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ABSTRACT 

Increasing number of fraud cases could jeopardize business solvency. 

Identification of fraud using effective statistical methods, such as classification, can 

protect organisations from this pitfall. However, identifying fraud cases can be a 

statistical challenge due to several characteristics of financial datasets. These data 

typically form large datasets that are highly dimensional, contain mixed data types and 

can involve an imbalanced number of fraud and non-fraud cases. This study employed 

the Principal Component Analysis (PCA) based on Relative to an Identified 

Distribution (RIDIT) scores, known as the PRIDIT method, to classify and identify 

data that could potentially be fraudulent cases. The classical PRIDIT method involves 

the transformation of each analysed dataset into a probability scale, RIDIT score. PCA 

is then employed to the RIDIT score data matrix to capture the highest variability in 

the dataset. However, the classical PRIDIT method framework has a limitation in the 

form of the PCA based Pearson correlation’s measures being insensitive to the 

variability of the data. In addition, there are no specific measurements for assessing 

the PRIDIT method’s performance under different data characteristics. Hence, this 

study proposed a robust PRIDIT methodology framework by incorporating several 

robust estimators (M-Huber, M-Tukey Bisquare, MM and LTS estimators) to improve 

the performance of classification tasks in identifying potentially fraudulent case data. 

The proposed method is applied on a German Credit Card Dataset. The analysis 

indicates that the highest accuracy rate of 48.5% was obtained by robust PRIDIT based 

on M-Tukey Bisquare estimator, followed by the results of robust PRIDIT based on 

MM and LTS estimators, which show similar accuracy scores of 48.1% with classical 

PRIDIT. The lowest accuracy score was obtained by robust PRIDIT based on M-

Huber at 47.9%. A simulation study was also conducted to assess the performance of 

different PRIDIT methods. Behaviours of different PRIDIT methods were observed 

under different credibility percentage settings (Non-Fraud (NF); Fraud (F) cases, 

95%NF;5%F, 90%NF;10%F, 80%NF;20%F and 70%NF;30%F) and variability levels 

(low, medium and high) in the datasets. The simulation results show that the accuracy 

rate obtained by classical PRIDIT, robust PRIDIT based M-Tukey Bisquare, MM, LTS 

and Huber are 64.3%, 65.3%, 65%, 63.7% and 61.7% respectively at credibility setting 

(70%NF;30%F) and medium variability. Thus, the findings indicate that the robust 

PRIDIT based on M-Tukey Bisquare outperform the other estimators by achieving the 

highest accuracy rate of 65.3%. In addition, the robust PRIDIT method also has a better 

rate of accuracy when data variability is medium or high compared to the classical 

PRIDIT method. Thus, this study has introduced a new method using robust PRIDIT 

to assess the credibility of financial data effectively. 
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ABSTRAK 

Peningkatan bilangan kes penipuan boleh membahayakan kemampubayaran 

perniagaan. Pengenalpastian penipuan menggunakan kaedah statistik yang berkesan, 

seperti klasifikasi, boleh melindungi organisasi daripada masalah ini. Namun, 

mengenal pasti kes penipuan, adalah satu cabaran statistik disebabkan oleh beberapa 

ciri set data kewangan. Data ini biasanya memiliki set data besar yang berdimensi 

tinggi, mengandungi jenis data bercampur dan boleh melibatkan bilangan kes 

penipuan dan bukan penipuan yang tidak seimbang. Kajian ini menggunakan Analisis 

Komponen Utama (PCA) berdasarkan skor Relatif kepada skor Taburan Terpilih 

(RIDIT), yang dikenali sebagai kaedah PRIDIT, untuk mengklasifikasi dan mengenal 

pasti data yang berpotensi adalah kes penipuan. Kaedah PRIDIT klasik melibatkan 

transformasi setiap set data yang dianalisis kepada skala kebarangkalian, skor RIDIT. 

PCA kemudiannya digunakan pada matriks data skor RIDIT untuk mendapatkan 

kebolehubahan tertinggi dalam set data. Walau bagaimanapun, rangka kerja kaedah 

PRIDIT klasik mempunyai kelemahan di mana PCA menggunakan ukuran korelasi 

Pearson yang tidak sensitif terhadap kebolehubahan data. Selain itu, tidak ada ukuran 

khusus untuk menilai prestasi kaedah PRIDIT di bawah ciri data yang berbeza. Oleh 

itu, kajian ini mencadangkan rangka kerja metodologi PRIDIT teguh dengan 

menggabungkan beberapa penganggar teguh (penganggar M-Huber, M-Tukey 

Bisquare, MM dan LTS) untuk meningkatkan prestasi klasifikasi dalam mengenal 

pasti data yang berpotensi sebagai kes penipuan. Kaedah yang dicadangkan telah 

digunakan pada set data kad kredit Jerman. Analisis menunjukkan bahawa kadar 

ketepatan tertinggi pada 48.5% diperolehi oleh PRIDIT teguh berasaskan penganggar 

