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ABSTRACT 

This thesis presents an integrated and simultaneous solution framework for 

obtaining a robust energy-efficient distillation columns sequence. Several methods for 

robust energy-efficient distillation columns sequence synthesis have been developed. 

The aim was to provide a distillation column sequence design with a reasonable energy 

consumption when exposed to disturbances. However, the capability of a robust 

energy-efficient distillation columns sequence in maintaining its energy changes at a 

minimum with respect to feed conditions has not been analyzed. As a result, the 

operability of a designed energy-efficient distillation columns sequence may be 

questionable. There is a clear need to develop a new integrated and simultaneous 

solution framework for designing a robust energy-efficient distillation columns 

sequence. Therefore, the objective of this study was to develop a new integrated and 

simultaneous solution framework for an energy-efficient distillation columns sequence 

by considering process sensitivity and economic analyses. In Stage 1, an existing 

sequence was simulated using Aspen HYSYS process simulator to obtain design 

variables. In Stage 2, the design of the distillation column sequence was considered 

through rigorous design at different design variables. In Stage 3, the process sensitivity 

of each design was analyzed and compared, where the feed conditions and reflux ratios 

were changed for each design, which represented different column designs. The 

economic and robustness analyses for the sequence were performed in Stage 4. The 

capability of the proposed methodology was tested using a case study to obtain a robust 

energy-efficient distillation columns sequence. A maximum energy saving of 

separation was obtained with return of investment and payback period about 796 % 

and 0.13 year respectively. All of these findings proved that the proposed framework 

is capable of solving problems in the energy-efficient distillation columns sequence 

for obtaining a robust energy-efficient distillation columns sequence in an easy, 

efficient, and systematic manner. 
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ABSTRAK 

Tesis ini membentangkan penyelesaian kerangka yang bersepadu dan serentak 

untuk mendapatkan jujukan turus penyulingan yang cekap tenaga dan mantap. 

Beberapa kaedah sintesis telah dibangunkan untuk mendapatkan jujukan turus 

penyulingan yang cekap tenaga. Tujuannya adalah untuk memastikan jujukan turus 

penyulingan dengan penggunaan tenaga yang berpatutan apabila didedahkan dengan 

perubahan. Walau bagaimanapun, keupayaan jujukan turus penyulingan yang cekap 

tenaga untuk mengekalkan perubahan tenaga terhadap keadaan masukan masih belum 

dianalisis. Akibatnya, operasi reka bentuk jujukan turus penyulingan yang cekap 

tenaga boleh dipersoalkan. Oleh itu, penyelesaian kerangka yang bersepadu dan 

serentak adalah satu keperluan untuk dibangunkan bagi mendapatkan jujukan turus 

penyulingan yang cekap tenaga dan mantap. Objektif kajian ini adalah untuk 

membangunkan kerangka baharu yang bersepadu dan serentak untuk jujukan turus 

penyulingan yang cekap tenaga dan mantap dengan mengambil kira analisis kepekaan 

dan ekonomi. Pada Peringkat 1, turus penyulingan sedia ada disimulasikan 

menggunakan perisian simulasi proses Aspen HYSYS untuk mendapatkan pemboleh 

ubah reka bentuk. Pada Peringkat 2, jujukan turus penyulingan direka bentuk melalui 

cara pengubahsuaian pada pemboleh ubah reka bentuk yang berlainan. Seterusnya, 

Peringkat 3 menganalisis dan membandingkan kepekaan proses untuk setiap reka 

bentuk yang berbeza keadaan masukan dan nisbah refluks yang mewakili reka bentuk 

turus penyulingan yang berbeza. Kemudian, analisis kepekaan dan ekonomi untuk 

setiap reka bentuk jujukan turus penyulingan ditentukan pada Peringkat 4. Keupayaan 

kaedah yang dicadangkan telah diuji menggunakan kajian kes untuk mendapatkan 

jujukan turus penyulingan yang cekap tenaga dan mantap. Keputusan kajian 

penjimatan tenaga maksimum telah diperoleh dengan pulangan pelaburan dan tempoh 

bayar balik sebanyak 796 % dan 0.13 tahun. Kesemua penemuan ini menunjukkan 

kerangka yang dicadangkan mampu menyelesaikan masalah jujukan turus 

penyulingan untuk mendapatkan jujukan turus penyulingan yang cekap tenaga dan 

mantap dengan cara mudah, berkesan, dan sistematik. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of the Study 

Distillation is the most widely applied separation technology and continues as 

an important process for the foreseeable future in many process industries, including 

chemical, petrochemical, biochemical, and bioenergy among others. As reported by 

several researchers, distillation units have the highest energy consumption among 

other units in refineries (Kiss, 2013; Jiang & Agrawal, 2019) as distillation remains 

the most used separation method at an industrial scale. For example, almost 10% of 

the industrial energy consumption in the United States of America is from distillation 

columns (Jana, 2017). 

