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ABSTRACT

In this work, the basic detection of electron spin resonance (ESR) signal by

using stripline resonator was demonstrated. The signal was detected by using a basic

homemade ESR setup, stripline resonator and a sample known as 2,2-diphenyl-1-

picrylhydrazyl (DPPH). Two types of stripline resonators were designed, simulated

and fabricated to detect ESR signals by varying externally applied static magnetic

field strength or the microwave frequency. These respective designs were called as

straight and U-shape design. The techniques used to fabricate the stripline resonators

were ultraviolet (UV) lithography and milling by computer numerical controlled (CNC)

machine. These resonators were named as UV, M and U resonator, UV and M resonator

have straight design while U resonator is a U-shape design. UV resonator has unloaded

resonance frequency at 9.12 GHz and Q-factor is 88. M resonator has unloaded

resonance frequency at 9.70 GHz and Q-factor is 70. U resonator has unloaded

resonance frequency at 9.70GHz and Q-factor is 121. Using these resonators, the ESR

signal was successfully detected from the DPPH. By fitting using Lorentzian equation

to the ESR signal, the experimental g-factor was determined. U-shape resonator had

the highest accuracy with g-factor of 2.017 or 0.66% difference with the theoretical

value. Simulation and experimental results conclude that resonator with the higher

microwave magnetic field gives a stronger signal.
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ABSTRAK

Untuk penyelidikan ini, pengesanan isyarat resonans spin elektron dengan

resonator jenis garis strip telah digajikan. Isyarat tersebut dikesan dengan spektrometer

ESR buatan sendiri, alat resonans dan sampel 2,2-diphenyl-l-pierylhydrazyl (DPPH).

Dua alat resonans jenis garis strip telah direkabentuk, disimulasi dan dibangunkan untuk

mengesan isyarat ESR. Teknik fabrikasi yang digunakan adalah litografi ultraviolet

(UV) dan pengilangan dengan mesin kawalan berangka komputer (CNC). Tiga

resonator telah difabrikasi dan bagi nama sebagai UV, M dan U, frekuensi resonan

yang diperolehi adalah 9.079 GHz, 9.652 GHz dan 9.126 GHz manakala faktor Q

adalah 88, 70 dan 121. Dengan menggunakan resonator ini, isyarat ESR telah dikesan

dari DPPH. Dari data uji kaji, faktor g ditentukan dengan menggunakan kaedah

pemadanan dan taburan Lorentzian. Berdasarkan nilai-nilai faktor-g yang diperolehi,

resonator berbentuk U mempunyai ketepatan tertinggi dengan nilai sebanyak 2.017

iaitu perbezaan sebanyak 0.66% berbanding dengan nilai teori. Keputusan simulasi dan

eksperimen membuktikan bahawa resonator yang mempunyai medan magnet teraruh

yang lebih kuat daripada gelombang mikro mampu menghasilkan isyarat ESR dengan

lebih kuat.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

Electron paramagnetic resonance (EPR) or electron spin resonance (ESR)

spectroscopy is a technique that mainly applied in the study of unpaired electrons in the

materials. In quantum mechanic, ‘resonance’ refers to the phenomena that transmission

of molecular spin energy levels caused by the externally applied microwave radiation

[1]. It is widely used to study the unpaired electron and free radial. These are normally

found in metal complex and an organic compound. ESR had been used in many science

branches such as biology, physics and food science. The basic principle of ESR known

as Zeeman effect and was discovered by Soviet physicist Yevgeny Zavoisky in 1944 at

Kazan State University. Another technique is known as nuclear magnetic resonance

(NMR) shared the same working principle but the atom nuclei spins are excited in

NMR instead of electron spin in ESR [2].

There are 2 types of basic ESR spectrometer which is a continuous wave (CW)

and pulsed ESR [3]. The difference is the excitation source used in the spectrometer.

In CW ESR, continuous electromagnetic (EM) wave act as the excitation source while

pulsed ESR uses nanoseconds-long pulse instead. Pulsed ESR can excite the targeted

sample while CW ESR is the most basic experiment to perform absorption of microwave

wave by the paramagnetic electron. In the varying static magnetic field, CW ESR

spectroscopy can show the presence of unpaired electron in material and its resonance

field at specified energy. From the result of CW ESR, the presence of an unpaired

electron can be detected easily because it absorbs electromagnetic (EM) wave energy.

Due to the continuous nature of the excitation source, CW ESR is limited in lack of

time resolution. To overcome this limitation, pulses are used to replace CW as an

excitation source whereby a pulse can be represented as several frequencies superposed

with each other at specific phases and amplitudes [4]. Compared to CW ESR, pulsed
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ESR spectroscopy is used to excite the material by using a sequence of pulses to

differentiate the electron spin interaction and also obtain information in the time domain

[5]. This can be further developed to investigate the interaction between electron spin

and surrounding nuclear spins [6].

