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ABSTRACT 

One of the prevalence challenges in the radio frequency (RF) power sensor 

development is to reduce noise in the acquired signal. The noise in the signal 

subsequently contributes to the error in the measurement of signal parameters. Sources 

of noise could come from the chain of signal conditioning and acquisition in the sensor 

circuitry. The assumption of additive white Gaussian noise (AWGN) to model a 

measurement is not valid since many applications such as in RF power measurement 

has the noise coloured with 1/f spectrum characteristics. With this characteristics, the 

assumption of independent and identically distributed (IID) used in signal detection 

and estimation becomes not valid. By whitening process, the 1/f noise characteristics 

can be converted to be similar to white noise. The analysis results of decimation, linear 

prediction, Burg algorithm and chopper with averaging shows that the proposed 

methods can be used effectively. Both Burg algorithm and linear prediction are more 

complex due to the need to perform matrix inversion. The decimation and chopper 

with averaging are the least complex but it could only meet the requirements if the 

sample size is more than 300 samples. After performing the whitening, the wavelet 

transform and de-noising are implemented to remove noise as much as possible while 

preserving the signal characteristics. As results, it can be seen that the noise is removed 

while the characteristics of the pulse signal is preserved by the Haar wavelet. However, 

the recovered signal is distorted when using Daubechies 5 wavelet with significant 

reduction in noise. Based on the result for RF power measurement for different 

whitening methods in Monte Carlo simulation, Burg algorithm yields the highest total 

variance reduction which is 97.13%, followed by the linear prediction which is 90.3%, 

decimation 64.11% and lastly, chopper with averaging, 3.10% for SNR of 8 dB. 

Although Burg algorithm is more complex compared to decimation, it preserves all 

the signal samples which is more suitable for pulse signals and it is the best whitening 

method used in this research.   
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ABSTRAK 

 

Salah satu halangan yang terdapat di dalam frekuensi radio (RF) adalah untuk 

mengurangkan hingar yang terdapat di dalam isyarat. Hingar didalam sesuatu isyarat 

menyebabkan berlakunya kesilapan dalam mengukur isyarat parameter. Hingar 

terhasil daripada rangkaian dan juga penerimaan isyarat di dalam litar sensor. Andaian 

yang digunakan di dalam additive white Gaussian noise (AWGN) untuk membentuk 

satu ukuran tidak boleh digunakan kerana masalah hingar di dalam kuasa RF hadir 

dengan ciri-ciri spektrum 1/f. Berdasarkan ciri-ciri ini, andaian taburan tak bersandar 

dan serupa (IID) yang digunakan dalam mengesan dan menganggar isyarat menjadi 

tidak sahih. Melalui proses pemutihan, hingar 1/f boleh ditukarkan kepada hingar 

putih. Keputusan daripada analisis desimasi, ramalan linear, algoritma Burg dan 

pemenggal dengan purata menunjukkan kaedah yang dicadangkan ini dapat digunakan 

dengan berkesan. Kaedah algoritma Burg dan ramalan linear adalah lebih kompleks 

berbanding analisa desimasi kerana memerlukan proses sonsangan matriks. Desimasi 

dan pemenggal dengan purata adalah kaedah yang kurang kompleks tetapi ia hanya 

dapat memenuhi semua kriteria yang ditetapkan jika saiz sampel melebihi 300 sampel. 

