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ABSTRACT 

Electrical discharge machining (EDM) is a non-traditional material removal 

technique using an electrical spark-erosion process in the presence of dielectric liquid 

where electrode and workpiece are not in physical contact. Although EDM is widely 

implemented in the manufacturing industry, knowledge about the process is still at an 

early stage, which poses many challenges for further development. Experimental 

analysis is time-consuming and costly due to the highly stochastic and complex nature 

of the process. Thus, research efforts are directed toward process modeling to study 

EDM behaviour by eliminating experimental difficulties. Developed models are 

mostly centred on only one sparking phase, especially the discharge or ignition phase. 

In order to achieve a complete understanding of machining behaviour, it is essential to 

consider all sparking phases. This research presents a mathematical model of EDM 

gap profile by introducing an equivalent circuit of gap spark. This is to reach precise 

insight into the interactive behaviour of the machining process regarding ignition, 

discharge and recovery phases. The equivalent circuit model is designed based on the 

sparking phases and pulse power generator. Buck converter and transistor-based 

switching circuits are used to provide suitable pulsed voltage. Spark circuit is 

employed to obtain mathematical equations of gap profile for studying the time-

varying behaviour of the EDM process through Matlab simulation. In order to validate 

the model, simulated data are first compared with previous experimental data and then 

with data from the EDM operation manual, both in term of Material Removal Rate 

(MRR). It is shown that the simulated model can predict the dynamic behavior of the 

EDM process with an average simulated error of about 8.27% for steel workpiece and 

copper electrode and about 7.93% for steel workpiece and graphite electrode. 

Comparison with MRR from the EDM manual also showed an average error of 

10.10%, which is acceptable to standardize the validation process. Besides, the 

consistency range of the model is confirmed at noise power 𝑛𝑝 ≤ 10−5𝐽 with an 

average error of 11.15% for steel workpiece and copper electrode. Then, a parametric 

study of simulated MRR is carried out to investigate the effect of pulse on-time and 

peak gap current on MRR. Research conducted shows that the MRR increased by 

increasing pulse on-time and peak gap current up to peak value of pulse on-time for 

each peak discharge current. Finally, based on the EDM discharge self-sustaining 

condition, gap discharge closed-loop structure is formed via discharge model to 

evaluate the discharge stability. The Influence of peak discharge current on the 

response time of the system is analyzed using frequency response method. It is found 

that increasing peak discharge current results in slower system time response and 

improves the discharge stability. This study can be helpful to reveal the mechanism of 

EDM, predict the machining time, maintain the discharge stability, and select the 

process parameters.  
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ABSTRAK 

 Pemesinan nyahcas elektrik (EDM) adalah teknik bukan konvensional yang 

digunakan untuk menyingkir bahan menggunakan proses percikan-hakisan dengan 

kehadiran cecair dielektrik, di mana elektrod dan bahan kerja tidak bersentuhan secara 

fizikal. Walapun EDM digunakan secara meluas dalam industri pembuatan, 

pengetahuan dalam pemesinan ini masih berada di tahap awal dan masih mempunyai 

banyak cabaran dalam perkembangan seterusnya. Analisis eksperimental memakan 

masa dan melibatkan kos yang mahal kerana sifat proses yang sangat stokastik dan 

kompleks. Oleh itu, usaha penyelidikan dilakukan dalam bentuk pemodelan proses 

untuk mengkaji tingkah laku proses EDM dengan mengelakkan kesukaran melakukan 

eksperimen. Model yang telah dibangunkan sebelum ini kebanyakannya hanya 

berfokus pada satu fasa percikan, terutamanya fasa nyahcas atau pencucuhan. Untuk 

mendapatkan pemahaman yang menyeluruh mengenai tingkah laku pemesinan, adalah 

penting untuk mempertimbangkan semua fasa percikan. Penyelidikan ini 

mempersembahkan model matematik profil jurang EDM dengan memperkenalkan 

litar pencucuhan jurang yang setara. Ini bagi mendapatkan gambaran dan kefahaman 

yang lebih jelas dan tepat mengenai tingkah laku interaktif dalam proses pemesinan 