M-Tukey Bisquare, diikuti oleh keputusan PRIDIT teguh berasaskan penganggar MM 

dan LTS yang menunjukkan skor ketepatan sebanyak 48.1%, iaitu lebih kurang sama 

dengan nilai ketepatan PRIDIT klasik. Skor ketepatan terendah pula diperolehi oleh 

PRIDIT teguh berasaskan M-Huber pada 47.9%. Keputusan ini menunjukkan bahawa 

PRIDIT teguh berasaskan M-Tukey Bisquare adalah penganggar terbaik berbanding 

penganggar lain dengan kadar ketepatan 48.5%. Kajian simulasi juga telah dijalankan 

untuk mengukur prestasi kaedah PRIDIT yang berbeza. Tingkah laku kaedah PRIDIT 

yang berbeza diperhatikan di bawah tetapan peratusan kredibiliti yang berbeza (Kes 

Bukan Penipuan (NF); Penipuan (F), 95%NF;5%F, 90%NF;10%F, 80%NF;20%F dan 

70%NF;30%F) dan tahap kebolehubahan (rendah, sederhana dan tinggi) dalam set 

data. Keputusan simulasi menunjukkan kadar ketepatan yang diperolehi oleh PRIDIT 

klasik, PRIDIT teguh berdasarkan M-Tukey Bisquare, MM, LTS dan Huber masing-

masing ialah 64.3%, 65.3%, 65%, 63.7% dan 61.7% pada tetapan kredibiliti (70%NF; 

30%F) dan kebolehubahan sederhana. Oleh itu, dapatan menunjukkan bahawa PRIDIT 

teguh berdasarkan M-Tukey Bisquare mengatasi penganggar lain dengan kadar 

ketepatan tertinggi iaitu 65.3%. Selain itu, kaedah PRIDIT teguh juga mempunyai 

kadar ketepatan yang lebih baik apabila kebolehubahan data adalah pada tahap 

sederhana atau tinggi berbanding kaedah PRIDIT klasik. Dengan demikian, kajian ini 

telah mengemukakan satu kaedah baharu menggunakan PRIDIT teguh untuk menilai 

kredibiliti data kewangan dengan lebih efektif. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background and Motivation of this Study 

Finance data, such as business support, credit card, insurance, mortgage, and 

payment data, play a significant role in organizational controls from simplistic 

reconciliations to audits, forensics, and even governance.  However, financial 

industries such as insurance companies, banks, and other financial institutions have 

recently encountered a significant number of fraud cases that has negatively impacted 

their businesses and the economy as a whole. According to KPMG's Global Banking 

Fraud report (2019), a survey on banking fraud involving 43 retail banks (13 in the 

Asia-Pacific region, 5 in the Americas, and 25 in Europe, the Middle East, and Africa 

or EMA) was conducted between November 2018 and February 2019. According to 

the survey, 61 percent of banks reported increased external fraud cases over the last 

three years, both in terms of value and volume. The survey also found that over half 

the respondents recovered less than 25 percent of losses incurred through fraud, which 

demonstrates that fraud prevention and related strategies are vital for protecting banks 

against fraudsters. 

Subsequent expansion and increase in fraud cases will result in billions of 

dollars in losses for financial institutions, as well as a reduction in the company's 

ability to operate. Fraud in the workplace can have a negative effect on the economy 

and lead to businesses becoming insolvent. As a result, financial data monitoring and 

effective classification of potential fraud cases could protect businesses from 

unassuming pitfalls. Previous research on financial fraud, such as bank fraud, 

insurance fraud, and commodities fraud, has been hampered by several difficulties and 

obstacles. Scholars have made significant attempts to establish approaches or 

strategies for objectively predicting, classifying, clustering, or profiling possible fraud 

cases in the financial industry. 
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However, there are several issues in handling financial data and methods 

developed in previous studies. There is no exact figure or information regarding actual 

fraud cases in the datasets, making it difficult to identify and classify fraud cases 

through transactions. Most companies are very sensitive to the idea of publishing real 

fraud cases due to worries of declining clients’ trust (Ai, 2008). In insurance cases, 

Brockett et al. (2002) stated that insurance investigators, adjusters, and insurance claim 

managers are often faced with situations where there is incomplete information for 

making decisions concerning the validity or possibility of a particular filed claim 

stamped with a fraudulent status.  

