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ABSTRACT 

 
 
 
 
 Advances in computing and simulation capability increase interest in using 
computational fluid dynamics to solve complex flow structures in meandering 
compound channel. Highly complex and three-dimensional flows inside the 
meandering compound channel with the presence of vegetation are still not fully 
comprehend. The aim of the research is mainly to simulate the effects of bank 
vegetation on velocity profiles inside the meandering compound channel using 
computational fluid dynamic models. An existing meandering compound channel at 
Hydraulics and Hydrology Laboratory, Universiti Teknologi Malaysia was modelled 
numerically. TELEMAC-2D (two-dimensional) model and TELEMAC-3D (three-
dimensional) model were used to simulate hydrodynamics pattern inside the main 
channel and floodplain with and without existence of bank vegetation. Both models 
use the same horizontal unstructured triangular meshes of the meandering compound 
channel. Simulations were computed for different relative depths (DR) and 
vegetation spacing of 2-, 4- and 8-times the vegetation diameter (d). Models were 
calibrated using the roughness coefficient and validated using streamwise velocity 
profiles at the apex sections. Velocity components between modelled and measured 
were discussed at selected cross-sections inside the meandering compound channel. 
Significant reductions of depth-averaged streamwise velocity at the outer bend were 
69.9% (DR0.30) and 71.4% (DR0.45) for 2-times diameter (2d) vegetation spacing. 
The three-dimensional model also shows that streamwise velocity reduction for 
overbank flows at the outer bend of 83.3% (DR0.30) and 72.2% (DR0.45). Depth-
averaged streamwise velocity at the inner bend shows an increase of 51.4% (DR0.30) 
and 58.4% (DR0.45). The streamwise velocity increases 3.2 times (DR0.30) and 4 
times (DR0.45) from the three-dimensional results at the same inner bend. This is 
because vegetation protects and reduces the velocity of overbank flows at the outer 
bend while it increases the velocity at the inner bend by blocking and redirect the 
overbank flows into the direction of the main channel. Vertically averaged velocity 
from TELEMAC-3D shows difference of less than 15% between simulated and 
measured inside the main channel. However, TELEMAC-2D gives a higher 
difference of up to 3.8 times than measured velocity at cross-over regions. The high 
percentage of differences is believed to be due to three-dimensional interactions 
inside the cross-over regions from the interactions between overbank and inbank 
flows. The presence of vegetation significantly increased the level of complexity in 
cross-over regions, which contributed to high difference between model and 
measurement. In computational model, the effects are more significant during low 
relative depth. As the distances between vegetation increases, velocity patterns inside 
the meandering channel tends to resemble non-vegetation conditions. Both two- and 
three-dimensional model also predicted the same velocity patterns. In conclusion, 
TELEMAC-2D and TELEMAC-3D show the ability to simulate flow properties 
inside the meandering compound channel with and without vegetation. 
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ABSTRAK 

 
 
 
 
