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ABSTRACT 

Human action recognition (HAR) plays an increasingly important role in 

surveillance, robot learning, and human-computer interaction. However, there are 

many challenges and issues involved in achieving reliable and high-performance 

results. Among these challenges, view-invariant in an uncontrolled dataset where 

several cameras are placed at different locations received the most attention from 

researchers. One of the primary concerns for the uncontrolled dataset is the large 

difference between data distributions at the source (training) and target (testing) views. 

Such difference causes the data shift problem to occur and hence, decreases the 

performance of the HAR system. This issue has been explicitly discussed as an open-

view HAR problem which aims to reduce the correlation between the source and the 

target views particularly when labelled data in unavailable in the target view. In 

addressing the issue, this thesis presents an unsupervised domain-adaptation model for 

the open-view HAR. Specifically, the proposed Balanced Weighted Unified 

Discriminant and Distribution Alignment (BW-UDDA) model has managed to handle 

datasets with significant variances across views. BW-UDDA balances and aligns 

marginal and conditional distribution features by projecting them into a low-

dimensional subspace. This is to create more coordinated feature representations 

before feeding these features into an optimal classifier. Technically, BW-UDDA 

exploits two different unsupervised domain adaptation enhancement models, namely 

Balanced Weighted Joint Geometrical and Statistical Alignment (BW-JGSA) and 

Unified Discriminant and Distribution Alignment (UDDA). The BW-JGSA balances 

the marginal and conditional distributions in the nonparametric Maximum Mean 

Discrepancy (MMD) measurements on two disjointed embedded matrices. For the 

UDDA, two-dimensionality reduction techniques, namely linear discriminant analysis 

(LDA) and locality sensitivity discriminant analysis (LSDA), are incorporated to 

create features with global and local discriminant properties for the domain adaptation 

process. The enhancement models were evaluated on public image and digit datasets 

(Office, Caltech-256, USPS, MNIST and COIL20), while the BW-UDDA was 

assessed using the multi-camera action dataset (MCAD). Both enhancement models 

outperformed other state-of-the-art methods with average accuracies: 50.61% (object 

dataset) and 69.95% (digit dataset) for BW-JGSA, and 59.95% (object dataset) and 

80.72% (digit dataset) for UDDA, respectively. BW-UDDA for open-view HAR was 

tested using two types of cross-view evaluations. The average accuracy of the first and 

second evaluations using the MCAD dataset outperformed the state-of-the-art with 

13.38% and 61.45% higher accuracy, respectively. The BW-UDDA was also tested on 

a controlled multi-camera HAR dataset, the Inria Xmas Motion Acquisition Sequences 

(IXMAS), with an accuracy of 90.91% using the second type of cross-view 

evaluation.  These results on MCAD and IXMAS confirmed the superiority of the 

proposed model for the open-view HAR. 
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ABSTRAK 

Pengecaman tindakan manusia (HAR) memainkan peranan yang semakin 

penting dalam pengawasan, pembelajaran robot dan interaksi manusia-komputer. 

Walau bagaimanapun, terdapat banyak kekangan dan isu yang dihadapi untuk 

mencapai keputusan yang boleh disandarkan dan berprestasi tinggi. Antara cabaran 

yang mendapat perhatian penyelidik adalah isu paparan berbilang dalam set data tidak 

terkawal menggunakan beberapa kamera di lokasi berbeza. Salah satu masalah utama 

bagi set data tidak terkawal ialah perbezaan besar di antara taburan data pandangan 

sumber (latihan) dan sasaran (ujian). Perbezaan ini menyebabkan timbulnya masalah 

peralihan data, dan sekaligus menjejaskan prestasi sistem HAR. Isu ini telah 

dibincangkan secara khusus di bawah masalah paparan terbuka HAR, iaitu kes di mana 

korelasi antara paparan sumber dan sasaran dikurangkan, serta ketidaksediaan data 

berlabel dalam paparan sasaran. Dalam menangani isu ini, tesis ini membentangkan 

model penyesuaian domain yang tidak diselia untuk paparan terbuka HAR. Secara 

khusus, model Penjajaran Diskriminasi dan Pengagihan Bersepadu Wajaran Seimbang 

(BW-UDDA) mampu mengendalikan set data dengan perbezaan ketara merentas 

paparan. Pada asasnya, BW-UDDA akan mengimbangi dan menjajarkan ciri taburan 

marginal dan bersyarat dengan memindahkannya ke dalam subruang dimensi rendah. 

