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ABSTRACT 

Malaysia’s biological diversity is among the richest in the world but rapidly 

declining due to various human activities and climate change. Despite the continuous 

loss in biodiversity with the most recent death of our last Sumatran Rhino in May 

2019, Malaysia's biodiversity data is still poorly characterized and systematically 

documented. Most species data have limited visibility with very abysmal 

publications which are mostly restricted to morphological traits and lack genomic 

data. As in line with the country’s National Policy on Biological Diversity 2016-

2025 to combat biodiversity loss and global effort to sequence all life by 2028 (Earth 

Biogenome Project), this study has focused on generating Malaysian small mammals 

mitogenome reference dataset. The genomic DNA of two fresh tissue samples 

(Balionycteris maculata and Callosciurus notatus) were extracted, fragmented to 300 

bp, and further constructed into Illumina-compatible libraries using BEST protocol. 

Next, about 15 amplification cycles during library indexing was used to produce 

maximum data output with high complexity, and low clonality suggesting the rare 

variants could be easily detected. Prior to sequencing using BGISEQ-500 platform, 

the 3-indexed libraries (including extraction blanks) with approximately 300-400 bp 

were pooled to equimolar DNA (<12,000 pmol/L). Approximately 5 gigabases raw 

sequence data per sample were generated comprising of the whole genome data 

(mitochondrial DNA and nuclear DNA). The new high quality mitogenomes has 

been successfully assembled using MITOBIM and PALEOMIX with an average size 

of 16-17 Kbp and an average depth of coverage of 140.27x. The detailed pipeline 

and challenges on mitogenome assembly for species with and without reference 

genome in Genbank was discussed. The mitogenomes were further annotated to its 

37 designated genes via MitoZ. The robust pipeline of mitogenome sequence 

generation established in this work could be applied to generate more genomic data 

from thousands of tissue samples available from local biodiversity key players such 

as Perbadanan Taman Negara Johor, FRIM and PERHILITAN.  The further 

enrichment of DNA reference database will strongly magnify species detection in 

invertebrate-derived DNA (iDNA) research for biodiversity assessment, wildlife 

forensics to monitor illegal trade of endangered species in this region, as well as 

population genetic studies. 
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ABSTRAK 

Kepelbagaian biologi Malaysia adalah antara yang terkaya di dunia tetapi 

kian merosot disebabkan pelbagai aktiviti manusia dan perubahan iklim yang kerap 

berlaku. Walaupun menghadapi kehilangan biodiversiti yang berterusan dengan 

kematian terbaru Badak Sumbu Sumatra terakhir pada bulan Mei 2019, data 

biodiversiti di Malaysia masih kurang didokumentasikan secara sistematik. 

Kebanyakan data spesies terhad hanya kepada penerbitan yang tidak teratur. Malah, 

kebanyakannya terhad kepada sifat morfologi dan kekurangan data genom. Selaras 

dengan Dasar Kebangsaan mengenai Kepelbagaian Biologi Negara 2016-2025 untuk 

memerangi kehilangan biodiversiti dan usaha global untuk menjejaki semua hidupan 

menjelang 2028 (Projek Biogenom Bumi), kajian ini memberi tumpuan kepada 

penjanaan data rujukan mitogenom mamalia kecil di Malaysia. DNA genomik dua 

sampel tisu (Balionycteris maculata dan Callosciurus notatus) diekstrak, dipecahkan 

kepada 300 bp, dan dibina semula menjadi perpustakaan yang komprehensif. 

Seterusnya, kira-kira 15 kitaran penguat semasa pengindeksan perpustakaan 

digunakan untuk menghasilkan jumlah data yang maksimum dengan kerumitan 

tinggi, dan klonalan yang rendah bagi memudahkan pencarian varian yang jarang 

dapat dikesan dengan mudah. Kemudian, perpustakaan yang telah diindekskan 

memanjang kepada kira-kira 300-400 bp, seterusnya dikumpulkan kepada DNA 

equimolar (<12,000 pmol/L) sebelum dijujukan menggunakan platform BGISEQ-

500. Kira-kira 5 gigabase data mentah telah dijana bagi setiap sampel yang terdiri 

daripada keseluruhan genom (DNA mitokondria dan DNA nuklear). Mitogenom 

baru yang berkualiti tinggi telah berjaya dihasilkan menggunakan MITOBIM dan 

PALEOMIX dengan saiz purata 16-17 Kbp dan kedalaman liputan purata 140.27x. 