 Kemajuan dalam pengkomputeran dan keupayaan simulasi meningkatkan 
minat untuk menggunakan perkomputeran dinamik bendalir untuk menyelesaikan 
struktur aliran kompleks dalam saluran majmuk berliku. Aliran yang sangat 
kompleks dan tiga-dimensi dalam saluran majmuk berliku dengan kehadiran tumbuh-
tumbuhan masih belum difahami sepenuhnya. Tujuan utama kajian ini adalah untuk 
mensimulasikan kesan wujudnya tumbuh-tumbuhan tebing terhadap profil halaju 
dalam saluran majmuk berliku menggunakan model perkomputeran dinamik 
bendalir. Saluran majmuk berliku yang sedia ada di Makmal Hidraulik dan 
Hidrologi, Universiti Teknologi Malaysia telah dimodelkan secara berangka. Model 
TELEMAC-2D (dua-dimensi) dan model TELEMAC-3D (tiga-dimensi) digunakan 
untuk simulasi corak hidrodinamik dalam saluran utama dan dataran banjir dengan 
dan tanpa kewujudan tumbuh-tumbuhan tebing. Kedua-dua model menggunakan 
jejaring mendatar segitiga tidak berstruktur yang sama daripada saluran majmuk 
berliku. Simulasi dijalankan untuk kedalaman relatif (DR) yang berbeza dan jarak 
tumbuh-tumbuhan 2-, 4- dan 8-kali diameter (d) tumbuhan. Model ditentukur 
menggunakan pekali kekasaran dan disahkan menggunakan profil halaju mengikut 
aliran saluran utama di keratan rentas apeks. Komponen halaju antara model dan 
ukuran adalah dibincangkan pada keratan-rentas terpilih didalam saluran majmuk 
berliku. Pengurangan ketara halaju purata-kedalaman mengikut aliran saluran utama 
di liku luar adalah 69.9% (DR0.30) dan 71.4% (DR0.45) untuk 2-kali diameter (2d) 
penjarakan tumbuhan. Model tiga-dimensi turut menunjukkan pengurangan halaju 
mengikut aliran saluran utama untuk aliran lampau tebing di liku luar 83.3% 
(DR0.30) dan 72.2% (DR0.45). Halaju purata-kedalaman mengikut aliran saluran 
utama di liku dalam pula menunjukkan peningkatan 51.4% (DR0.30) dan 58.4% 
(DR0.45). Halaju aliran mengikut saluran utama meningkat 3.2 kali (DR0.30) dan 4 
kali (DR0.45) ganda dari hasil tiga-dimensi pada liku dalam yang sama. Ini kerana 
tumbuh-tumbuhan melindungi dan mengurangkan halaju aliran lampau tebing di liku 
luar sementara ia meningkatkan halaju di liku dalam dengan menyekat dan 
mengubah arah aliran lampau tebing mengikut saluran utama. Halaju purata menegak 
dari TELEMAC-3D menunjukkan perbezaan kurang daripada 15% antara yang 
disimulasi dan diukur di dalam saluran utama. Walau bagaimanapun, TELEMAC-2D 
memberikan perbezaan yang lebih tinggi hingga 3.8 kali daripada halaju yang diukur 
di kawasan lintasan. Peratusan perbezaan yang tinggi dipercayai disebabkan oleh 
interaksi tiga-dimensi dalam kawasan lintasan daripada interaksi antara aliran lampau 
tebing dan dalam tebing. Kehadiran tumbuh-tumbuhan dengan ketara meningkatkan 
tahap kerumitan di dalam kawasan lintasan, yang mana menyumbang kepada 
perbezaan antara model dan ukuran. Dalam model pengkomputeran, kesannya adalah 
lebih ketara semasa kedalaman relatif rendah. Semakin jauh jarak antara tumbuh-
tumbuhan, corak halaju dalam saluran berliku cenderung menyerupai keadaan tanpa 
tumbuhan. Kedua-dua model dua-dimensi dan tiga-dimensi juga meramalkan corak 
halaju yang sama. Kesimpulannya, TELEMAC-2D dan TELEMAC-3D 
menunjukkan kemampuan mensimulasikan sifat aliran dalam saluran majmuk 
berliku dengan dan tanpa tumbuh-tumbuhan. 
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L   -  Distance or rod spacing from vegetation centre to centre 

n   -  Manning’s coefficient of roughness 

n  - Frictional step  

nv  - Normal vector 

P  - Global pressure 

p  - Instantaneous pressure 

p'  - Pressure turbulent fluctuation 

Q   -  Flow discharge or flow rate 

S  - Free surface 

So   -  Channel bed slope 

S  - Salinity 

T  - Temperature 

t  - time 

𝑡𝑡0  - Initial time  

𝑡𝑡𝑠𝑠  - Time step 

U  - Vector velocity field in cartesian space 
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𝑼𝑼𝑑𝑑  - Depth-averaged velocity vector in cartesian space 