With the recent strong upward trend in the cost of energy, there is considerable 

renewed interest in determining energy-efficient distillation column (EEDC) designs 

and multiple distillation column configurations. The price of energy has varied 

dramatically over the last few decades. This is a motivation for process plant designers 

to devise energy-saving strategies in the distillation column system design for 

satisfying a specific separation task. 

Three main problems of conventional distillation columns are large size, high 

energy consumption, and high operating costs (Rix et al., 2019). Nowadays, some 

energy-saving technologies have been proposed to reduce the energy consumption of 

distillation processes based on process intensification, such as dividing wall columns, 

thermal coupling of columns, heat-integrated distillation columns, and heat pump-

assisted distillation columns. This modification of distillation columns has the 

potential for a significant reduction of energy consumption. 
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The dividing wall column (DWC), for example, is one of the most appealing 

options to improve the existing distillation processes because it can help in enhancing 

thermal efficiency (Aurangzeb & Jana, 2016). It was reported that 25%–30% of energy 

saving could be achieved by implementing DWC (Kiss & Smith, 2020; Minh et al., 

2015). The DWC technology can also be effectively combined with reactive 

distillation (Weinfeld et al., 2018) or heat pumping for improving energy saving up to 

60% (Long & Lee, 2015). 

Besides designing new distillation column configurations, an alternative and 

safe approach is to use the existing configuration and operate the plant more 

efficiently, possibly with some minor modifications. Several methodologies for 

designing energy-efficient separation processes have been proposed by researchers. 

The methodology for an EEDC sequence, which is based on the driving force method, 

was developed by Mustafa and co-workers. This methodology can increase energy 

saving for a distillation column sequence in an easy, systematic, and efficient way. 

They found that 16% energy saving could be achieved using the driving force method 

compared to the existing direct sequence for the alcohol separation process (Mustafa 

et al., 2014). Numerous studies have also concluded that energy consumption can be 

successfully reduced by changing the existing direct sequence into an energy-efficient 

sequence suggested by the driving force method. For instance, the EEDC separation 

was proposed by Zaine et al. (2015) for the multi-component aromatic mixture. The 

approach resulted in a 7% reduction in terms of energy consumption compared to the 

existing distillation column sequence. Meanwhile, further investigation on the EEDC 

sequence was conducted for azeotropic separation (Zubir et al., 2017). Their study 

showed that the operational cost was successfully reduced up to 7.61% with similar 

product purity.  

Although several studies on the EEDC sequence have been successfully 

reported to save more energy consumption on a distillation column sequence, there are 

still less integrated, systematic, and simultaneous guides for finding the optimal 

solution for EEDC sequence problems that consider the criteria for process design and 

process operation (e.g., process sensitivity and process economics) simultaneously. 
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There is a clear need to develop a new integrated and simultaneous framework for 

designing a robust and optimal EEDC sequence.  

In this study, the integrated approach is defined as finding the optimum 

interaction solutions between the energy consumption for the EEDC sequence and the 

process sensitivity simultaneously rather than separately. Meanwhile, the 

simultaneous approach is defined as both solutions for minimum energy consumption 

and process sensitivity can be obtained at a single point. The integrated and 

simultaneous approach in this study emphasizes the simultaneous solution to the 

problem of obtaining minimum process sensitivity with respect to energy changes and 

minimum energy consumption for a distillation column sequence. This simultaneous 

and integrated solution can be obtained at the maximum point of the driving force 

curve. At the maximum point of the driving force curve, multi-component distillation 

column separation has less energy consumption and also shows less energy changes 

when disturbance appears in the distillation column sequence. 

1.2 Problem Statement 

A distillation column is an important equipment in the process separation 

system and it plays a key role in the chemical processing industry. When more than 

two components are involved, a sequence of distillation columns is used for 

fractionating and producing eligible individual chemical products, such as 

hydrocarbons. Due to the combinatorial nature of synthesizing a distillation column 

sequence, the problem becomes more complex and the solution to synthesize an 

optimal distillation column sequence is hard to obtain when the number of components 

involved in the separation process increases. This phenomenon is directly shown in 

the equation to determine the number of different sequences (NS) of conventional 

distillation columns to separate final products (P) with the desired purity (Kao, 1995). 

Equation 1.1 is used to obtain some insights on the number of sequences for a 

conventional distillation column sequence. 
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𝑁𝑆 =
[2(𝑃 − 1)]!

