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ABSTRACT 

Unsaturated polyester resins (UPR) are the most widely used thermosets for 
composite applications. Besides fiber materials, solid fillers are also used extensively 
with UPR as reinforcement to enhance thermal and mechanical properties. Recently, 
the use of high porosity solid such as silica aerogels (SA) in polymer resins is 
gaining interest. SA is a unique class of nano-porous material with extremely low 
bulk density and high specific surface area. The addition of SA in polymer resins had 
resulted in enhanced composite materials having excellent thermal insulation, heat 
resistance, flame retardancy and lightweight. However, there are two major problems 
which hindered the production of SA polymer composites on an industrial scale; 
Firstly, the high cost of conventional SA which depends on expensive chemicals as 
precursor and secondly, the problem of adsorption of polymer into the SA nano-
pores which results to the loss of product properties. As solutions, two approaches 
were implemented in this study; first was to reduce the production cost via rice husk 
ash (RHA) as potential silica source for SA synthesis. Second, to prevent resin 
insertion into SA nano-pores, a novel coating method of the SA particles with 
polyvinyl alcohol was proposed to provide an impermeable layer to the structure of 
the SA. Through these approaches, this study aimed to investigate on how the 
physical, thermal and mechanical behaviours of the UPR composites are affected by 
changes in certain characteristics of the SA as the filler such as the porosity, particle 
sizes, surface coating and hybridization. As benchmarking, the amount of filler in 
UPR was fixed at 30% of volume fraction. The composites were characterized by 
various methods such as thermogravimetric analysis, differential scanning 
calorimetry, scanning electron microscopy, uniaxial tensile and compressive tests, 
dynamic mechanical analysis, hot-disk thermal analyzer and ASTM D635-14 
standard for horizontal burning rate. Evaluation of the SA produced from RHA 
revealed comparable properties to the conventional SA with density of 0.07 g/cm3, 
surface area up to 600–700 m2/g and thermal conductivity as low as 0.04 W/mK. The 
coating of the SA particles of diameters around 2.5 ± 0.5 mm using a fluidized bed 
coating technique had resulted in closed–pores core–shell aerogel (CSA) particles 
with measured shell thickness of between 10-50 µm. For UPR composites filled with 
silica, the composite containing SA as porous filler was at least 23% and 55% lower 
in density and thermal conductivity than the composite filled with non-porous filler 
(precipitated silica) respectively. For the same volume fraction of SA, the 
improvement in composite’s thermal insulation and thermal stability were found to 
be more for larger SA particles. However, increased in particle size also results in 
decreased of mechanical properties. For the same particle size, the composite with 
CSA particles showed a 50% higher of compressive strain and 10 to 12% lower for 
burning rate as compared to the composite with uncoated SA particles. The CSA 
particles show reinforcing effects on most of the properties studied, except tensile 
due to weak filler-matrix bonding. Finally, the combination of SA with alumina 
trihydrate (ATH) in UPR revealed a synergistic effect during thermal degradation as 
evidenced by higher thermal stability of the SA/ATH composite when compared to 
the composite containing only ATH.     
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ABSTRAK 

