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ABSTRACT 

 

 

 

The discovery of photocatalytic water splitting of titanium dioxide (TiO2) 

electrodes by Fujishima and Honda (1972) trigger the extensive study of the structure 

and the improvement in the performance of TiO2 as photocatalyst in synthetic 

chemistry and environmental applications. Despite all the advantages provided from 

TiO2 compared to other semiconductor photocatalysts, its two main concern issues, 

which are large band gap energy and high recombination rate of photogenerated 

electrons and holes pairs, restraint its usage in practical applications. Hence, doping 

TiO2 with non-metal such as carbon is a promising way to modify the properties of 

TiO2 for the enhancement the photocatalytic performance of TiO2. Although there are 

many reports about the improvement of TiO2’s photocatalytic activity, the relationship 

between the structural and physical properties with the photocatalytic activity of 

carbon-doped TiO2 is still not well evaluated. In this study, a new approach has been 

proposed to elucidate the structure-photocatalytic activity relationship to better 

understand the dominant properties that determine the photocatalytic activities of 

carbon-doped TiO2 which is focusing under UV light system only. Fuzzy Logic Graph 

with the combination of Fuzzy Inference System modelling has been used as a new 

approach in determining the dominant factor for the structure-photocatalytic activity 

relationship of carbon-doped TiO2. The logic of expertise and from repetition of 

promising data were used. Fuzzy Inference System contains three fundamental steps 

including fuzzification, rule evaluation and defuzzification. This study includes four 

main stages which were data collection, development of Fuzzy Logic Controller, 

construction of Fuzzy Inference System and assessment of the results by sensitivity 

analysis. Experimental data that was used in this study was collected from 

experimental results obtained by our research group. To unveil the structure and 

physical properties-activity relationship, the type of crystalline phases, surface area, 

crystallite size and electron-hole recombination were chosen as the factors to be 

analyzed. Fuzzy Logic Graph analysis shows that surface area is a dominant factor for 

photocatalytic activity of carbon-doped TiO2, it is followed by rate of electron-hole 

recombination, phase and crystallite size. To summarize, with the help of Fuzzy Logic 

Controller, the structure physical properties activity relationship of carbon-doped 

TiO2 can be evaluated to show which factors that were responsible for the 

photocatalytic activity of carbon-doped TiO2. Although we used the limited source of 

experimental data to elucidate the physicochemical-photocatalytic properties 

relationship of carbon-doped TiO2, the correlation was successfully described in detail 

using Fuzzy Logic Graph. 
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ABSTRAK 

 

 

 

Penemuan cemerlang fotomangkin pembelahan air pada elektrod titanium 

dioksida (TiO2) oleh Fujishima dan Honda (1972) telah menyebabkan banyak kajian 

struktural dan penambahbaikkan dalam prestasi fotopemangkin TiO2 sebagai 

fotopemangkin dalam kimia sintetik dan aplikasi alam sekitar. Walaupun TiO2 

memberikan banyak kelebihan berbanding fotomangkin semikonduktor yang lain, dua 

masalah utamanya iaitu tenaga jurang jalur yang besar dan penggabungan semula 

pasangan elektron dan lubang yang tinggi telah menyebabkan penggunaannya di 

dalam aplikasi praktikal terhad. Oleh itu, pendopan TiO2 dengan bukan logam seperti 

karbon adalah cara yang menjanjikan untuk mengubahsuai sifat-sifat TiO2 untuk 

meningkatkan prestasi fotopemangkin TiO2. Walaupun terdapat banyak laporan 

tentang peningkatan aktiviti fotopemangkinan TiO2, hubungan antara sifat-sifat 

struktural dan fizikal dengan aktiviti fotopemangkinan karbon-terdop TiO2 dan 

nampak masih tidak dinilai dengan baik. Dalam kajian ini, satu kaedah baru telah 

dicadangkan untuk menjelaskan hubungan struktur – aktiviti fotopemangkinan dengan 

matlamat pemahaman yang lebih baik terhadap sifat-sifat utama yang menentukan 

aktiviti fotopemangkinan karbon-terdop TiO2 yang memfokus di bawah sistem cahaya 

UV sahaja. Graf Logik Kabur dengan gabungan pemodelan Sistem Inferensi Kabur 

telah digunakan sebagai pendekatan baru dalam menentukan faktor dominan untuk 

mengenalpasti hubungan aktiviti fotopemangkinan karbon-terdop TiO2 .Logik 

kepakaran dan dari pengulangan data yang menjanjikan telah digunakan. Sistem 

Inferensi Kabur mengandungi tiga langkah asas termasuk fuzzifikasi, penilaian 

peraturan dan defuzzifikasi. Kajian ini merangkumi empat peringkat utama seperti 

pengumpulan data, pembangunan Pengawal Logik Kabur, pembinaan Sistem Inferensi 

Kabur dan penilaian hasil analisis sensitiviti. Data eksperimental yang digunakan 