In other cases, numerous commercial banks and insurance institutions still use 

the judgemental approach in classifying tasks, such as classifying fraud or non-fraud 

in a claim or whether to extend credit or not. The method involves high costs if the 

case is a high-profile fraud case and this makes the decision-making process 

ineffective. Therefore, a systematic and comprehensive statistical methodology or 

system is needed to discover, detect or classify fraud and improve decision-making in 

the claim process. Hence, the issue lies in classifying and identifying fraudsters in data 

transactions.  

Understanding the characteristics of data variables is critical when dealing with 

financial data in order to examine and further analyse it. The issue in identifying 

financial fraud data is a crucial, complicated, and very challenging task since the 

database for such transactions is quite large, real-time and highly dimensional with 

more variables of interests and having a mixed type of data. Furthermore, these data 

are typically imbalanced in nature and fraudulent transactions make up a very small 

percentage compared to non-fraudulent cases. Therefore, it may be difficult to detect 

fraud. According to Wang, Zhao, & Li (2019), the banking industry faces problems as 

the amount of fraud transaction data is too small when using machine learning or other 

methods to construct fraud detection models, thus, it affects the training of anti-fraud 

models and the detection of fraud transactions.  

Thus, an effective fraud detection technique should have the capability to 

address these difficulties to achieve an optimum performance. This study focuses on 
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improving the classification task involved in identifying potential fraud cases, 

specifically in credit card applications, based on their profile and past credit history. 

One analytical method to counter the issue of credit financial datasets is the 

unsupervised scoring method, namely the classical Principal Component Analysis 

(PCA) Relative to an Identify Distribution (RIDIT) score or PRIDIT, as it suits the 

characteristics of a credit dataset. The classical PRIDIT method involves the 

transformation of each analysed dataset into a probability RIDIT scale (Mishra, 

Mohanty, and Mall (2018), Agostinho and Cherry, 2014, Brockett et al., 2002, Ai, 

Golden, and Brockett, 2009 and Bross, 1958). However, although there are limited 

references in the literature, unsupervised learning PRIDIT methods are still being 

employed in many applications, especially in financial data. 

Principal Component Analysis (PCA) is a technique for reducing the 

dimensionality of such datasets, increasing interpretability but at the same time 

minimizing information loss by creating new uncorrelated variables that successively 

maximize variance (Jolliffe and Cadima, 2016).  PCA deliberately reduces the 

dimensionality of a specific dataset and keeps the most significant variances in values 

in it (Andrić et al., 2016; Keng et al., 2015; Sriwijayanti, Raupong, and Sunusi, 2019). 

PCA is also intimately related to Singular Value Decomposition (SVD) since the mean 

arithmetic of the principal component is zero and equal to an eigenvector of the 

covariance matrix sorted by corresponding to the eigenvalue or equivalent to the 

variance of data. The principle coefficients are the linear coefficient used to construct 

the initial data set based on the principal component.  

The classical PRIDIT employs PCA-based Pearson correlation in the RIDIT 

data matrix to capture the highest eigenvalue and eigenvector.  The PCA technique, on 

the other hand, has its own flaws. According to Hubert and Engelen (2004), outliers 

are particularly susceptible to the standard PCA technique, which is based on the data's 

mean and sample covariance matrix. In the presence of outlying observations, 

classification algorithms based on this covariance matrix do not produce satisfactory 

results. Therefore, to overcome the flaws, a few scholars proposed robust estimators 

to classical PCA. For example, Engelen, Hubert, and Vanden Branden (2016) 

https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0202
https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0202
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compared three procedures for robust PCA in High Dimensions. Results revealed that 

the robust PCA (ROBPCA) is extremely robust and able to survive a wide range of 

contaminants. 

As mention by Cheikh (2014), one way to ‘robustify’ a PCA is by replacing 

the empirical mean and covariance matrix with robust versions, such as M-estimators 

(Maronna, 1976), minimum covariance determinant (MCD) estimators, and 

reweighted versions of them (Croux and Haesbroeck, 1999; Rousseeuw, 1985), S-

estimators (Davies, 1987), and other proposed versions, for example, by Ma and 

Genton (2001) and Kamiya (2001). Thus, in order to resist this variability and other 

effects using the Pearson coefficient of correlation, various robust correlation methods 

were employed by Ahad et al. (2018), Croux, Filzmoser, and Oliveira (2011) and 

Engelen et al. (2016a). Due to the issue of the Pearson correlation, a few robust 

estimators suggested incorporating the correlation matrix from the classical PRIDIT 

framework since many studies have found that robust estimators provide better results 

in terms of accuracy rate and classification task. 

