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ABSTRACT

Gold is the most stable commodity when compared to oil, crypto currency
and even stock bonds. It is to gold that men turn to in the midst of political and
monetary vulnerability, a place of refuge that gives versatile store of value, the
common insurance hedge against bankruptcy and chaos. Forecasting gold price and
gold demand is an important step to ensure that gold remains as a valueble form of
investment or asset instead of being a liablity. Large gold bullions and gold authorities
do forecasting with a large set of data but this is not the case for a private investor or
consumer since these data are not made easily available to the public. In this research
a model was developed to conduct a forecast with a limited set of data and the model
is then tested using a large set of data. The quarterly world gold demand from 2010
to 2017 obtained from worldgoldcoundil.org were used as the limited data set and the
daily world gold price within 2017 obtained from the London Bullion Market (LBMA)
portal were used as the large data set. Artificial Neural Network (ANN) is the most
common model for forecasting with a limited data set, but in this study the Multilayer
Perceptron (MLP) model is developed with a Wavelet decomposition as well as
bootstrapping. Both sets of data were fitted into the ANN model, Bootstrap Artificial
Neural Network (BANN) model, Wavelet Artificial Neural Network (WANN) model
and finally Wavelet Bootstrap Artificial Neural Network (WBANN) model. It is found
that for the limited data set, the best model for the limited data set with the lowest value
of Mean Absolute Percentage Error (MAPE) and Root Mean Squared Error (RMSE)
is the WBANN model with 20.19 and 232.58, MAPE and RMSE values respectively.
Meanwhile the best model for the large data set was also the WBANN model with
0.89, 12.58 MAPE and RMSE values respectively. The accuracy index for the large
data set corresponds with that from the limited data set models. Thus, WBANN model
is the best model for limited data forecasting.
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ABSTRAK

Emas adalah komoditi yang paling stabil jika dibandingkan dengan minyak,
mata wang kripto dan juga bon saham. Emaslah yang orang beralih kepada di tengah-
tengah kelemahan politik dan kewangan, suatu tempat perlindungan yang memberikan
harga kedai yang bernilai, lindung nilai insurans biasa terhadap kebankrapan dan huru-
hara. Ramalan harga emas dan permintaan emas adalah satu langkah penting untuk
memastikan emas kekal sebagai satu bentuk pelaburan atau aset yang bernilai dan
bukan liabiliti atau. Bulion emas yang besar dan pihak berkuasa emas melakukan
ramalan dengan set data yang besar tetapi ini tidak berlaku untuk pelabur swasta
atau pengguna awam kerana data ini tidak mudah didapati kepada orang ramai.
Dalam kajian ini model untuk menjalankan ramalan dengan satu set data terhad telah
dibangunkan dan model ini kemudian diuji menggunakan set data yang besar. Suku
tahunan permintaan emas dunia 2010-2017 yang diambil dari worldgoldcoundil.org
telah digunakan sebagai set data terhad dan harga harian dunia emas tahun 2017
yang diperolehi daripada portal London Bullion Market (LBMA) telah digunakan
sebagai set data yang besar. Artificial Neural Network (ANN) adalah model
yang paling biasa untuk meramal dengan satu set data yang terhad, tetapi dalam
kajian ini yang model Multilayer Perceptron (MLP) dibangunkan dengan penguraian
Wavelet serta Bootstrap. Kedua-dua set data telah dimautkan ke dalam model
ANN, model Bootstrap Artificial Neural Network (BANN), model Wavelet Artificial
Neural Network (WANN) dan model Wavelet Bootstrap Artificial Neural Network
(WBANN). Didapati bahawa untuk set data yang terhad, model yang terbaik dengan
nilai terendah Mean Absolute Percentage Error (MAPE) dan Root Mean Squared
Error (RMSE) adalah model WBANN dengan masing-masing menghasilkan 20.19 dan
232.58 nilai MAPE dan RMSE. Sementara itu model yang terbaik untuk set data yang
besar juga adalah model WBANN dengan masing-masing mengahsilkan 0.89, 12.58
nilai MAPE dan RMSE. Indeks ketetapan untuk set data yang besar sepadan dengan
yang dari model set data yang terhad. Oleh itu, model WBANN adalah model terbaik
untuk ramalan data yang terhad.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This chapter presents the introduction. It begins with stating and elaborating

the background of data for the research and followed by the problem statement. The

problem statement will give a much clearer aim for this study. Objective of this study

will also be presented in this chapter. Objectives are a derivation of the aim of this

study, what were done to achieve the main goal. What this study encompasses is stated

in the scope of study. Scope of data as well as scope of model used is explained there.

Lastly, significance of study or importance of this study is elaborated.

1.2 Research Background

Compared to crude oil, crypto currency or even stock bond, gold is considered

as one the most stable commodity. Nonetheless, being a commodity prices of gold

still fluctuatues from time to time. Thus, methods of forecasting future gold price

is contantly being developed with the aim of finding the most accurate model to

predict the price of future gold. In this study a model for forecasting gold price and

gold demand using neural network with a hybridization a discrete wavelet transform

deomcposition will be explored. This method of study is also known as demand

forecast research.

As the case of other commodities in the market around the world, price of gold
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are most dependent on the concept of supply and demand. Demand is the amount or

quantity of a product in which the buyers desire, while supply is the amount or quantity

that the market are able to offer. The concept states that as the demand for a certain

product; for instance gold, is high and supply is abundant, prices of gold will drop. But

in the case of high demand but inadequate supply, the prices of gold will soar.