Resin Poliester tak tepu (UPR) adalah termoset yang paling banyak 
digunakan bagi aplikasi komposit. Selain bahan gentian, pengisi pepejal juga 
digunakan secara meluas bersama UPR sebagai penguat bagi menambah baik sifat 
terma dan mekanikal. Kebelakangan ini, penggunaan pepejal berliang tinggi seperti 
silika aerogel (SA) dalam resin polimer semakin mendapat perhatian. SA adalah 
bahan nano berliang yang unik dengan ketumpatan rendah dan luas permukaan 
spesifik yang tinggi. Penambahan SA dalam resin polimer telah menghasilkan 
komposit diperhebat dengan penebatan haba, rintangan haba, rencatan api dan 
ringan. Namun, terdapat dua masalah utama yang menghalang penghasilan SA 
komposit polimer pada skala industri; pertamanya, kos tinggi bagi SA konvensional 
yang bergantung pada bahan kimia yang mahal sebagai bahan mula dan kedua, 
masalah penjerapan polimer ke dalam liang nano SA yang menyebabkan kehilangan 
sifat produk. Sebagai penyelesaian, dua pendekatan telah dilaksanakan dalam kajian 
ini; pertama adalah mengurangkan kos pengeluaran melalui abu sekam padi (RHA) 
sebagai sumber silika yang berpotensi untuk sintesis SA. Kedua, bagi menghalang 
kemasukkan resin ke dalam liang nano SA, satu kaedah salutan novel bagi partikel 
SA dengan polivinil alkohol telah dicadangkan bagi menyediakan lapisan tak telap 
kepada struktur SA itu. Melalui pendekatan tersebut, kajian ini bertujuan untuk 
menyelidik bagaimana kelakuan fizikal, haba dan mekanikal komposit UPR itu 
terkesan dengan perubahan ciri-ciri tertentu SA sebagai pengisi seperti keliangan, 
saiz partikel, salutan permukaan dan penghibridan. Sebagai penanda aras, kandungan 
pengisi di dalam UPR telah ditetapkan pada 30% pecahan isipadu. Komposit telah 
dicirikan dengan pelbagai teknik seperti analisis gravimetrik haba, imbasan kebezaan 
kalorimetri, mikroskop imbasan elektron, ujian ketegangan, mampatan, analisis 
mekanikal dinamik (DMA), analisis haba cakera - panas dan piawaian ASTM D635-
14 untuk kadar pembakaran mendatar. Penilaian SA yang terhasil daripada RHA 
menunjukkan ciri yang setara dengan SA konvensional dengan ketumpatan 0.07 
g/cm3, luas permukaan sehingga 600-700 m2/g dan keberaliran haba serendah 0.04 
W/mK. Penyalutan partikel SA berdiameter 2.5±0.5 mm menggunakan teknik 
salutan lapisan terbendalir telah menghasilkan partikel aerogel teras-cengkerang 
(CSA) yang berliang tutup dengan ketebalan cengkerang 10-50 µm. Untuk komposit 
UPR yang berisi silika, komposit mengandungi SA sebagai pengisi berliang adalah 
23% dan 55% lebih rendah bagi ketumpatan dan keberaliran haba berbanding 
komposit berisi pengisi tak berliang (silika termendak). Bagi pecahan isipadu SA 
yang sama, peningkatan penebatan dan kestabilan haba dalam komposit dilihat lebih 
tinggi bagi partikel SA yang lebih besar. Namun peningkatan saiz partikel juga 
melemahkan sifat mekanikal. Bagi partikel bersaiz sama, komposit dengan CSA 
menunjukkan 50% lebih tinggi bagi terikan mampatan dan 10 hingga 12% lebih 
rendah untuk kadar pembakaran jika dibandingkan dengan komposit berisi partikel 
SA tak bersalut. Partikel CSA menunjukkan kesan penguatan pada kebanyakkan sifat 
yang dikaji, kecuali ketegangan kerana ikatan lemah di antara pengisi dan matrik. 
Akhirnya, gabungan SA dengan alumina trihidrat (ATH) dalam UPR menunjukkan 
kesan sinergi semasa penguraian haba yang dibuktikan oleh kestabilan haba yang 
lebih tinggi oleh komposit SA/ATH apabila dibandingkan dengan komposit yang 
hanya mengandungi ATH.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background of study 

Current market segments of polymer matrix composites (PMC) comprise of 

approximately 80% thermosetting resins or thermosets (Leon, Kim and Helga, 2017, 

p. 4). Thermosets are widely used for the production of permanent solid structure and 

dominated the high-temperature applications. Since 1930’s, unsaturated polyester 

resins (UPR) have been intensively used in various sectors covering oil and gas 

industries, construction, transportation and consumer products owing to its low cost, 

ease of processing, chemical resistance and strong mechanical properties (Strong, 

2008, p. 89). More recently, the development of reinforced UPR composites are 

gradually replacing steel and concrete in some segments of building and construction 

industry (Bagherpour, 2012, p. 158; Jabbar and Farid, 2018, p. 216). Due to its low 

density, a significant reduction in logistic cost can be achieved by using UPR 

composite materials. Besides, UPR is easier to be molded into intricate design as 

compared to cast steel, thus considerably reduced the labor cost and fabrication time. 