Pautan yang terperinci mengenai perhimpunan mitogenom untuk spesies 

menggunakan genom rujukan dan tanpa genom rujukan di Genbank dibincangkan. 

Mitogenom ini selanjutnya dikelaskan kepada 37 gen yang ditetapkan melalui MitoZ. 

Saluran pergerakan urutan mitogenom yang teguh yang ditubuhkan dalam karya ini 

boleh digunakan untuk menghasilkan lebih banyak data genomik daripada beribu-

ribu sampel tisu yang terdapat dalam simpanan badan biodiversiti tempatan seperti 

Perbadanan Taman Negara Johor, FRIM dan PERHILITAN. Pengayaan pangkalan 

data rujukan DNA akan membesarkan pengesanan spesies dalam penyelidikan DNA 

(iDNA) berkenaan dengan penilaian biodiversiti, forensik hidupan liar untuk 

memantau perdagangan haram spesies terancam di rantau ini, serta kajian genetik 

populasi. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

  

  

  

  

1.1 Background of study 

  

  

Malaysia, a megadiverse country boasts a myriad faunal community, 

comprising of 307 mammals; 785 birds; 242 amphibians; 567 reptiles; 470 

freshwaters; and 1,400 marine fishes [1]. In spite of having an immense variety of 

fauna, Malaysia has lost battles on conservation efforts of some native and iconic 

species due to the country’s development pressures and excessive exploitation by 

poachers [2,3]. Some critically affected species include the Malayan tiger (Panthera 

tigris jacksoni), Sumatran rhinoceros (Dicerorhinus sumatrensis), Leatherback 

turtles (Dermochelys coriacea), and Banteng (Bos javanicus). Most recently, the last 

male Sumatran rhino in Malaysia also died in May 2019 [4] due to extremely poor 

conservation efforts in the country. Additionally, this scenario is also listed by the 

International Union for Conservation of Nature (IUCN) which more than 27,000 

species globally are threatened with extinction, including 40% of amphibians, 25% 

of mammals, 14% of birds and 21% others [5].  

In Malaysia, a conventional approach such as camera trapping has been 

regularly used as part of the conservation efforts. However, the visual-based 

inspection does not magnify the confidence in species identification compared to 

DNA-based technology. As stated in the country’s National Policy on Biological 

Diversity 2016-2025 precisely on Goal 3, DNA profile databases need to be 

developed to enhance intelligence-led investigations and improve detection of illegal 

trade of Malaysian wildlife. Furthermore, the weaknesses in capacity management, 

lack of formal training for Next Generation Sequencing (NGS) laboratory work and 

bioinformatic analysis as well as shortage of funding [1] have also hampered the 

actions and efforts to reverse the alarming trends of species loss and restore the 

nation’s biodiversity. Despite the catastrophic loss, Malaysia’s biodiversity data is 
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still poorly characterized and systematically documented. This knowledge gap has 

been identified as one of the key factors impeding biodiversity monitoring efforts in 

Malaysia. Currently, most species data have limited visibility with very abysmal 

publications which are mostly restricted to morphological traits. To address this, the 

generation of genomic data could help revolutionize the understanding in biology 

and evolution of species thus enhance the intelligence-led investigations for the 

illegal trade of Malaysian wildlife.  

Therefore, the mitochondrial genome (mitogenome) in the present study 

(summarized in Figure 1.1) attempts to generate an established reference 

mitogenome dataset for Malaysian fauna using the cutting-edge Next Generation 

Sequencing (NGS) technology coupled with High-Performance Computing (HPC). 

Mitogenomes are often sequenced especially for animals due to its small sizes and 

highly conserved [6]. Hence in future, the assembly of complete mitogenomes will 

be useful to understand the evolutionary relationships among taxa [7]. In developed 

countries such as USA, United Kingdom, Denmark, and Singapore, the rapid 

technological advancement of NGS has outperformed traditional Sanger sequencing 

technology by paving the way with a vast pool of genetic data at cost effective prices 

[29]. However, the current NGS-based research in Malaysia is moving at a slow pace 

because the NGS technology in the country is still considered high-priced. This is 

due to only abundance of prokaryotes has been sequenced compared to the complex 

eukaryote genomes. In order to accomplish the goal of this project, UTM has 

embarked on a collaboration with the Centre for GeoGenetics, University of 

Copenhagen, Denmark (UCPH) to assist with NGS facilities. With a state-of-art 

infrastructure, the centre provides formal NGS training in the laboratory and 

bioinformatic analysis for generating and analysing not only mitogenomes but also 

other massive omics projects.  