berkaitan fasa pencucuhan, menyahcas dan pemulihan. Model litar setara direka 

berdasarkan fasafasa percikan dan penjana kuasa nadi. Litar pensuisan Buck converter 

dan transistor digunakan untuk memberikan denyut voltan yang sesuai. Litar percikan 

digunakan untuk mendapatkan persamaan matematik daripada profil jurang bagi 

mengkaji karektar perubahan masa proses EDM melalui simulasi Matlab. Untuk 

mengesahkan model, data yang disimulasikan terlebih dahulu dibandingkan dengan 

data eksperimen yang diperolehi dari kajian sebelum ini dan kemudian dibandingkan 

dengan data dari manual operasi EDM, kedua-duanya dari segi kadar hakisan bahan 

(MRR). Model simulasi menunjukkan tingkah laku dinamik proses EDM dapat 

diramal dengan ralat simulasi 8.27% bagi bahan kerja keluli dan elektrod tembaga dan 

7.93% bagi bahan kerja keluli dan elektrod grafit. Perbandingan dengan MRR dari 

manual EDM juga menunjukkan ralat 10.10% di mana ianya dapat diterima untuk 

menyeragamkan proses pengesahan. Selain itu, julat konsistensi model pada kuasa 

gangguan, 𝑛𝑝 ≤ 10−5𝐽 telah disahkan dengan ralat 11.15% bagi bahan kerja keluli dan 

elektrod tembaga. Kemudian, kajian parametrik simulasi dijalankan untuk mengkaji 

kesan denyut nadi tepat waktu dan arus jurang puncak ke atas MRR. Penyelidikan 

yang dijalankan menunjukkan bahawa MRR meningkat dengan meningkatnya denyut 

nadi tepat waktu dan arus jurang puncak hingga nilai puncak denyut tepat waktu untuk 

setiap arus nyahcas puncak. Akhirnya, berdasarkan kelestarian nyahcas EDM, struktur 

gelung tertutup nyahcas jurang dibentuk melalui model penyahcas untuk menilai 

kestabilan cas. Pengaruh arus nyahcas puncak pada masa tindak balas sistem dianalisis 

menggunakan kaedah sambutan frekuensi. Didapati bahawa peningkatan arus nyahcas 

puncak menghasilkan sambutan masa sistem yang lebih perlahan dan meningkatkan 

kestabilan nyahcas. Kajian ini dapat membantu untuk mendedahkan mekanisma EDM, 

meramalkan masa pemesinan, menjaga kestabilan nyahcas dan memilih parameter 

proses.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of Study 

Electrical Discharge Machining (EDM) is the most extensively used method 

for hole making among other known manufacturing processes with applications on the 

production floor . Non-contact character of EDM makes it a valuable technique for 

variety of hole manufacturing approaches, for example, in medical, aerospace, 

automotive and chemical industries as well as manufacturing of hard material devices 

[1]. In fact, for certain machining operations, the EDM procedure may be the only 

possible method to meet complex hole requirements.  

Although a large number of EDM devices are sold every year, current 

knowledge about the process is still insufficient for its more development. Nonlinear 

and stochastic characteristics of EDM process vary the machining situations 

throughout the entire machining process [2]. It is mostly a phenomenon that the 

machining goes to an unstable degenerate machining condition and makes it difficult 

to experimentally study the effects of process parameters on the different performance 

measures of EDM. So, modeling is required to provide a deep understanding of the 

EDM process by removing experimental challenges. Numerous models have been 

presented in order to study different aspects of EDM performance. Models are 

designed to predict the material removal rate [3, 4] and surface quality [5, 6] , to 

describe and analyze the discharge process in pulse time [7], to determine the discharge 

location [8] as well as to identify the erodibility and optimal value of pulse time [9]. It 

has been seen that there is a lack of a model to describe the EDM process throughout 

all machining phases of spark. EDM process is mainly composed of three phases, 

including ignition, discharge and recovery. Although these phases are physically 

different, they affect each other significantly which influences the machining 

performance [10].  
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Material Removal Rate (MRR), Tool Wear Rate (TWR) and Surface Quality 