UPR market also has increased demands in transportation end-use industry on 

account of long service life and low maintenance (Gowda, Sanjay and Bhat, 2018, p. 

5). Concurrently with this, the needs on improving the performance of UPR have 

become important in order to meet the requirements of current and future 

applications.  

In general, there are two common approaches to improve the functional 

properties of polymer matrices. One is intrinsic modification by introducing new 

reactive species (i.e. monomers) into the polymer chain of the existing resin via co-

polymerization process; the other way is additive type modification, which is by 

physically introduce non-reactive additives or fillers in the polymer resin (Zhang, 

Huang and Liu, 2011, p. 1768; Lin, Yu and Jin, 2016, p. 633). It is thought that the 
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former technique is more effective in enhancing the resin properties with little 

detrimental effects on the native properties of the resin. However, this technique 

showed major drawbacks such as high processing cost and a relatively complicated 

process. As an alternative, the use of particulate fillers to modify resin properties is 

often considered as cost-effective due to a variety of low-cost fillers available in the 

market with high processability. Thus, this area is one of considerable research 

activity by both industry and academia at the present time.     

Regulations on the use of UPR in building and transportation requires deep 

consideration on human factors, therefore some features such as thermal comfort and 

fire safety are vital aspects in design (Troitzsc, 2013, p. 2). Currently, conventional 

UPR based composites often involves high amount of fillers such as sawmill, fumed 

silica and hollow glass micro balloons to improve thermal insulation, while 

halogenated compounds and hydrates are the most common material for flame 

retardancy (Schiavoni, Alessandro, Bianchi and Asdrubali, 2016, p. 990). Moreover, 

there were also fascinating research works on recycling biomass such as natural 

fibers as functional fillers in composite materials (Khan, Hameed and Ariffin, 2018, 

p. 770). Improving the composite performance as well as cost reduction is often 

thought as values added of using filler. However, cost reduction is not necessarily the 

case. Although most of the conventional fillers available are cheaper by weight than 

the resin, PMC fabrication (e.g. molding), however, is more concerned on filler-

matrix volume fraction rather than weight (Rothon, 2003, p. 22). Thus, the use of 

higher density fillers means that volume costs are not reduced by as great an extent.  

An effective method in reducing the specific density of a composite material 

is by the formation of structural pores during composite’s fabrication or post-

processing. To obtain porosity, the simplest method is by incorporating porous fillers 

in the polymer matrix itself. Two common characteristics sought after include; 

lighter weight and control of heat conduction. In this regard, highly porous materials 

such as silica aerogels (SA) have received an increasing interest in the last decades as 

filler in polymer composite. Unlike ordinary silica, SA is a special porous material 

with 3-dimensional mesoporous structure exhibiting many novel properties such as 

high surface area, ultra low density, excellent thermal insulation and high thermal 
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stability (Soleimani and Abbasi, 2008, p.10). SA is chemically inert and amorphous 

in nature. It can also be modified into hydrophobic for great dispersion in non-polar 

resin. Taking into account its unique properties, this study proposes the use of SA as 

potential filler for UPR with the aim of lightweight-composite materials for high-

temperature applications.  

1.2 Problems statements 

In recent years, there has been growing interest in using SA as filler or 

reinforcement in polymer resins covering both thermosets and thermoplastics. The 

SA – polymer composites were characterized by good compressive strength, 

durability and the most important advantages – lightweight and improved thermal 

insulation (Salimian, Zadhoush and Naeimirad, 2017, p. 3385). Despite their 

potential for various applications, the development of the composites however is still 

far from commercialization due to the expensive cost of SA. Production of 

conventional SA involves expensive chemicals and energy intensive supercritical 

drying process. The SA available in the market are derived from silicon alkoxides 

such as Tetra-ethyl-ortho-silicate (TEOS) and Tetra-methyl-ortho-silicate (TMOS). 