dalam kajian ini telah dikumpulkan dari keputusan eksperimental dari kumpulan 

penyelidikan kami. Untuk merungkai struktur dan hubungan sifat-sifat fizikal, fasa- 

fasa kristal yang berbeza, luas permukaan, saiz kristal, dan kadar rekombinasi lubang- 

elektron, akan dijelaskan menggunakan Graf Logik Kabur. Analisis Graf Logik Kabur 

menunjukkan bahawa kawasan permukaan adalah faktor dominan bagi aktiviti 

fotopemangkinan karbon terdop TiO2, diikuti dengan kadar rekombinasi lubang- 

elektron, fasa dan saiz Kristal. Untuk merumuskan, dengan bantuan Pemodelan Logik 

Kabur, sifat-sifat struktural dan fizikal dengan aktiviti fotopemangkinan karbon-terdop 

TiO2 dapat dinilai untuk menunjukkan faktor-faktor yang bertanggungjawab terhadap 

aktiviti fotopemangkinan karbon-terdop TiO2. Walaupun kami menggunakan 

keputusan eksperimental data dari sumber data yang terhad untuk menjelaskan 

hubungan sifat fizikokimia-fotopemangkin karbon-terdop TiO2, korelasi telah berjaya 

dibincangkan dengan terperinci oleh Graf Logik. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Background of Study  

 

 A significant problem faced by modern societies and threatening humankind's 

health is air and water pollution. It is due to the industrial and civil activities that create 

an enormous amount of organic and inorganic pollutants that unavoidably end up in 

our seas, soil, rivers, and air (Haider et al., 2017). Nowadays, the rising number of 

environmental problems has resulted in the compulsive development of environmental 

purification method. This fundamental advanced environmental solution has drawn 

attention and gained importance over the past years due to its full potential in bringing 

a significant change in human life. Therefore, new alternatives, environmentally 

friendly, and sustainable efforts have been done on photocatalysis in various areas, 

including dye-sensitized solar cells, hydrogen production, removal of organic and 

inorganic pollutants, organic synthesis, and disinfection of pathogenic organisms 

(Lazar et al., 2012). 

 

 The field of photocatalysis is one of the fastest growing areas both in research 

and commercial field. Titanium dioxide (TiO2) has been given maximum attention due 

to its superior performance since 1972 when Fujishima and Honda reported water 

decomposition using TiO2 electrode as a potential semiconductor photocatalytic 

material (Paulauskas et al., 2013; Taga, 2009). TiO2 is one of the most promising 

material because of their applicability in degradation of water pollutants, paint 

pigments, air purification, electrochemical electrodes, capacitors and dye-sensitized 

solar cell (DSSC) electrodes (Abdullah et al., 2016; Wong et al., 2011). 

 

 



2 

Titanium dioxide (TiO2) was reported showing the best photostability and 

highest photocatalytic activity (Fox and Dulay, 1993). Besides, TiO2 have strong 

oxidizing abilities for decomposition of organic pollutants, low cost and 

environmentally friendly (Janczyk et al., 2006; Mital & Manoj, 2011; Yoshio et al., 

2004). TiO2 mainly act as heterogeneous photocatalysts, because of its favourable 

combination of electronic structures which is characterized by a filled valence band 

and an empty conduction band, light absorption properties, charge transport 

characteristics and excited states lifetime (Konstantinou and Albanis, 2004; Nakata 

and Fujishima, 2012; Khan, 2015). 

However, despite all the advantages provided by TiO2 compared to other 

semiconductor photocatalysts, there are two main concern issues that restrain its usage 

in practical applications. Firstly, TiO2 has a large band gap, which is 3.2 eV, and 

require UV light for the excitation of electrons to take place. Secondly, TiO2 possesses 

fast electrons (e-) and holes (h+) recombination that will decrease the photocatalytic 

activity. 

