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ABSTRACT 

The application of fractional derivative is currently convenient and 

anticipated in the industrial and technological fields due to its unique properties. 

Therefore, the goal of this research is to learn more about the characteristics of the 

Caputo fractional derivative, which is one of the most often used fractional derivative 

operators. Additionally, microchannels exist in many industries and engineering 

process equipment, and their geometrical structure is one of the most important 

factors influencing fluid flow. Therefore, in this thesis, the Casson fluid behavior 

flowing in three different forms of microchannel which are static, accelerated, and 

oscillating is investigated. The effect of thermal radiation on the Casson fluid is also 

considered. The formulation of the governing equation for the problems is 

thoroughly discussed. First, the partial differential equations and boundary conditions 

are transformed into dimensionless equations by using appropriate dimensionless 

variables. Second, the resultant dimensionless governing equations are transformed 

into fractional form by using Caputo fractional derivatives. The equations are then 

reduced to linear ordinary differential equations by using the Laplace transform 

technique and solved by using appropriate methods. Finally, the numerical solution is 

obtained by using the inverse Laplace transform technique with the help of Zakian’s 

explicit formula approach. The result of velocity and temperature profiles are plotted 

by using Mathcad software. The obtained solutions are reduced to the published 

results for such problem for verification and accuracy, and have achieved excellent 

agreement. The influence of key physical parameters on the velocity and temperature 

profiles is analyzed and discussed in depth. The results reveal that as the fractional 

and radiation parameters are increased, the velocity and temperature profiles for all 

three geometries of the microchannel increase. On the contrary, high Prandtl 

numbers have increased the viscous force, resulting in a reduction in both profiles. 

Since the Grashof number has a positive influence on the buoyancy force, it has 

caused the velocity profile to increase. Meanwhile, the velocity profile reveals a 

contrasting pattern, with the Casson fluid parameter increasing due to increased 

viscous forces compared to thermal forces. 
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ABSTRAK 

Penggunaan terbitan pecahan pada masa ini mudah dan dijangkakan 

pengunaannya dalam bidang perindustrian dan teknologi kerana sifatnya yang unik. 

Oleh itu, matlamat penyelidikan ini adalah untuk meneroka lebih lanjut tentang ciri-

ciri terbitan pecahan Caputo iaitu salah satu operator terbitan pecahan yang paling 

banyak digunakan. Tambahan pula, mikrosalur banyak terdapat dalam peralatan 

proses di industri dan kejuruteraan, dan struktur geometri mikrosalur merupakan 

salah satu faktor paling kritikal yang mempengaruhi aliran bendalir. Oleh itu, dalam 

tesis ini, kelakuan bendalir Casson yang mengalir dalam tiga jenis mikrosalur iaitu 

statik, dipercepat, dan berayun diselidiki. Kesan sinaran terma ke atas bendalir 

Casson juga dipertimbangkan. Formulasi persamaan menakluk bagi semua masalah 

dibincangkan secara terperinci. Pertama, persamaan terbitan separa dan semua syarat 

sempadan diubah menjadi persamaan tak berdimensi, dengan menggunakan 

pembolehubah tak berdimensi yang sesuai. Kedua, persamaan menakluk tak 

berdimensi yang diperoleh diubah menjadi bentuk pecahan, dengan menggunakan 

terbitan pecahan Caputo. Persamaan tersebut kemudiannya diturunkan ke persamaan 

terbitan biasa linear dengan menggunakan teknik penjelmaan Laplace dan 

diselesaikan dengan menggunakan kaedah yang bersesuaian. Akhirnya, penyelesaian 

berangka diperoleh menggunakan teknik penjelmaan Laplace songsang dengan 

bantuan pendekatan formula eksplisit Zakian. Keputusan profil halaju dan suhu 

diplot dengan menggunakan perisian Mathcad. Penyelesaian yang diperoleh 

diturunkan kepada keputusan yang telah diterbitkan bagi setiap masalah tersebut  

bagi tujuan pengesahan dan ketepatan, dan telah memperoleh persetujuan yang baik. 