Setelah melalui proses pemutihan, jelmaan wavelet dan menyah hingar dilaksanakan 

untuk menyingkirkan hingar sebanyak yang boleh di samping mengekalkan ciri-ciri 

isyarat. Sebagai hasilnya, dapat dilihat bahawa hingar berjaya disingkirkan sementara 

ciri-ciri isyarat nadi dapat dikekalkan oleh wavelet Haar. Walau bagaimanapun, isyarat 

yang dipulihkan itu berubah apabila menggunakan wavelet Daubechies 5. Berdasarkan 

keputusan simulasi Monte Carlo pengukuran kuasa RF untuk kaedah pemutihan yang 

berbeza, didapati bahawa algoritma Burg menghasilkan jumlah penurunan varians 

yang paling tinggi iaitu 97.13%, diikuti dengan ramalan linear iaitu 90.3%, desimasi 

64.11% dan akhir sekali pemenggal dengan purata, 3.10% untuk SNR 8 dB. Walaupun 

algorithma Burg lebih kompleks berbanding desimasi, ia mampu mengekalkan semua 

sampel isyarat dan lebih sesuai untuk isyarat nadi dan merupakan kaedah pemutihan 

yang paling bagus untuk digunakan dalam kajian ini. 
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CHAPTER 1  

 

INTRODUCTION 

 

 

 

 

1.1 Background 

 

 

Since the late 1800s, there has been a need to measure the output of radio 

frequency (RF) circuits when Nikola Tesla first demonstrated the wireless 

transmission [1]. The modern realization of the peak power meter came into being in 

the early 1990s while the development of radar and navigation systems led to the 

application of RF and microwave power in the late 1930s. Thus it was necessary to 

determine the level of power output. 

 

 

RF power sensors are designed to measure the power of various types of 

signals either in continuous wave (CW) or in pulse. The output level of a transmitter 

is the most critical factor in the design of communication and radar system and it is 

important to have reliable and accurate measurements [2]. With today’s complex 

modulation schemes, the need to accurately and efficiently measure RF power has 

become crucial in obtaining performance from communication systems and 

components.   
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One of the prevalence challenges in the RF power sensor development is to 

reduce noise in the acquired signal. The presence of noise in the signal will 

subsequently contribute to the error in the measurement of signal parameters. Sources 

of noise could come from the chain of signal conditioning and acquisition in the sensor 

circuitry [3]. The main contribution comes from the 1/f noise that originates from the 

semiconductor components used in the sensor design. 

 

 

 

 

1.2.1 Problem Statement 

 

 

The power spectrum of 1/f noise decays proportionately over frequency which 

results in an autocorrelation function that spreads over the lag axis. This property of 

the autocorrelation function shows strong dependencies between signals observed 

over adjacent time instants. Thus, the assumption of independently identically 

distribution (IID) and stationary which forms the basis for classical signal detection 

and estimation techniques are not valid in the context of 1/f noise [4]. Therefore, there 

is a need to convert the coloured noise into white noise in order to make sure that the 

IID can be used. 

 

 

In this research, the signal will undergo several processing stages: whitening, 

wavelet transform, de-noising and reconstruction. The choice of whitening methods is 

important to ensure the process maintains the original signal characteristics [22]. As 

for the wavelet transform, it could cause distortion in the signal, so it was necessary 

to ensure that the choices of basis wavelet function are determined correctly [29]. De-

noising is important to recover information in a signal that is corrupted by noise [35] 

while reconstruction is used to recover back the original signal after performing de-

noising [79]. Previously, the method used by the industry does not convert the 

characteristics of 1/f noise, into white noise. Thus, another method need to be defined 

to certify that the characteristics of noise can be converted efficiently.   
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The computational complexity of an algorithm is a measure of how many steps 

the algorithm will require in the worst case for an instance or input of a given size. 

Large computational complexity means larger amount of resources to solve them, such 

as time and storage. It is necessary to reduce the computational complexity for the 

implementation purpose to make it simpler and less complex [8]. Less number of 

coefficients and less number of samples means less number of processing and less 

number of computational complexity. It is important to make sure that the 

computational complexity is reduce in order to guarantee the implementation process. 

 

 

 

 

1.3 Research Objectives 

 

 

Followings are the objectives proposed for this research: - 

 

i. To carry out specific investigations on the 1/f noise characteristics aiming at 

solving the assumption of IID. 