This project will act as proof of concept where global collaboration effort 

could help expand our national capacity to promote conservation efforts and 

sustainability of the ecosystem in Malaysia. Furthermore, this significant effort of 

establishing DNA reference datasets using high-tech NGS technology will further 

magnifies the confidence in monitoring fauna diversity using invertebrate-derived 
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DNA (iDNA) [8–10], and expedite authorities to fight illegal smuggling of 

endangered species [11]. In addition, this project is in line with the country’s 

National Policy on Biological Diversity 2016-2025, specifically Goal 3 and Goal 5 

which is to establish a comprehensive DNA profile databases and thus ensure that all 

the active conservationist nations have adequate resources to effectively manage and 

monitor biodiversity in Malaysia. This project will also contribute to the global effort 

to sequence all life by 2028; Earth BioGenome Project 2018-2028 [12]. 

 
 

Figure 1.1 Overview of this research project and its significance impact 

1.2 Problem statement 

Despite the rich biodiversity in Malaysia, the most current dataset for 

eukaryote is limited to morphological data and short DNA barcodes. The situation is 

worsened by the lack of capacity and high technical skills required to generate and 

analyse complex genomic data. These challenges have remained a major obstacle for 

a large scale genomics sequencing effort thus hindering a more sophisticated data 

management and analysis and now de-rigueur in most active conservationist nations. 

With the advancement of Next Generation Sequencing (NGS) technology, generation 

of high quality mitogenome data offers a more promising approach and wider 

downstream application especially in biodiversity monitoring using DNA-based 

technology and wildlife forensics as well as species evolution and population 

genomics.  
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1.3 Objectives of the Study 

 

 

(1) To generate high quality library from fresh Malaysian small mammal samples 

for shotgun sequencing 

(2) To assemble high quality mitogenomes from shotgun data using a 

bioinformatic pipeline 

(3) To annotate the assembled mitogenome according to the respective genes 

1.4 Scope of the Study 

 

 

This study generated Malaysian Balionycteris maculata (M1) and 

Callosciurus notatus (M8) mitogenomes reference dataset. Samples were obtained 

from Forest Research Institute Malaysia (FRIM) and were extracted in Universiti 

Teknologi Malaysia (UTM). Later, the library construction were conducted in Centre 

for GeoGenetics, University of Copenhagen (UCPH) prior to shotgun sequencing. 

The libraries were constructed using sheared DNA samples and rebuilt into Illumina-

compatible sequencing (NGS) libraries using BEST protocol [13]. Then, the libraries 

were indexed and pooled before sequenced across a lane of BGISEQ-500. By 

connecting to HoloGenomics Servers located in Danish Center for Scientific 

Computing at Copenhagen University, the raw reads produced were trimmed and 

assembled using AdapterRemoval [14], MITOBIM [15] and PALEOMIX [68]. The 

newly assembled mitogenomes were generated with and without available reference 

genome in Genbank. Next, the mitogenomes were further annotated and will be 

deposited to Genbank for public use.  

1.5 Significance of the Study 

The work presented in this project focus on the generation of mitogenomes 

dataset for Malaysian small mammals. Apart from enriching the current reference 

database, the success of this project will ultimately strengthen the capacity and skills 

for biodiversity conservation efforts especially using DNA-based research. By using 

https://paperpile.com/c/UxUFzJ/lBVtr
https://paperpile.com/c/UxUFzJ/YfrCS
https://paperpile.com/c/UxUFzJ/cJPYw


5 
 

the advanced NGS technology coupled with high-performance computing, a large-

scale discovery of genetic markers could be generated and further translated to study 

evolutionary biology, population genetics, phylogeography, systematics and 

conservation. In addition, the downstream application of this work is valuable in 

advanced identification tools for wildlife forensics to monitor illegal trade of 

endangered species in the region. Besides, it will aid the future work on employing 

invertebrate-derived DNA (iDNA) for biodiversity monitoring. Furthermore, this 

work is one of the goals highlighted in the National Policy on Biological Diversity 

2016-2025 [1] and in line with the global effort; Earth BioGenome Project 2018-

2028 to sequence all life by 2028 [12]. The socioeconomic and ecology impact of 

this project if done in large-scale, would be beyond typical economic gains derived 

from taxonomic work applied in conventional biodiversity conservation 

management.  
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