Many strategies and approaches has been proposed to improve the 

photocatalytic efficiency of TiO2, which is known as the most active and suitable 

semiconductor photocatalyst (Dozzi and Selli, 2013). Various strategies, including 

using dye sensitization (Saien and Mesgari, 2016), noble metal loading (Kmetykó et 

al., 2016), transition metal addition (Yadav et al., 2016) and non-metal doping (Wang 

et al., 2012). Noble metals such as Ag, Au, Pt and Pd or the combinations of these 

metals with TiO2 were of the particular interest due to its well-known properties of 

improving the photocatalytic efficiency of TiO2 under visible light irradiation. They 

can act as an electron trap and delay the recombination of the e-/h+ pair through the 

promotion of the interfacial charge transfer (Fagan et al., 2016). However, due to some 

problems associated with metal doping, which the metals introduced were not 

incorporated into the TiO2 framework, and block the reaction sites on the TiO2 surface, 

non-metal elements such as carbon and nitrogen were studied comprehensively (Di 

Valentin et al., 2005). 
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 The use of non-metal as doping material such as nitrogen (Than et al., 2017), 

sulfur (Seo et al., 2016), fluorine (Zhang et al., 2016), iodine (Wang et al., 2016) and 

carbon (Zhang et al., 2016) can control the stability of the TiO2. Carbon was found to 

be more efficient compared to most of the non-metal elements due to its useful 

properties. Carbon materials exist in various forms, such as diamond, graphite, and 

carbines (Derjaguin et al., 1977). It has been used in photocatalytic applications due to 

their excellent properties, including high chemical stability, high electrical and thermal 

conductivity, light weight, non-toxicity and radiation resistant (Zaleska, 2008).The 

modification of TiO2 with carbon has generally changed the structure, physical, and 

electronic properties of TiO2. The photocatalytic performance enhanced by facilitating 

faster transport to the active sites on the TiO2 surface, narrowing the bandgap energy, 

extending the light absorption to visible range, and suppressing the rate of the 

recombination of photo-induced electrons and holes (Palanivelu et al., 2008). 

Upon comprehensive review, there is no firm conclusion on the factors that 

affect the photocatalytic activity. Many studies have been carried out to modify the 

surface area (Nikhil et al., 2015; Kominami et al., 2003; Kowalska et al., 2012; 

Kowalska et al., 2015) pore structure in terms of size, volume and shape (He et al., 

2015), band gap energy (Wajid Shah et al., 2015) and crystalline phase (Kominami et 

al., 2003; Ouzzine et al., 2014) of TiO2. These factors remain the focus in the field of 

TiO2 photocatalyst to enhance photocatalytic activity (Nakata and Fujishima, 2012). 

The relationship between structural and physical properties of photocatalytic 

activity also have been studied by Prieto-Mahaney and coworkers (2009). In this study, 

statistical multivariable analyses were used with the aim of obtaining the structure-

photocatalytic properties relationship of six properties of 35 commercially available 

TiO2 samples with five photocatalytic reactions. The six properties included are 

specific surface area, density of lattice defects, primary and secondary particle size and 

existence of anatase and rutile phase. From the statistical multivariable analyses, it was 

found that the photocatalytic activities strongly depended on the properties of the TiO2 

powders. However, this method required higher number of samples which constitute 

a significant limitation on determining the structure-photocatalytic activity of TiO2. In 

this case, the statistical method have been implemented but it is time-consuming and 
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also money wasting due to usage of chemicals and it needs a lot of data (Murakami et 

al., 2009). 

The predominant factor that affects the photocatalytic activity of TiO2 still 

remained unclear and becomes the grand challenge in the research field of TiO2 

(Ohtani, 2017). Therefore, the conventional analytical method is desperately required 

that accounts for all complexities and variations of data in investigating the structure-

photocatalytic activity relationship of TiO2 photocatalyst. Fuzzy Logic is the nearest 

solution to complex problems which has the potential of combining human thought 

and experience into computer-assisted decision making. Fuzzy Set Theory has been 

studied extensively over the past 30 years. Most of the early interest in Fuzzy Set 

Theory pertained to representing uncertainty in human cognitive processes (Zadeh, 

1965). It is now applied to problems in engineering, business, medical and related 

health sciences, and the natural sciences (Taylor and Yue, 2010). The use of the Fuzzy 

Logic Graph is a new approach to correlate the structure and photocatalytic activities. 

As mentioned above, there are many factors that affect the photocatalytic activity. 

However, none of the tools have yet been used to elucidate the dominant factors that 

affect the photocatalytic activity. 

As reported, Fuzzy Graph is one of many approaches to solve various problems 

involving relations and networks (Ore, 1962). The Fuzzy Graph was another focus on 

the implementation of fuzzy theory in its relation to the theory of graphs. The Fuzzy 

Graph in the form of graph represents the relationship between the variables precisely 

indicating the level of the relationship between the variables. Hence, through 

elucidation using the Fuzzy Graph tool, determination of structure and physical 

properties-activity can be done. 