 

ii. To design an algorithm that can transform the characteristics of 1/f noise into 

white noise, suitable signal transformation and de-noising method while 

preserving the original signal. 

 

iii. To verify the effectivenes of the proposed method based on the computational 

complexity and viability of the implementation in the proposed application. 
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1.4 Research Scope 

 

 

 The scopes of this research are:  

 

i. The signal of interest in this research is continuous signal such as 

communication signal and also pulse signal which is radar. 

 

ii. The work focuses on the signal processing algorithms and its 

implementation in firmware design will be done by the industrial 

collaborator.  

 

iii. The actual noise data are collected from the industry collaborator for 

validation purposes. The data are obtained from diode and thermocouple. 

Each data set has 32 bits resolution with 51,200 sample points at sampling 

rate of 195323.5 Hz.  

 

iv. The 1/f noise model is developed to test whether the noise used in this 

research is similar with the actual noise samples. This is also to ensure that 

all the algorithms are tested under the same conditions as at the industry.  

 

v. The input signal used in this research is a random signal. 

 

vi. The sampling frequency for developing the algorithm is based on 

normalized frequency of 1 Hz. To use with the data provided by the 

industry, the sampling frequency will be adjusted as required.  

 

vii. All development and simulations are conducted using the MATLAB 

mathematical software. 
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1.5 Research Procedure  

 

 

 The research procedure is shown is Figure 1.1. 

 

 

        Figure 1.1 Research procedure. 

No 

Yes 

No 

No 

Yes 

Yes 

Yes 

No 

Literature review – past & present work 

Modelling of 1/f noise 

Whitening  

Signal recovery 

Meet objectives? 

Meet objectives? 

Power Estimation  

Wavelet De-noising 

 

Meet objectives? 

Report prep. & present. 

Wavelet Transform 

Meet objectives? 

End 
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1. Literature review: The focuses are on past as well as recent work related to 

1/f noise. The knowledge gaps are also highlighted along with the reviews.  

 

2. Modelling of 1/f noise: The 1/f noise is modeled for the simulation purposes. 

 

3. Whitening: The whitening process converts the 1/f noise to additive white 

Gaussian noise (AWGN). The choices for whitening process are decimation, 

linear prediction, Burg algorithm, chopper with averaging and averaging. The 

best method will be decided by considering the balance between the 

complexity and accuracy in the power measurement.  

 

4. Wavelet transform: The wavelet transform is used either with the Haar or 

Daubechies basis function that isolate the signal from noise. 

 

5. De-noising: Hard or soft thresholding is used for the de-noising with the 

wavelet transform. 

 

6. Signal reconstruction: Signal reconstruction is performed to reverse the effect 

of the whitening process.  

 

7. Power estimation: The power estimation process is implemented on the signal 

to measure its power. 

 

8. Discussion and result. 

 

 

 

 

1.6 Thesis Organization 

 

 

 This thesis is structured into five chapters. Chapter 1 introduces the 

background of the research and highlights the problem statement, objectives, and the 

scope of this research. The research methodology is also outlined in this chapter. 
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 Chapter 2 covers the literature review and the theoretical background of the 

research. The review focuses on the communication signal, RF power sensor, 

architecture of RF power sensor, 1/f noise model, whitening method, wavelet 

transform, and de-noising. 

 

 

 Chapter 3 describes the research methodology that was used to analyze the 

simulation and also the actual data. In this chapter, all the method proposed will be 

tested and the performance will be validated. All research activities in whitening and 

de-noising the signal are described in details. 

 

 

 Chapter 4 presents the analysis and the discussing of the result. The 

performances of the whitening methods, wavelet transforms, de-noising, signal 

reconstruction and power estimations are discussed comprehensively. The 

comparisons of the outcome are presented as well.  

 

 

 Chapter 5 concludes the outcome and the findings of the research. In order to 

improve the performance of the proposed method, this chapter provides some 

suggestions and recommendations for potential future study.  
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