𝑈𝑈𝑆𝑆  - Velocity at surface 

𝑈𝑈𝑧𝑧𝑏𝑏  - Velocity at bottom 

u',v',w'  - Fluctuating component of velocity in x, y and z direction 

u, U   -  Streamwise velocity 

𝑈𝑈𝑓𝑓  - Streamwise velocity following the direction of floodplain 

Us   -  Sectional mean velocity 

𝑈𝑈𝑑𝑑  -  Depth-averaged velocity in x direction of curvilinear space 

𝑈𝑈𝑑𝑑𝑑𝑑  -  Depth-averaged velocity in x direction of cartesian space 

𝑈𝑈 𝑈𝑈𝑠𝑠⁄   -  Normalised streamwise velocity to sectional mean velocity 

𝑢𝑢𝚤𝚤′𝑢𝑢𝚥𝚥′������  - Turbulent Reynolds stresses 

v,V   -  Transverse or lateral velocity 

𝑉𝑉𝑑𝑑  -  Depth-averaged velocity in y direction of curvilinear space 

𝑉𝑉𝑑𝑑𝑑𝑑  -  Depth-averaged velocity in y direction of cartesian space 

𝑉𝑉 𝑈𝑈𝑠𝑠⁄   -  Normalised transverse velocity to sectional mean velocity 

W   -  Vertical velocity 

𝑊𝑊 𝑈𝑈𝑠𝑠⁄    -  Normalised vertical velocity to sectional mean velocity 

x  - Longitudinal or streamwise direction in curvilinear coordinate 

   of main channel 

X   -  Longitudinal or streamwise direction of compound channel 

y  - Lateral or transverse direction in curvilinear coordinate of  

   main channel 

Y   -  Lateral or transverse direction of compound channel 

z, Z   -  Vertical direction 

𝑧𝑧𝑏𝑏  - Bottom elevation 

𝜌𝜌  -  Fluid density 

𝜌𝜌0  - Constant, average, reference fluid density 

∆𝜌𝜌  - Variation of fluid density 

𝜏𝜏𝑏𝑏  -  Boundary or bed shear stress 

τij  - viscous stress for laminar flows 

𝜃𝜃   -  Main channel sinuosity or circular arc of meander main  

   channel 

∇ ∙  - Divergence 
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𝜐𝜐𝑡𝑡  - Turbulent eddy viscosity 

ε  - Energy dissipation rate 

ω  - Specific dissipation rate 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

1.1 Background of Problem 

 

 

 The occurrence of river flooding is a common feature in many countries. It 

can have tremendous consequences for communities, frequently resulting in 

considerable damage to property and occasionally, loss of life. The financial 

implications are devastating. Therefore, it is vital to have efficient floodplain and 

river management which will benefit communities and at the same time, will 

maintain the balance of the natural environment. 

 

 

 One of the environmentally attractive types of flood alleviation schemes is 

the meandering two-stage river. This system consists of a meander main channel, 

which carries the low discharge at all the time, and floodplains, to carry the increased 

flow in times of flood. Leaving floodplains areas as it is are not significant regarding 

economic aspects, and sometimes, the natural forms floodplains were already 

sustaining life not only for humans but also for animals.  

 

 

 About 9 % area in Malaysia have a high risk of flood occurrences., According 

to Othman (2013), in this area alone, about 5.7 million people are lives and makes 

their living there. It is a significant amount considering the number is about 18 % of 

the total population in Malaysia. Physical investigations on meandering compound 

channel required large amount of resources such as time, money and workforce. 

Numerical or computational method has emerged as significant tools that help 

researchers and engineers to simulate the flow mechanism and behaviours of this 

two-stage channel.  
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  Vegetation properties and arrangements in the works by Ibrahim (2015) were 

considered to simulate computationally using an open source Computational Fluid 

Dynamics (CFD) tool known as TELEMAC. The computational results are hoped to 

give better insight and understanding of flow behaviours and mechanism inside the 

vegetated meandering compound channel. 

 

 

 

 

1.2 Statement of Problem 

 

 

 Experimental work by Ibrahim (2015) on a model of meandering compound 

channel was done physically at the Hydraulic and Hydrology Laboratory, Universiti 

Teknologi Malaysia in Skudai, Johor. The physical model consists of one meander 

main channel with straight boundary floodplains at both sides. The meander main 

channel was built with three and one-quarter of wavelength with assumptions that 

flows have fully developed in the measurement area. Data were collected at five 

different cross-sections in the compound channel during uniform flow. 

Experimentation works considered non-vegetated and vegetated floodplain at two 

different relative depths with overbank conditions.  

 

 

The data were collected only during the uniform flow where the slopes of the 

flow surface to be the same with the channel slope. The data collected are discharge, 

water level and velocity components. The discharges were measured using a digital 

flow meter at the channel upstream. Water level were measured with digital point 

gauge, and the velocity components were measured using Acoustic Doppler 

Velocimeter (ADV). Further details of physical experiment data collections can be 

found in the works by Ibrahim (2015).  

 

 

 Limitation by measuring devices to measure velocity profiles 5cm below the 

water surface makes it difficult to extract the velocity profiles near the surface, 
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especially on the floodplains at low relative depth. Almost no measured data 

available for overbank flows at low relative depth and large sections of overbank 

flows for high relative depth. ADV also have difficulties measuring data within 3cm 

from the vertical wall of main channel.  

 

 

 This limitation by ADV makes it challenging to measure overbank flows near 

vegetation. Close vegetation arrangements on the floodplain make it difficult for the 

measuring device to measure velocity profiles near vegetation. The presence of bank 

vegetation significantly contributes to the interactions between main channel and 

floodplain flows since it places along the meander main channel.  

 

 

 The behaviour of vegetated floodplains are complex, highly three-

dimensional and turbulent; measuring ones in details will request a significant 

amount of resources and sometimes very dangerous. Details measurement near the 

vegetation are substantial to investigate the effects of vegetation on velocities inside 

the meandering compound channel.  