In physics, ESR has been used to provide a theoretical basis for studying

modification and detection of electronic structure by the surrounding atom. The

electron directional spin can be controlled by using pulses, for example for pulse

spectroscopy and quantum computing applications [7]. In chemistry, ESR is used to

study the electronic structure and chemical where the free radicals can be determined

the free radicals form and the process of the chemical reaction can be observed [8].

Furthermore, by differentiating the g-factor, the oxidation state of the transition metal

can be determined [9]. In biology, ESR spectrometer can be used to detect specific

chemicals in the human body. Yamato et al. used X band frequency ESR spectroscopy

to detect the generation of reactive oxygen species in the brain [10], where the formation

and redox reaction of nitroxyl radicals were observed and detected using ESR. Similar

to NMR imaging, ESR can also be used in imaging which is based on the same principle

as its NMR counterpart. It can provide information that is complementary to NMR

imaging. One such example is the detection of oxygenation level of a mouse undergoing

CW ESR at 300 MHz [11].

Nowadays, ESR has been widely used in industry such as ESR imaging [11],

medical [10] and semiconductor [12]. It can be further developed by adding more

components and modifying excitation signal or even combined with NMR into electron-

nuclear double resonance (ENDOR). It is a technique that can identify the molecular

and electronic structure of the paramagnetic sample. The nuclear transition can be

detected by ENDOR by measuring the intensity changes of irradiated ESR transition

[13]. Another technique that involves ESR principle is electrically detected magnetic

resonance (EDMR). It is used to detect impurities in the semiconductor. When the

sample undergoes the ESR test, the donor electron spin orientation can be turned by a

pulse at its resonance frequency. The flip can decay the donor to acceptor energy level

and recombine with the hole in the valence band. The energy level difference can be

detected and its accuracy can down to a few hundreds of atoms [12].
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All the advance device were developed from basic CW ESR spectrometer. In

this research, a basic homemade setup will be built as a preliminary stage to build a

more advanced pulsed spectrometer.

1.2 Problem Statement

To build an advanced pulsed ESR in the future, the resonator is a part of the

whole ESR spectrometer that is essential to excite the electron spins and to reciprocally

detect the ESR signal [14]. One particular design, known as a stripline resonator, has

not been tested at X band frequencies. To test it, an ESR setup was needed. The

other resonators such as cavity and dielectric resonator can also operate in X band

but its Q-factor is too high (up to 10000) and the bandwidth is too small compared to

stripline resonator [15, 16]. The low Q-factor resonator such as microstrip resonator

can also operate in X band but the open structure causes field leakage and sensitive to

the surrounding [17]. In stripline resonator, the resonant strip is surrounded by copper

ground plate to prevent field leakage and reduce noise from the surrounding. These

type of stripline resonators were successfully built and used to detect ESR signal at S

band (3 GHz) and Ku band (17 GHz) [7, 18, 19].

While advanced and sensitive X band ESR spectrometers are commercially

available, such as JES-X3 series from JEOL [20] and micro ESR from Bruker [21]

such instruments are costly. These commercial units are not well understood and the

applications are limited. Nowadays, commercial EPR spectrometer in Malaysia is

only available in UPM (JES-FA200 from JEOL) [22] and an older system in CSNano

in UTM (JES-FA100 from JEOL) [23]. Compared to developed countries, a lot of

ESR spectrometers for physics experiments are homemade [4, 5, 24]. Some of the

researchers even built custom made ESR to be used in quantum computing [7]. In

Malaysia, there has been a similar attempt to build a homemade ESR spectrometer

[25]. Hence, this research aims to build a basic homemade ESR setup and use it to

detect ESR signal at room temperature.
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1.3 Objective of Study

There are three objectives for this research:

1. To design and fabricate the stripline resonators for X band ESR spectrometer.

2. To investigate the performance of stripline resonators by simulation and actual

fabrication.

3. To detect ESR signal at X band using a basic, homemade CW ESR setup.

The ESR setup is not a full spectrometer but is instead a minimal setup, capable of

detecting such weak signals. Due to this reason, it is important to enhance the ESR

signal as much as possible. Therefore, sensitive resonator has to be prepared first.

1.4 Scope of Study

In this research, a homemade ESR setup will be built. The continuous wave

(CW) source is a commercial microwave synthesizer with X band (8 - 10 GHz)

frequency. The resonators used is transmission type stripline resonator fabricated

from Roger Duroid 6035 HTC and Arlon DiClad 880. The resonators were fabricated

by computer numerical controlled (CNC) milling machine and ultraviolet (UV)

lithography. The sample used to detect CW ESR signal is 2,2-diphenyl-1-picrylhydrazyl

(DPPH) powder. During the experiment, the resonator was placed in an electromagnet

with a magnetic field strength of 0.3 - 0.4 T at room temperature.

1.5 Significant of Study

The resonator size and its resonance frequency can be designed and estimated

by using simulation software. This will increase the ESR signal strength and help to

detect the ESR signal easily. By preparing resonator in different shape, the suitability

of resonator can be determined in different purpose. It is a preliminary stage to build a

complex homemade pulsed ESR spectrometer.
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