Forecasting the demand of gold may allow mining companies, as well as

commodity market to take into account the demand of gold worldwide as well as the

amount of gold in the reserves. With high demand of gold, but low reserve volume,

prices of gold are going to soar and vice versa. If forecasted values are accurate

enough, mining process as well as gold reserve authorities could plan production or

mining and selling of gold. Thus lowering chances of shortage in the reserve.

There have been previous studies on gold demand. Most of the issues faced

when forecasting a commodity whether it is price of gold or demand of gold are the

accuracy of the model. Another problem faced was limited data resources. Since

only certified authorities have the data on gold price and gold demand, not much has

been released to the public. This study aims to overcome that problem by modelling a

forecast with limited data length.

According to Abu (2016), a data set of length 4 to 30 is considered as a

limited data. Unlike normal length data, a limited data cannot be modeled using the

common practise of forecasting. A few of the most common forecasting model are the

Auto Regressive Integrated Moving Average (ARIMA) model, exponentiol smoothing,

extrapolation and trend estimation. These models mentioned require a large amount of

data to operate. Thus in this study a model that can accomodate a limited data set will

be explored.

The limited data set used in this study are the quarterly world demand of gold

from 2010 to 2017. The data is then fitted into a suitable mode and to further verify the

accuracy of the model, the model is then fitted into a larger data set which is the price
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of gold. Thus, this study will conclude accuracy of those model and forecasted world

gold demand.

1.3 Problem Statement

Gold is a commodity that have been used since ancient times. Prices and

demands of gold continues to rise even to this day. Gold demand data is scarced,

leading to a limited amount of data. While the data for gold price is abundant, leading

to a large amount of data. Which brings us to the problem statement:

(a) What model can accomodate both large and limited data set?

(b) How to adopt a limited data set to the neural network model?

(c) Which neural network model would best fit the data set?

(d) Is the large data set better for forecasting than the limited data set?

1.4 Research Objectives

Objectives of this study are as follows:

(a) To identify the best neural network model by determining the number of hidden

neurons used.

(b) To expand limited data set by bootstrapping and wavelet decomposition.

(c) To replicate the results of the first and second objective with a larger data set.

(d) To conduct a comparative study on forecasting with limited data set and large data

set.

(e) To determine the best hybrid model out of ANN, BANN, WANN and WBANN for

limited and large data set by evaluating the error index of each model.
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1.5 Scope of the Study

Scope of this study will be explained in two parts. The first part is on the data

used, while second part wll be on the model and methods used.

1.5.1 Scope of Data

There will be two types of data used in this study. First is the limited data set,

which is taken from the worldcouncil.org website. Limited data set used are the data

of quarterly world gold demand in tonnes by worldgoldcouncil.com from first quarter

of 2010 to fourth quarter of 2017. While a normal length of 249 data set were taken

from lbma.org.uk. Which is the London Bullion Market web site. Daily gold prices

of USD per troy ounce in the London Bullion Market from January 2017 to December

2017 were used for this study.

1.5.2 Scope of Model

This study uses a number of models. First model is an Artificial Neural

Network Model (ANN), more specifically a Multilayer Perceptron model (MLP). MLP

is a class of feed forward artificial neural network. This will be dicussed further with

details in Chapter 3 Next, Bootstrap Artificial Neural Network (BANN). BANN is

a hybrid model which will bootstrap ANN model outputs. Those average bootstrap

values are taken as the next value for the fitted model. Wavelet Artificial Neural

Network (WANN) will decompose the time series data in component which will be

obtained using filters. Those components are then fitted into the ANN model, then final

fitted WANN model is achieved by adding those components up. And lastly, Wavelet

Bootstrap Artificial Neural Network (WBANN) will encompass both the BANN and

WANN model.
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1.6 Significance of Findings

Findings of this research can forecast gold demand and gold prices suing

a hybrid Wavelet Bootstrap Artificial Neural Network model. These finding are

important as it pave the way for other research opportunities and ideas. Encompassing

a limited data set and a large data set, this research is important as the findings of this

research may prove that researches wil no longer be restricted with having a large set

data to do forecasting. With the developed model of Wavelet Bootstrap Artificial neural

Network, it shows that the possibilities of research suing an ANN model is endless. It

may prove that machine learning is a great tool for forecasting.

1.7 Research Framework

This thesis consists of six chapters. The first chapter is the introdcution to this

research. The background of the problem, scope of study, research objectives as well

as the significance of this study are presented in this chapter. Chapter 1 also contains

the framework of this research, where the construction of thesis is explained.

Chapter 2 is the literature review. Past research or study on the topic of gold and

time series forecasting are presented in this chapter. An introduction to the history of

gold are also present here. The main objective of Chapter 2 is to analyse past studies

as well problems faced by the researces and methods to overcome it. Methods on

forecasting time series are also studied during Chapter 2.

Chapter 3 contains the research methodology of this research. Each method of

ANN, Wavelet and Bootstrapping to design the model for forecasting limited length

gold demand data as well as large length gold price data is presented in this chapter.

Previous studies on each of the methods are also presented in this chapter.

5



Chapter 4 contains the findings and results obtained by fitting the limited length

gold demand data set into the forecasting model of Artificial neural network, Wavelet

Artificial Neural Network, Bootstrap Artificial Neural Network and Wavelet Bootstrap

Artificial Neural Network. An analysation and a conclusion was made at the end of

this chapter.

Chapter 5 replicates the findings of Chapter 4 but with a larger data set, that is

the gold price data set. A comparative study between a limited data set forecasting and

a large data set forecasting is presented in this chapter as well.

Lastly, Chapter 6 presents the final conclusion of this research. The outcome

of the forecasting model for both the limited data set and large data set is presented as

well. A summary of the research done and improvements for future researches are also

discussed in this chapter.
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