 

 

 The uses of CFD tools were considered to simulated the same physical 

conditions of the experimental works by Ibrahim (2015) with the aims that those 

tools use can reproducing the velocity profiles similarly in those limited areas. A 

computational method for open channel are required as an alternative to investigating 

further these complex interactions of flow mechanism inside the meandering 

compound channel. 
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1.3 Objectives of Research 

 

 

 The aim of the research is to understand primary flows distributions in 

meandering channels with overbank flows for different relative depths and 

vegetation spacing using TELEMAC modules. The detailed research objectives are 

as follows:  

(i)  To access the capability of computational models in reproducing the primary 

 flow characteristics for overbank conditions as observed from experimental 

 data inside the meandering compound channel. 

(ii)  To find out the relationship of different relative depths to the flow 

 mechanisms by considering computational results on the non- and vegetated 

 compound channel.  

(iii) To investigate the effects of bank vegetation on velocity profiles for inbank 

 and overbank flows from different vegetation spacing placed along the 

 meander main channel during floods. 

(iv) To compare velocity predictions between the two-dimensional and three-

 dimensional model from TELEMAC modules with measured for the depth-

 averaged velocity with and without the presence of vegetation. 

 

 

 

 

1.4  Scope of Research 

 

 

 The physical study involves construction of a physical model with a meander 

main channel and floodplains on both sides. Details on the physical model can refer 

to the work of Ibrahim (2015). The meandering compound channel then modelled 

numerically based on the actual physical model.  

 

 

 The research uses TELEMAC modules that consist of a two-dimensional 

model, TELEMAC-2D and a three-dimensional model, TELEMAC-3D. Numerical 
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modelling using TELEMAC solves free surface problems using finite element 

methods. Both models use the same unstructured triangular meshes generated 

horizontally over the compound channel. Meshes generated denser meshes in the 

area near the vegetation to capture in details the effects of vegetation.  

 

 

 Bank vegetation along the meander main channel presents by a series of 

islands in the computational model rather than using the roughness coefficient. 

Arrangements and vegetation spacing properties follow the set-up from Ibrahim 

(2015) physical experiments. Overbank flows conditions of the non-vegetated and 

vegetated floodplain with vegetation spacing of 2-, 4- and 8-times the vegetation 

diameter are considered for the simulation.  

 

 The computational model also simulates for two relative depth conditions; at 

a low relative depth of DR0.30 and a high relative depth of DR0.45. Computational 

results are inter-comparisons with measurement data at selected measurement cross-

section inside the meandering compound channel. Comparisons between 

computational results of TELEMAC-2D and TELEMAC-3D were among the interest 

of the research. The numerical investigations on flow mechanisms cover primary 

velocity of streamwise, lateral and vertical, secondary flow circulations and 

comparisons between the two- and three-dimensional models. 

 

 

 

1.5  Significance of Research 

 

 

 The significant occurrence of floods forced humans to tolerate and learn to 

live with it rather than losing those limited lands on the floodplains. People start 

learning to manage the river ecosystem to minimise losses from flood events and 

optimise land usage on the floodplains. For countries like Malaysia where plantations 

are among the major income generation, large-scale oil palm plantations can be 

observed even on the floodplains. Knowledge enhancement on the effects of 
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vegetation planted on the floodplains to flow structures is associated with bed shear 

stress, indicating erosion and sedimentation process inside the compound channel.  

 

 

 Turbulence generated from the presence of vegetation anticipates to increases 

the turbulence intensities inside the meandering channel. Turbulence has significant 

effects on energy losses. The changes in energy losses would result in changes in 

flow resistance that affecting the conveyance, stage-discharge, drag force, bedforms 

and sediment transport behaviours, as indicates by Ismail (2007).  

 

 

 Any changes on the meandering channel physical parameters would restart 

the whole laborious data collection process all over again. Introduction to CFD can 

significantly tackle the challenges of using physical experiment on the meandering 

compound channel, given that the model firstly calibrated and validated with the 

experimental data. 

 

 

 The research findings can be taken as input or guidelines in the decision-

making process for better river management practices of the meandering compound 

channel. These will also give more knowledge and information to researchers and 

engineers in designing an environmental friendly flood alleviation scheme near 

future. 

 

 

 

 

1.6  Thesis Organisation 

 

 

 The thesis is organised in five chapters. Chapter 1 gives the research 

background which includes the problem statement, objectives, scopes and research 

significances. Chapter 2 presents the literature review on the flow structures of 

meandering compound channels, an introduction to CFD and vegetation in the open 
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channel. The thesis research methodology includes physical experimental set-up, 

solution sequences, calibration, and validation of the computational model described 

in Chapter 3. Chapter 4 provides the computational study results of primary velocity 

structures in the non-vegetated and vegetated meandering compound channel. The 

discussions focus on streamwise velocity, lateral velocity, vertical velocity, 

secondary flow circulations and comparisons between TELEMAC modules. Finally, 

the conclusions on the findings and recommendations for future research highlighted 

in Chapter 5. 
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