Apart from that, there is also a major problem of mixing the SA with liquid 

resins as intensive immersion of the resin into the porous structure will results in the 

loss desirable properties. Some studies have demonstrated a direct relationship 

between preservation of SA pores in the composite and thermal insulation of 

composites (Chang, Wang and Peng, 2014, p. 8; Kim, Noh and Yu, 2015, p. 40; Liu, 

Kim and Kwon, 2016, p.1705). To date, a number of methods have been proposed as 

solutions to prevent the intensive resin intrusion into the SA pores. These methods 

involve different techniques of polymer-filler mixing and curing but so far, no 

available study focus on the modification of the SA itself. 

Formerly, SA was added in various thermosetting polymers in an attempt to 

raise the service temperature and insulation performance (Dourbash, Buratti and 

Belloni, 2017, p. 521; Maghsoudi and Motahari, 2018, p. 706; Guzel, Yilmaz, 
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Deveci, 2018, p. 2; Wang and Jin, 2018, p. 36; Mohamed, Mustaffa and Norizan, 

2018, p. 18). However, the use of SA in UPR was only reported by a single group of 

authors (Mohamed et al, 2013, p. 600; Mohamed et al, 2018, p. 18). Besides, their 

studies were also limited on thermal stability and flammability of the composites. 

In this thesis, economically viable form of SA for composite applications was 

produced using rice husk. Rice husk is rich silica and its ash can contains more than 

85% of active silica by weight. As rice producing country, Malaysia generates more 

than half millions of tons of rice husks annually, thus can ensure a consistency in raw 

material. The novelty of this study lies on the approach designed to prevent intensive 

resin intrusion into the SA structure. Here, the produced SA particles were further 

coated with polymer into core-shell structure by using fluidized bed coating process. 

Based on the research gap identified from literatures, this research focuses on 

investigating the effects of SA on the properties of UPR.  

1.3 Research objective and goals 

The main objective of this thesis is to prepare and to characterize UPR 

composite materials using rice husk derived SA as fillers. Therefore this objective 

will be based on the following strategic goals: 

1. To prepare SA particles from rice husk via sol-gel, surface modification and 

drying process and to characterize the SA particles for comparison with 

commercial SA.  

2. To coat the SA particles with polymer solution into core-shell structured 

particles by using a bottom spray - fluidized bed coating process. 

3. To investigate the effects of SA as fillers with different characteristics such as 

porosity, particle size, surface coating and hybridization on physical, 

chemical, mechanical, thermal and flammability properties of the UPR 

composites.  
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1.4 Research questions 

Pertaining to the strategic goals, the following are the relevant research 

questions which need to be answered: 

1. What are the advantages and disadvantages of rice husk derived SA over 

chemical derived (commercial) SA? Are their characteristics comparable? 

2. What are the added values of modified SA over unmodified/plain SA? Is the 

proposed coating process feasible? 

3. What are the reinforcement and deterioration effects of SA as filler materials 

on the properties of UPR composites? 

 

1.5 Scope of study 

The method of producing sodium silicate solution was based on a patented 

method (US 7,897,648 B2, Halimaton, 2011). Hydrophilic and hydrophobic SA 

having particles sizes of not larger than 3.0 mm were produced via supercritical and 

ambient drying method.  Experimental variable in sol-gel process was limited to sol’s 

pH. For a comparison, a high-grade TEOS based SA, was purchased from Cabot 

Aerogel, United States. Coating of the hydrophobic SA particles was carried out 

using a lab scale fluidized bed coating machine owned by Universiti Teknikal 

Melaka. Commercially available, ready to use polyvinyl alcohol (PVA) was used as 

the coating material and the parameters for coating process were based on optimized 

process. For polymer matrix, an industrial grade orthophthalic type of UPR was used. 

Experimental variables for composite blends are limited to the characteristics of the 

filler, such as porosity, particle size, surface coating and hybridization with filler 

volume fraction of 30%. As for material characterization, the properties studied are 

limited to density, morphology, chemical properties, tensile and compressive 

behaviour, dynamic mechanical properties, thermal degradation and thermal 

conductivity, curing shrinkage, water absorption and flammability.  
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