(SQ) are some of the EDM performance measurement. In this study, Material Removal 

Rate (MRR) considered as the dominant performance measurement, since it directly 

affects the cost of production even though it is not the only indicator to measure the 

EDM performance. MRR is achieved due to the thermal action of electrical discharges 

in the gap between the electrode and the workpiece [11]. The process depends on the 

various machining parameters such as gap current, pulse on-time, gap voltage, 

dielectric and electrode materials [12]. However, the stochastic nature of the EDM 

process is an obstacle to understanding the influence of these parameters on MRR.  

Material removal only takes place in discharge phase. In this phase, the thermal 

behavior is affected by a discharge channel produced as the dielectric gap breaks down 

[13]. The breakdown is occurred by an electric field which is higher than the dielectric 

breakdown field strength [14]. After breakdown, the whole discharge process occurs 

in the gas environment [15]. Based on the gas break down theory of townsend [16], 

strength of the electric field is positively correlated with maintaining discharge 

stability. Gap current plays an important rule to maintain the electric field strength 

during discharge. Thus, study the influence of the gap current on the stability of 

maintaining discharge is necessary to improve the process efficiency.  

This study seeks to focus on the mathematical modeling and simulation of the 

EDM process via spark generator design. Mathematical model is developed on the 

basis of the sparking phases and pulse power generator. Pulse power generator is used 

to provide required DC voltage for EDM spark utilizing buck converter and transistor 

based switching circuit. Spark circuit also designed to provide gap profile based on the 

ignition, discharge and recovery phases. The mathematical model first without noise 

and then with the maximum noise power, which still results in the consistent model, is 

implemented using Matlab software. Model validation is conducted by comparing 

simulation results with the experimental results carried out by the previous scholar and 

standard data from Antronic EDM manual in term of MRR. The Simulated model is 

then used to analyze the effect of pulse on-time and gap current as two important 

process parameters on MRR in the absence of environmental noise. Since concern on 

machining stability has been rising, this study also investigated the effect of peak 
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discharge current on discharge stability employing the frequency analysis method. 

This research is important to reveal EDM mechanism and to select optimal process 

parameters by reducing the cost and time related to the experimental operations.  

1.2 Problem Statement 

Study the EDM process is necessary to improve its performance. Although 

material removal occurs in discharge phase, a good description of EDM process 

requires knowledge of time and spatial condition existed in gap profile including 

ignition, discharge and recovery phases [17, 18]. However, EDM process has dynamic 

and highly stochastic nature. So, during machining, the gap size changes randomly 

cause abnormal discharges including open circuit and short circuit pulses which effect 

on gap profile. Therefore, during experimental trail, it is necessary to set up the 

optimum conditions for EDM operation. But, this setting procedure is an iterative and 

time consuming process.  

So, modeling is an alternative way to understand the mechanism underlying 

the EDM process by removing difficulties related to the real machining experience. 

Researchers have proposed various models with the aim of predicting EDM behaviour 

in different forms. Most of the models are suggested based on the discharge process to 

investigate machining characteristics [6, 19, 20]. Studies of ignition mechanism have 

also been conducted to give more insight on chaotic nature of EDM process [21]. From 

previous studies it can be concluded that existing models are focused on the prediction 

of EDM behaviour only during one sparking phase and less attention are given on the 

model to study EDM process regarding all of its sparking phases. The shortcoming of 

these models is that they are not able to explain the dynamic behaviour of the process 

thoroughly. Therefore, due to the lack of such model, this thesis proposes a 

mathematical model of the EDM process according to its sparking phases for 

investigation on the machining mechanism. Matlab’s simulated model is then used to 

study the effects of pulse on-time and gap current on MRR. Also, influence of peak 

discharge current on maintaining stability of discharge is analyzed.  