Ini untuk mencipta perwakilan ciri yang lebih diselaraskan sebelum memasukkan ciri 

ke dalam pengelasan optimum. Secara teknikal, BW-UDDA mengeksploitasi dua 

model penyesuaian domain tanpa pengawasan yang dipertingkatkan, dikenali sebagai 

Penjajaran Geometri dan Statistik Berwajaran Seimbang (BW-JGSA) dan Penjajaran 

Diskriminasi dan Pengagihan Bersatu (UDDA). BW-JGSA mengimbangi taburan 

marginal dan bersyarat dalam pengiraan Percanggahan Min Maksimum (MMD) pada 

dua matriks adaptasi yang tidak bergabung. Untuk UDDA, teknik pengurangan dua 

dimensi, iaitu analisis diskriminasi linear (LDA) dan analisis diskriminasi kepekaan 

lokaliti (LSDA), digabungkan untuk mencipta ciri dengan sifat diskriminasi global dan 

tempatan semasa proses penjajaran domain. Penilaian model BW-JGSA dan UDDA 

telah dijalankan pada set data imej awam dan digit (Office, Caltech-256, USPS, 

MNIST dan COIL20), manakala penilaian BW-UDDA dilakukan menggunakan set 

data tindakan berbilang kamera (MCAD). Kedua-dua model peningkatan mengatasi 

prestasi teknik semasa lain dengan ketepatan purata: 50.61% (set objek) dan 69.95% 

(set digit) untuk BW-JGSA, dan 59.95% (set objek) dan 80.72% (set digit) untuk 

UDDA. Bagi BW-UDDA untuk paparan terbuka HAR dinilai berdasarkan dua jenis 

penilaian pandangan silang. Ketepatan purata bagi penilaian pertama dan kedua dalam 

set data MCAD mengatasi prestasi teknik semasa dengan ketepatan lebih tinggi iaitu 

13.38% dan 61.45%. BW- UDDA juga telah diuji pada set data HAR berbilang kamera 

terkawal, Inria Xmas Motion Acquisition Sequences (IXMAS), dengan ketepatan 

90.91% menggunakan penilaian pandangan silang jenis kedua. Keputusan mengenai 

MCAD dan IXMAS ini mengesahkan keunggulan model yang dicadangkan untuk 

paparan terbuka HAR. 
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CHAPTER 1  
 

 

 

INTRODUCTION 

1.1 Background 

Human action recognition (HAR), or human activity recognition, has been 

a popular research area particularly in computer vision, and man-machine 

interaction. According to Vishkarma et al. in [1], HAR can be interpreted as an 

activity performed by an actor, combined with multiple gestures, and is part of the 

high-level vision of human motion to understand human behavior. The action can 

also be considered as a sequence of primitive movements to fulfill a function or 

simple purpose [2]. Several examples of action include ‘walking,’ ‘running,’ 

‘punching,’ ‘waving,’ and ‘kicking.’  Figure 1.1 shows some samples of human 

actions from the Kungliga Tekniska Högskolan (KTH) action dataset [3]. The most 

common application for human action recognition is intelligent video security 

surveillance in public places like airports, subway stations, hospitals, or areas where 

closed-circuit television (CCTV) is required.  Additionally, HAR is useful in 

applications such as human-computer interaction, robot learning, entertainment, 

sports analysis, intelligent driver assistance systems, animation industries, and 

content-based video search [4]–[6]. 

 From the perspective of human vision, it is easy for humans to understand 

the action and intention of an actor. A human can easily detect and recognize an 

action of an actor, such as waving or kicking, with high confidence. However, using 

human resources to monitor human actions is extremely expensive in a wide range 

of HAR applications. As a result, many researchers have attempted to create an 

automated system that mimics the visual capability of humans in understanding and 

describing human actions.  Needless to say, this is not the most straightforward task 

due to the many challenges and issues involved, such as background complexity, 

inter and intra-class variations, noise, occlusions, poor resolution, real-time 

processing, and view-invariant [7]. This research focuses on view-invariant cases 
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to recognize human action from different view angles. The challenge here is that 

the movement of the actor’s body or posture of the human’s body has changed 

across the views. 

 

Figure 1.1 Example images from the KTH dataset [3] 

 

 

In recent years, researchers for human action recognition have begun to 

move from studying using a single camera to multi-cameras. However, recognizing 

human actions automatically using multi-cameras is more complex than a single 

camera. For example, a different viewpoint of a camera may result in a diverse 

background, camera motion, a field of view, lighting condition, and occlusions. The 

current state-of-the-art approach is still far behind the human vision capability since 

most works are evaluated using a controlled environment dataset, making human 

action in multi-cameras still an ill-posed and unsolved complex problem. 