Regardless of the numerous studies based on the relationship between 

structural and physical properties of photocatalytic activity remain controversial and 

still need to be investigated. Thus, in this research, the combination of Fuzzy Logic 

Graph and Fuzzy Interference System was used to determine the structural-

photocatalytic activity relationship of carbon-doped TiO2. 
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1.2 Statement of Problem 

 

 

 The utilization of TiO2 photocatalyst has gained significant attention in air and 

water treatment as it provides high efficiency in degradation of organic pollutants 

(Zaleska, 2008). It has been concluded that the photocatalytic activity depends on 

structural and physicochemical properties of TiO2. Since then, it is believed that there 

is a relationship between the structural properties and photocatalytic activity of TiO2. 

However, comprehensive research on the correlation between the factors and the 

photocatalytic performance were not done comprehensively with proof. Many 

speculations have done to correlate the predominant factor that affects photocatalytic 

activity of TiO2.  

 Furthermore, the dominant factor influencing photocatalytic activity for TiO2 

also have not been clearly clarified. In this study, the Fuzzy Logic Graph with the 

combination of Fuzzy Inference System modelling has been used as a new approach 

in determining the dominant factor for the structure-photocatalytic activity relationship 

of carbon-doped TiO2. 

1.3 Objectives of Study 

 

 

 Several objectives to study the structure-photocatalytic activity relationship 

of carbon-doped TiO2 as follows: 

 To study the usage of Fuzzy Inference System for photocatalytic activity of 

carbon-doped TiO2. 

 

 To evaluate the relationship between structural and physicochemical  

 properties and photocatalytic activity of carbon-doped TiO2. 

 

 To determine the dominant factor of carbon-doped TiO2 towards photocatalytic 

activity through sensitivity analysis. 
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1.4 Scope of Study 

 

 

  This study focuses on the elucidation of the physicochemical properties- 

photocatalytic activity relationship of carbon-doped TiO2 via Fuzzy Logic Controller. 

This study used a data collection on the physicochemical properties and photocatalytic 

activity from our research group. The data are the physicochemical properties of 

carbon-doped TiO2 characterized using various instruments techniques such as X-ray 

diffraction (XRD), Scanning Electron Microscope (SEM), UV-visible diffuse 

reflectance (UV- Vis DR) and Photoluminescence (PL) spectroscopy. The structure 

and the physical properties-activity relationship was elucidated using the Fuzzy 

Graph. Four factors, i.e., crystalline phases, surface area, crystallite size, and rate of 

electron-hole recombination, are chosen as the parameters. In more specific, this study 

includes four main stages, such as (1) data collection, (2) development of Fuzzy Logic 

Controller, (3) construction of Fuzzy Inference System and, (4) assessment of the 

results by sensitivity analysis. In order to predict the dominant factor of 

physicochemical properties upon determining photocatalytic UV-vis light 

irradiations, a sensitivity analysis was carried out in the fuzzy model. Sensitivity 

analysis is the study of how the uncertainty in the output of a mathematical model or 

system can be divided and allocated to different sources of uncertainty in its inputs. 

  In this study, data collection on the physicochemical properties and 

photocatalytic activity were extracted from our research group only to ensure that all 

data comes in one source and same instrument which is identical system. By using 

same instruments during characterization, the consistency of data can be maintain. 

Hence, only four factors, i.e., crystalline phases, surface area, crystallite size and rate 

of electron-hole recombination, are chosen as the parameters due to the limitation of 

data from our research group. Therefore, this study will analyze the efficiency of 

Fuzzy Logic Graph in order to determine the dominant physiochemical properties of 

carbon-doped TiO2 towards photocatalytic activity by using existing data only. 
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1.5  Hypothesis of Study 

 

 Fuzzy Logic Controller is one of the simplest methods to clarify the structure-

photocatalytic activity relationship of carbon-doped TiO2 photocatalyst. One 

hypothesized combining the physicochemical properties and photocatalytic activity of 

all data in current literature can determine the structure-photocatalytic activity 

relationship of carbon-doped TiO2 photocatalyst between them using Fuzzy Logic. 

 

 

1.6 Significance of Study 

 

 The development of TiO2 photocatalysts has led to its usage in many fields 

including in the degradation of organic pollutants in waste and wastewater treatment. 

Despite all the physicochemical properties that influence photocatalytic activity of 

carbon-doped TiO2, the question arises what the dominant factors influencing 

photocatalytic activity of carbon-doped TiO2 are. Therefore, this research highlighted 

one main significance which is a new approach in photocatalysis to find the structure 

and physical properties-activity relationship using Fuzzy Graph. This research will be 

a guideline for future research that other photocatalyst can be precisely enhanced 

depending on the reaction. 
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