Azli
Highlight
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1.3 Objectives  

This research will require to complete the following objectives: 

(a) To determine time domain mathematical model of EDM process during its 

sparking phases including ignition, discharge and recovery. 

(b) To analyze the impact of pulse on-time and peak discharge current on Material 

Removal Rate (MRR) through simulated model of EDM process. 

(c) To characterize the effect of peak discharge current on the system response and 

discharge stability via frequency response analysis of the EDM discharge 

model.  

1.4 Scope of Research  

The objectives of this study can be met conforming to the research scope as 

follows: 

(a) A critical literature review of the EDM system and its working principle. The 

review covered on pulse power generator, process parameters and machining 

performance measures, several theoretical models in predicting different 

aspects of EDM behaviour, effect of process parameters on machining 

performance, and different attempts to maintain discharge self-sustaining 

condition. 

(b) Mathematical modeling and simulation of the EDM process by considering 

sparking phases and pulse power generator. As a preliminary aim of the model 

is to investigate dynamic behaviour of the process, in this thesis, the 

environmental noise is not considered. However, besides the simulation 

without noise, simulation is also conducted with maximum noise intensity that 

the system remains stable. The reason for simulation by applying the noise 

source is to show the stability range of the model. 
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(c) A comparative study between simulated and experimental data [22] in order to 

determine validity of the simulated model in the form of Material Removal 

Rate (MRR). Although EDM process has stochastic nature, as mentioned in 

part (b), the proposed model in this study did not consider the noise. So, 

conduct the experimental test would not result in fair comparison between 

simulated and experimental data.  

Therefore, the experimental data extracted from previously published 

work is applied to validate the model. The experimental system used gap 

control method to maintain an optimal gap distance during erosion process 

which is essential to recover from unstable machining condition. Robustness 

of the gap control method to overcome disturbances caused the comparability 

of the experimental data with simulated one in this thesis. Furthermore, 

adjustment have been done to reach constant value of delay time for achieving 

normal spark which makes the experimental data qualified for validation 

purpose in this thesis. Predicted MRR in present of noise is also compared with 

same experimental data using steel workpiece and copper electrode.  

(d) Confirmation of model validation process by comparing simulated data with 

dataset from [23] in term of MRR. 

(e) Analyze the effect of pulse on-time and peak discharge current on MRR based 

on the parametric study through the simulated model of the EDM process. 

(f) Study the influence of peak discharge current on stability of discharge via 

simulated discharge model of EDM process. 

 

1.5 Research Novelty 

This work has main approaches in the following aspects:  

(a) For the first time, an equivalent gap state model is introduced by considering 

all sparking phases to provide great contribution for studying EDM behaviour 

by removing experimental challenges. 
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(b) Typically, discharge phase is considered to analyze effect of two main process 

parameters on MRR and to analyze effect of peak discharge current on its 

stability as well. 

 

1.6 Limitation 

The limitations of this thesis are as follows:  

(a) Validation of the model is limited according to the experimental data of 

previous researchers and data from operation manual. 

(b) In design the EDM model, output of power supply is limited to the almost 

similar value of highest gap voltage. 

(c) Modeling and simulation of the EDM process is limited to the noise-free 

environment.  

1.7 Significance of Study 

Electrical Discharge Machining (EDM) system is widely used in hole 

manufacturing, thus study on dynamic behaviour of EDM process is important to 

design better system in the future. Modeling is an effective way to understand the 

machining procedure as well as to saving time and cost related to experimental work. 

Study of EDM phases including ignition, discharge and recovery are significant to 

comprehend EDM performance. Simulated model is helpful to predict dynamic 

behaviour of the EDM process through its sparking phases. 

MRR is main EDM performance attribute which is strongly affected by process 

parameters. Pulse on-time and peak discharge current are most important parameters 

effected on MRR. So, the study on their influence on MRR adds knowledge to improve 

machining performance. This thesis also aims to study influence of peak discharge 

current on stability of discharge self-sustaining stage through designed EDM model 
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during discharge. This investigation is essential to select peak discharge current in 

order to maintain discharge stability and improve the process efficiency. 
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