Current studies on credit application still lack references on the use of 

simulation data to assess the performance of the PRIDIT methods. Previous studies on 

the assessment of the classical PRIDIT approach have often compared competitive 

techniques, such as clustering, logistic regression, and SVM (Ai, J et al., 2012). No 

study until date has checked the performance under different dataset settings. 

Hence, due to the above-mentioned issues concerning financial data and the 

classical PRIDIT method, this study aims to improve the classical PRIDIT framework 

and assess its performance by simulating data to address the issues. The main 

contribution of this research is the development of a robust PRIDIT methodology 

framework that can accommodate an approximate outlying measurement in the data 

matrix for the purpose of classifying financial data and identifying fraud cases.  

Performances by PRIDIT and robust PRIDIT methods are assessed by 

comparing the ability of different PRIDIT methods to detect potential fraud cases in 

this unsupervised approach using simulated data. The goal of using simulated data is 
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to demonstrate and evaluate PRIDIT's performance in classifying fraud and non-fraud 

cases at numerous different credibility percentages and degrees of variability, as well 

as to identify the most effective type of robust estimator that can be incorporated into 

the robust PRIDIT framework. 

1.2 Problem Statement 

Handling financial data is very challenging due to the unique features of 

financial data; for example, dataset transactions are very large, and raw datasets are 

typically unbalanced or skewed. There is also no exact figure or information regarding 

actual fraud cases in the datasets, making it difficult to classify and identify fraud cases 

through these transactions.  

The PRIDIT scoring method is an analytical method that can classify and 

identify fraud cases in financial credit datasets. The classical PRIDIT employs 

Principal Component Analysis (PCA) based Pearson correlation in the RIDIT data 

matrix to capture the highest eigenvalue and eigenvector. This method is still not 

robust since the PCA in RIDIT uses classical estimators which is insensitive to the 

variability present in high dimensional data. One method to counter the issue is to 

introduce robust estimators but the challenging task is to determine which is the best 

estimator and most suitable to be incorporated into the PRIDIT framework.  

Current studies on credit application lack the focus on examining the use of 

simulation data to assess the performance of the PRIDIT method. Previous studies 

compare between competitive supervised methods such as Logistic Regression, 

Support Vector Machine and others when assessing the classical PRIDIT method. 

There is yet any study until now that has examined its performance under different 

simulated dataset settings. 
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1.3 Aim of the Research 

The aim of this research is to develop a robust PRIDIT scoring method based 

on robust estimators correlation matrix to improve the performance of the 

classification task and identify potential fraud in financial datasets. 

1.4 Research Objectives   

The aim is expressed in a set of specific objectives that provide direction for 

this research. Therefore, the purpose of this research are listed as follows: 

i) To determine the best family of robust estimators in a PRIDIT scoring method. 

 

ii) To propose a modification of the PRIDIT scoring methodology framework for 

improving the classification task’s performance.   

 

iii) To analyse the performance of modified PRIDIT scoring on different levels of 

contaminated data (via credit applicant's variability and credibility setting). 

 

 

1.5 Scope of the Research 

The scope of this research deals with the following considerations:- 

i) Type of data is the primary factor in any research; therefore, this research 

focuses on mixed datasets consisting of categorical and continuous data in the 

analysis. Data used are secondary data, (German Credit dataset) retrieved from 

the UCI Machine Learning Repositories (https://archive.ics.uci.edu/ml). 

 

ii) Numerous classification tasks have applied supervised and unsupervised 

learning methods. However, this research focuses on the unsupervised method 

with no training data or predictor variable. The method employs unsupervised 

https://archive.ics.uci.edu/ml
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Principle Component Analysis (PCA) based on RIDIT or PRIDIT to improve 

classification tasks and identifying potential fraud cases involving financial 

and credit datasets. 

 

iii) This research used the R Statistical Programming method to develop and run 

the algorithm when assessing the PRIDIT scoring methodology’s performance. 

The simulation datasets that mimic certain characteristics of original datasets 

also generated different levels of contaminated data (via credit applicant's 

variability and credibility settings), which will be then analyzed. 

 

 

 

1.6 Significance of the Research 

This research aims to develop the robust unsupervised scoring procedure based 

on the PRIDIT approach to tackle the problem of misclassification or inaccuracy of 

fraudulent cases in financial data.  Therefore, this research contributes to the existing 

corpus of knowledge related to the financial industry through the robust PRIDIT 

scoring method. The significance of this research is listed as follows: 

i) The robust PRIDIT scoring method can improve the classification task when 

detecting fraudulent cases. 