 

 

From a multi-camera perspective, there are two types of conditions; scene 

condition and camera condition. Scene condition consists of elements that influence 

the recognition process, such as similar backgrounds, simultaneous action recorded 

for each view, and similar actors.  The camera condition refers to the properties of 

a particular camera and its orientation that influence the recognition process, such 

as pixel resolution, camera position, and field of view (FOV).  In most controlled 

environment datasets, the camera position is the only variable that changes between 



 

3 

the source (training) view and the target (testing) view.  However, in an 

uncontrolled environment that closely resembles real-world applications, other 

factors that can affect accuracy need to be considered, such as different 

backgrounds, different recording times, different camera resolutions, and different 

camera positions. Multi-camera scenario that specifically studies uncontrolled 

environment and condition is known as the open-view human action recognition 

[8] or the open-view HAR.   

 

 

From literature [8], open-view HAR can be defined with the following 

characteristics; (1) Applicable only for multi-camera datasets or within cameras, 

(2) The correlation between cameras is minimized so that the dataset closely 

resembles the real-world environment. Thus, differences in parameters such as the 

illumination, camera type, background scene, and split action recorded are allowed, 

and (3) No labeled data is available in the target view.  

 

 

The open-view HAR is more challenging than the conventional multi-

cameras cases because the source view and target view are different. There are two 

main differences: (1) The previous work in multi-cameras considered an equal 

distribution of features between the training and the testing samples due to the 

assumption that both the source view and target view are highly similar.  While, in 

the open-view HAR, this similarity can vary and causes the distribution difference 

across views not to be equally distributed, particularly when the view difference is 

large [9]. This will cause a standard classifier that has been trained in the source 

view not being robust enough in the target view due to the data bias, which is known 

as the distribution shift problem [8]. Hence, it is important to minimize the feature 

distribution shift between the source and the target view to mitigate large 

classification errors.  (2) In minimizing the distribution shift between the source 

and the target view, the discrimination between classes also needs to be preserved. 

The preservation of the data discrimination will ensure that the feature from the 

same classes move closer to one another while those of different classes move 

farther away. Consequently, neglecting the preservation of data discrimination in 

minimizing the distribution shift will contribute to misclassification 
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problems.  Therefore, to handle the open-view cases, it is vital to minimize the 

distribution shift and preserve the data discrimination between classes.  

 

 

The distribution shift issue is discussed in unsupervised domain adaptation 

as a sub-topic of transfer learning, a sub-discipline of machine learning.  The theory 

of unsupervised domain adaptation describes the scenario in which the model 

trained in the source domain is used in a different (but related) target domain [10]. 

The domain adaptation process can minimize the feature distribution shift by 

projecting the source and target domains into a low-dimensional subspace. Figure 

1.2 illustrates the unsupervised domain adaptation function in a low-dimensional 

subspace. The source and the target domains have a distribution shift resulting in 

poor accuracy performance if directly classified. The source and the target domains 

will be transformed into new representations in the common subspace using the 

adaptation matrix. The goal is to optimize the adaptation matrix to optimize the 

classification accuracy. 

 

 

 
Figure 1.2 Illustration for unsupervised domain adaptation [11]. The triangles 

and circles denote two different classes. Before being classified by a linear 

classifier, both source and target view spaces will be projected and aligned as 

closely as possible to form a new representation in a common subspace 
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1.2 Problem Statement 

There are two kinds of distributions in probability distribution: marginal 

and conditional. Most of the existing domain adaptation methods adapt either the 

marginal distribution, conditional distribution, or both. Recent work in [12], [14] 

shows that considering both distributions could perform better.  However, both 

distributions are treated by concatenating them with a similar weight. In the open-

view case, different views require different marginal and conditional weights. For 

instance, the marginal distributions should be more dominant if the view/domain 

from the source and the target are dissimilar. Whereas if the view/domain from the 

source and the target are more related, the conditional distributions are more 

dominant [14]. Furthermore, because of significant differences in open-view 

human action recognition, there is a possibility that a common subspace may not 

exist. Thus, to optimize the adaptation matrix in an unsupervised domain adaptation 

model, the process shall consider balancing the weights of both marginal and 

conditional distributions while minimizing the distance between the sample mean 

of the source and the target domains. In addition, the adaptation process shall 

consider that there is a possibility that no common subspace exists because of 

significant differences between views/domains. 

 

 

The other issue is the preservation of data discrimination while projecting 

the source and target view into a new representation. It involves minimizing the 

distance between feature data of similar classes and maximizing the distance 

between feature data of different categories. In the unsupervised domain adaptation 

model, the labeled data is only available in the source domain, synchronizing with 

open-view human action recognition properties. Thus, the availability of existing 

labels in the source domain can be exploited to improve the class variance. 

Consequently, it is assumed that enhancing the class variance in the source domain 

can optimize the adaptation matrix. 