𝑃! (𝑃 − 1)!
                                                                           (1.1) 

 

From Equation 1.1, the number of different sequences increases rapidly as the 

number of products increases gradually. It will be easier to find a possible number of 

sequences when there are only three products. The feed to the second column can be 

either the overhead or the bottoms from the first column. Therefore, there are only two 

possible sequences and the energy required for these two possible sequences can be 

easily analyzed. However, if the sequence has eleven products, the number of possible 

sequences should be around 16,796 sequences. In this case, lots of effort, time, and 

cost are required to analyze the energy consumption of every possible sequence. 

Therefore, finding an optimal solution in terms of selecting a possible sequence with 

the lowest energy consumption becomes complicated and tedious. 

It should be noted that the number of possible sequences increases rapidly with 

an increasing number of components in the original feed. In addition, among those 

thousand possible sequences, there is a need to select one of the best sequences that 

uses minimum energy in an easy, efficient, and systematic way. Due to that, Mustafa 

et al. (2014) proposed a new systematic methodology that can design the existing direct 

sequence of distillation columns with minimum energy requirement in an easy, 

systematic, and efficient way without requiring any major modification to the existing 

sequence. Numerous studies have attempted to explore the application of the driving 

force method on the EEDC sequence that involved a number of components, for 

example, six components of aromatics separation process (Zaine et al., 2015a) with 

7% energy saving and eleven components of hydrocarbon separation process (Zaine 

et al., 2015b) with 5% energy saving. However, the capability of the developed 

methodology is only limited in selecting a sequence with less energy consumption. 

Moreover, the capability of the EEDC sequence in rejecting the effect of disturbance 

(process sensitivity with respect to disturbance) or maintaining its energy changes at a 

minimum with respect to the disturbance (robustness) is still not thoroughly analyzed. 

In recent years, several researchers have studied the effect of disturbances on 

the product qualities of distillation columns. According to Hamid et al. (2010), a 

distillation column designed at the maximum point of the driving force resulted in a 
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design with lower energy requirement and better performance in maintaining its 

product purities than any other points in the presence of disturbances. The finding by 

Hamid et al. (2010) is supported by Nordin et al. (2014), where they performed a 

controllability analysis for a single distillation column. They discovered that at point 

A (i.e., the maximum point at the driving force curve), the derivative value of the 

controlled variable (i.e., top and bottom product purities) with respect to disturbances 

is at a minimum. However, previous researchers only concentrated on the process 

sensitivity in terms of product purities with respect to disturbance changes for only a 

single distillation column design.   

Technically, the separation process in a chemical plant consists of multi-

components that require several distillation columns. In this study, it is important to 

analyze the process sensitivity of the designed EEDC so that the designed distillation 

column sequence is energy-efficient (requires less energy) and also robust in 

maintaining its less energy requirement in the presence of disturbances. It should be 

noted that finding an optimal solution in terms of selecting a possible sequence with 

the lowest energy consumption becomes complicated and tedious when the number of 

components is higher. In addition, it is also important to find the optimal solution for 

the robust EEDC. Combining the complexity and complicated EEDC problem together 

with the process sensitivity to identify robust EEDCs adds more weight to the existing 

problem. 

From the process optimization point of view, adding process sensitivity 

analyses to the complex and complicated EEDC design causes a higher degree of non-

linearity to the existing problem, which also increases the degree of difficulty of that 

problem. Therefore, another problem also needs to be importantly considered in this 

study, which is the capability of the solution framework to obtain a simultaneous 

optimal solution for a robust EEDC problem in an easy and systematic manner. 

Therefore, it is important to design a robust EEDC sequence to ensure that the 

distillation column sequence design is energy-efficient and robust to meet its product 

specifications and maintain its energy-efficient performance in the presence of process 

disturbances at the early process design stage. It should also be noted that finding the 
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best solution to this robust EEDC sequence problem is not an easy and straightforward 

task. Therefore, there is an important need to synthesize and design a robust EEDC 

sequence in this study to develop an integrated and simultaneous solution framework. 

The problem statement of this study is summarized as follows: 

Given a task involving a mixture of components that needs to be individually 

separated with desired product purities, it is desired to synthesize and design 

a robust and optimal EEDC sequence. In addition, it is also desired to 

systematically use the concept of the driving force method to synthesize and 

design a robust and optimal EEDC sequence.  

1.3 Research Objective 

Based on the above-mentioned problem statement, the main objective of this 

study is to develop a new solution framework for the EEDC sequence by considering 

the process sensitivity analyses in designing a robust and optimal EEDC sequence for 

maintaining energy changes when disturbances appear in the system in an easy, 

efficient, and systematic way. 

In achieving the main objective, some specific objectives that need to be 

fulfilled have been planned, which are: 

(a) To design a robust and optimal energy-efficient distillation columns sequence.  