 

ii) Results of the scores will assist the decision making process since this method 

can classify and indentify potential fraud cases in the financial dataset. 

 

iii) Output from the statistical analysis of the robust PRIDIT scoring method will 

help the management or executives to protect the organisation and evaluate 

risks before proceeding with the credit loan or claim.  

 

iv) Cost minimization of fraud investigations through a simple and more accurate 

unsupervised statistical method. 
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1.7 Contributions of the Research 

Contributions by this research are wide and immense in scope. The improved 

methodology assesses the performance of the classification task and detects potential 

fraud cases in financial and credit datasets.  

The main contribution of this research is the method that can determine the best 

estimators by comparing classical PRIDIT and robust PRIDIT methods using German 

Credit datasets. Thus, it would provide better results when estimating PRIDIT scores, 

leading to a more accurate classification task. The research has developed a robust 

PRIDIT methodology framework by incorporating robust estimators into the classical 

PRIDIT in order to improve the classification task and identify potential fraud cases 

in financial and credit datasets.  

The research assesses the performance of methods through a simulation study 

to classify and identify potential fraud cases. This simulation enables the research to 

measure the ability of different PRIDIT methods to detect the implanted applicants 

labelled as ‘fraudulent’ through different levels of contaminated data (via credibility 

settings and level of variability). Finally, the research introduces an algorithm and an 

alternative method to rank the scores and determine the best estimators for the robust 

PRIDIT method.  

1.8 Organization of the Thesis Structure 

This thesis begins with Chapter 1, which introduces the motivation and 

background of the problems related to the issue of financial data. In addition, this 

chapter also provides the aim, objectives, scope, significance and contribution  of the 

research. In essence, this chapter provides a general overview of the thesis.  

Chapter 2 examines existing literature related to the area of research. This 

chapter presents a general overview of fraud detection using financial data, review of 

data mining techniques and scoring methodologies for fraud detection, reviews credit 
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scoring for data mining methodologies and its advantages, disadvantages as well as an 

evaluation of credit card fraud detection, reviews the development of the PRIDIT 

scoring method and the application of RIDIT and PRIDIT methods, discusses 

limitations of the classical PRIDIT method, and  reviews the robust estimators. The 

comparison of the scoring method, RIDIT and PRIDIT are also discussed here.   

Chapter 3 presents the PRIDIT methodology found in the research framework. 

The classical PRIDIT methodology is discussed, together with the robust PRIDIT 

framework employed in this research. The robust PRIDIT methodology framework 

developed by incorporating several robust estimators into the classical PRIDIT and the 

algorithm are discussed and this is one of the main contributions of this research. This 

chapter also provides the algorithm and an alternative method for ranking credit 

applicants. 

Chapter 4 describes the selection of variables for further analysing the PRIDIT 

method and generating the simulated data. German credit data are then explored and 

this chapter provides a guide on how to select the variables. It also provides results of 

the analysis on classical PRIDIT and robust PRIDIT using the original German credit 

dataset. The result lead to the formulation of the study’s first objective . 

Chapter 5 presents the analysis and discussions regarding the use of classical 

PRIDIT and robust PRIDIT methodologies that employed simulated data. It discusses 

how to generate simulated data to acsess the performance of both, the classical and 

robust PRIDIT methods, to improve the classification task and identify fraud cases. 

The performance methods have been assessed by comparing the accuracy rate in 

classifying and detecting potential fraud cases using simulated data with different 

levels of contaminated data (via credit applicant's variability and credibility settings). 

The R programming method is used for simulating data, and analysing the output of 

financial and credit datasets. 

Chapter 6 presents the achievement of all the research objectives in order to 

improve the classification task and identify potential fraud in credit datasets. This 

research contibutes to the existing corpus of  knowledge on the robust PRIDIT 
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methodology framework and assessment of the simulation procedures. It also 

discusses the limitations of the research and suggests topics for future research to 

explore.   

Therefore, it can be concluded that the core of financial and banking data 

analytics is to provide significant business intelligence in terms facilitating the 

classification task and identifying fraud as far as quantification of risks in financial 

data transactions are concerned. The Unsupervised PRIDIT scoring method is 

proposed since there is a lack of studies on this subject matter.  

Previous studies have indicated that this method can solve the problem of 

classification task and identifying fraud in datasets.  Therefore, this study should be 

conducted due to limitations in the classical PRIDIT method as well as the need to 

improve the classification task and identify potential fraud in financial datasets. 
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