 

 

Synergy in resolving the above two issues is believed have the potential to 

improve the performance of the current unsupervised domain adaptation 

methodology. Therefore, the idea is not only to improve existing unsupervised 
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domain adaptation methods but also to exploit both solutions and implement them 

into the open-view human action recognition. Such a proposed model will lead to 

a better that action classification accuracy for open-view human action recognition.  

 

 

 

 

1.3 Objectives of the Study 

This thesis aims to implement an unsupervised domain adaptation approach 

in solving the open-view human action recognition challenges. Following the 

problem statement discussed in Section 1.2, the objectives are broken down as 

follows: 

 

1. To develop the unsupervised domain adaptation enhancement model that 

optimizes the adaptation matrix by balancing marginal and conditional 

distribution weights. This model should work even if there is a possibility 

of unified subspaces not existing because of significant differences between 

the source and the target domains. 

 

2. To develop the unsupervised domain adaptation enhancement model that 

optimizes the adaptation matrix by improving the source domain’s class 

variance while maintaining the source and target domains' discriminatory 

feature properties. 

 

3. To design a dedicated unsupervised domain adaptation model for open-view 

human action recognition by exploiting the enhancement models proposed 

in objectives one and two above. 
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1.4 Scope of the Study 

The scope of the study is limited to the following conditions: 

 

1. The unsupervised domain adaptation enhancement models will be first 

evaluated using selected five public image datasets. These datasets are 

Office [15], Caltech-256 [16], USPS [17], MNIST [18], and COIL- 20  [19].  

 

2. The HAR datasets used for this research for the dedicated unsupervised 

domain adaptation model are confined to (1) MCAD dataset [20] as the 

primary evaluation for open-view cases. According to Section 1.1, MCAD 

meets the criteria for open-view cases. MCAD datasets are recorded with 

both day and night actions to set the dataset to be uncontrolled and suited 

for open-view cases. (2) IXMAS dataset [21] as a well-known controlled 

multi-camera HAR dataset. IXMAS will be used as a validation dataset to 

prove that the model proposed is equivalent to other methods.  

 

3. The human action recognition datasets above contain a single actor with no 

other moving object involved, such as a vehicle or animal. The input 

modality used is from an RGB camera only. In addition, low-level features 

are extracted based on handcrafted learning, not deep learning. The 

illumination is fixed to day time only. 

 

4. The performance will be measured primarily in terms of accuracy of human 

actions recognition only, not in real-time. Due to the different validation 

approaches between multi-camera and open-view human action 

recognition, the comparison method with the state-of-the-art for 

enhancement and dedicated models is limited only to the unsupervised 

domain adaptation approaches. 

 

5. Simulations and experiments were all conducted using MATLAB software. 

Nevertheless, some packages are applied to Ubuntu using C and C++ to 

extract low-level features. All experiments were run on a PC with an Intel 

Core i7 CPU (6 cores) and 20GB RAM. 
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1.5 Contributions 

This study has three significant contributions, which can be summarized as 

follows: 

 

1. The enhancement of an unsupervised domain adaptation model balances the 

weight of marginal and conditional distributions in the distribution distance 

computation, consequently optimizing the adaptation matrix between 

source and target domains during the adaptation process. 

 

2. The enhancement of an unsupervised domain adaptation model improves 

the source domain’s class variance while maintaining the source and target 

domains’ discriminatory feature properties. 

 

3. The development of a dedicated unsupervised domain adaptation model to 

improve human action recognition in open-view cases. This dedicated 

model is based on exploiting the first and second contributions above. 

 

 

 

 

1.6 Organizations of Thesis 

This thesis consists of five chapters. There is a brief introduction to HAR in 

Chapter one, including definition, applications, importance in the computer vision 

field, and challenges faced, along with problem statements that will introduce the 

issues to be discussed, objectives that will be drawn from the problem statement, 

scopes that will make the thesis relevant to the study constraints, research 

contributions from the studies, and organization of the thesis. Chapter two discusses 

the literature review that supports the thesis’s objectives and direction. This chapter 

has three sub-topics: (1) the HAR approach based on single-camera approaches, (2) 

the HAR based on multi-cameras approaches, and (3) domain adaptation 

development, the basic concept, and related works. Towards the end of the chapter, 

a summary of the proposed human action recognition and domain adaptation work 

is presented. Chapter three highlights the proposed methodology for the open-view 

HAR case, starting with low-level feature extraction and descriptor, details of 
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unsupervised domain adaptation block as a primary focus, and linear classifier 

involved. Chapter four discusses experiments conducted in this research to prove 

its contribution, the results obtained, and a comprehensive analysis. This chapter 

also discusses the datasets used and comparisons with other methods. Chapter five 

concludes and summarizes the entire chapter along with suggestions for future 

work.
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