(b) To develop a new solution framework to evaluate the capability of the driving 

force distillation columns design concept in determining the optimal solution 

to the robust energy-efficient distillation columns sequence synthesis problem. 

(c) To verify the capability of the newly developed solution framework in solving 

robust and optimal energy-efficient distillation columns sequence problem. 
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1.4 Research Scope 

To achieve the intended research objectives, the scope of research has been 

drawn as followed: 

(a) Studying the state-of-the-art development and technologies related to energy-

efficient distillation columns (EEDCs) sequence synthesis, design, sensitivity, 

and identify gaps and potential improvement for EEDCs sequence design and 

process sensitivity analyses. 

(b) Developing a new solution framework for designing a robust and optimal 

EEDCs sequence. The development includes the inclusion of the process 

sensitivity analyses to the established EEDCs sequence methodology. Specific 

scopes include:  

(i) Using a commercial process simulator (ASPEN HYSYS V9) to simulate 

the distillation columns sequence and analyze the energy requirement 

for each analyzed sequence. 

(ii) Extending the established EEDCs sequence methodology by 

considering the different points at the driving force curves. 

(iii) Extending the established EEDCs sequence by including process 

sensitivity analyses by modifying column process design values such as 

reflux ratio and feed stage location for improving further the potential 

of energy saving. 

(c) Evaluating the capability of the driving force distillation column design 

concept in determining the optimal solution to the robust EEDCs sequence 

synthesis problem. Specific scopes are: 

(i) Using a commercial process simulator (ASPEN HYSYS V9) to simulate 

the distillation columns sequence and analyze the energy requirement 

for each analyzed sequence. 
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(ii) Evaluating the capability of driving force concept for distillation column 

design in determining the optimal distillation column sequence which 

requires less energy for process sensitivity analyses. 

(d) Verifying the capability of the newly developed solution framework in solving 

the robust and optimal EEDCs sequence problem from different points on the 

driving force curves.To define the best parameter estimate. 

1.5 Research Contributions 

Through the work conducted in this study, several key contributions can be 

identified as follows: 

(a) A new integrated and simultaneous solution framework 

A new integrated and simultaneous solution framework for designing a robust 

and optimal EEDC sequence developed in this study addresses the driving 

force approach for analyzing the EEDC sequence at different points of driving 

force curves. The inclusion of this approach in the framework leads to a more 

systematic and simultaneous EEDC sequence analysis. In addition, the solution 

framework also includes process sensitivity analyses for further improving the 

potential of energy saving of the EEDC sequence. The availability of 

systematic and simultaneous EEDC sequence analysis with process sensitivity 

analyses can provide an integrated and simultaneous framework for 

synthesizing and designing a robust and optimal EEDC sequence.  

(b) Determination of the optimal solution   

The evaluation of the driving force concept in this study is able to provide 

users, such as process systems engineers or process plant managers, with 

valuable insights in determining the optimal solution to the robust EEDC 
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sequence problem. The use of the driving force graphical concept helps users 

in understanding how to synthesize and design the robust EEDC sequence in a 

manual but systematic manner. In addition, evaluating the capability of the 

driving force concept for distillation column design provides useful and 

informatics guidelines to users in identifying and modifying distillation 

columns for further improving the potential of energy saving using process 

sensitivity analyses. 

(c) Commercialization value of research output  

The developed framework, which is also a step-by-step algorithm, can be 

packaged into a commercial tool specialized in solving various robust and 

optimal EEDC sequence synthesis and design problems. The inclusiveness of 

the step-by-step algorithm into a commercial process simulator allows a large 

volume of data to be processed in a short time and helps to find the integration 

of the design decision for the multi-objective problem. This allows the design 

decision to be made easily and systematically without using rigorous analyses. 

This integrated analysis tool can help process systems engineers or process 

plant managers, as well as students and researchers in this area. 

Several publications have been successfully produced from this study as a part 

of the intellectual contributions. The lists of publications and achievements that have 

been accomplished during the study period and the key contribution of the knowledge 

can be referred in the List of Publications. 

1.6 Thesis Organization 

  This thesis comprises five chapters. Chapter 1 is the research introduction, 

highlighting the background of the study, problem statement, research objectives, 

scope, and contributions. Chapter 2 is the literature review where the state-of-the-art 

development and technologies related to EEDCs sequence synthesis and design are 

presented. In the same chapter, previous studies on the process sensitivity analyses 
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mainly for EEDCs design are also reviewed and analyzed to identify gaps and potential 

improvement for EEDCs sequence design and analyses. Chapter 3 describes the step-

by-step of the new integrated and simultaneous solution framework for designing 

robust and optimal EEDCs sequence. The research findings, including case studies are 

reported in Chapter 4. Last but not least, Chapter 5 concludes all the research output 

from this study and recommends possible future work to be explored. 
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