Pengaruh parameter fizikal ke atas profil halaju berserta suhu dianalisis dan 

dibincangkan secara terperinci. Keputusan menunjukkan bahawa dengan 

peningkatan parameter pecahan dan sinaran, profil halaju dan suhu meningkat untuk 

ketiga-tiga geometri mikrosalur. Sebaliknya, nombor Prandtl yang tinggi telah 

meningkatkan daya likat, mengakibatkan kedua-dua profil menurun. Oleh kerana 

nombor Grashof mempunyai pengaruh positif ke atas daya keapungan, maka profil 

halaju telah meningkat. Sementara itu, profil halaju menunjukkan keadaan yang 

bertentangan apabila meningkatnya parameter bendalir Casson yang disebabkan oleh 

peningkatan daya likat berbanding dengan daya terma. 



viii 

 

TABLE OF CONTENTS 

 TITLE PAGE 

 

DECLARATION iii 

DEDICATION iv 

ACKNOWLEDGEMENT v 

ABSTRACT vi 

ABSTRAK vii 

TABLE OF CONTENTS viii 

LIST OF TABLES xi 

LIST OF FIGURES xii 

LIST OF ABBREVIATIONS xiv 

LIST OF SYMBOLS xv 

LIST OF APPENDICES xvii 

CHAPTER 1 INTRODUCTION 1 

1.1 Introduction 1 

1.2 Research Background 1 

1.3 Problem Statement 10 

1.4 Objectives 11 

1.5 Scope of Research 12 

1.6 Significance of Research 13 

1.7 Research Operational Framework 14 

1.8 Thesis Outline 15 

CHAPTER 2 LITERATURE REVIEW 17 

2.1 Introduction 17 

2.2 Non-Newtonian Fluids with Fractional Derivative 17 

2.3 Non-Newtonian Fluid with Thermal Radiation Effect 20 

2.4 Non-Newtonian Fluid in Diverse Geometries 23 



ix 

2.5 Current Study 28 

CHAPTER 3 APPLICATION OF CAPUTO FRACTIONAL 

DERIVATIVE TO CASSON FLUID OVER A 

STATIC MICROCHANNEL WITH THERMAL 

RADIATION 31 

3.1 Introduction 31 

3.2 Problem Formulation 32 

3.2.1 Momentum Equation Formulation 32 

3.2.2 Energy Equation Formulation 37 

3.2.3 Thermal Radiation Effect 42 

3.2.4 Initial and Boundary Conditions 44 

3.2.5 Nondimensionalization Process 45 

3.3 Time-Fractional Equations Generation 48 

3.4 Solutions of the Problem 49 

3.4.1 Solution of the Energy Equation 49 

3.4.2 Solution of the Momentum Equation 51 

3.5 Inverse Laplace Transform 56 

3.6 Limiting Case 57 

3.7 Results and Discussion 58 

3.8 Conclusion 63 

CHAPTER 4 APPLICATION OF CAPUTO FRACTIONAL 

DERIVATIVE TO CASSON FLUID OVER AN 

ACCELERATED MICROCHANNEL WITH 

THERMAL RADIATION 65 

4.1 Introduction 65 

4.2 Problem Formulation 65 

4.2.1 Initial and Boundary Conditions 66 

4.2.2 Nondimensionalization Process 67 

4.3 Time-Fractional Equations Generation 67 

4.4 Solution of the Problem 68 

4.4.1 Solution of the Energy Equation 68 

4.4.2 Solution of the Momentum Equation 68 

4.5 Inverse Laplace Transform 72 



x 

4.6 Limiting Case 72 

4.7 Results and Discussion 73 

4.8 Conclusion 78 

CHAPTER 5 APPLICATION OF CAPUTO FRACTIONAL 

DERIVATIVE TO CASSON FLUID OVER AN 

OSCILLATING MICROCHANNEL WITH 

THERMAL RADIATION 79 

5.1 Introduction 79 

5.2 Problem Formulation 80 

5.2.1 Initial and Boundary Conditions 80 

5.2.2 Nondimensionalization Process 81 

5.3 Time-Fractional Equations Generation 81 

5.4 Solution of the Problem 82 

5.4.1 Solution of the Energy Equation 82 

5.4.2 Solution of the Momentum Equation 82 

5.5 Inverse Laplace Transform 86 

5.6 Limiting Case 87 

5.7 Results and Discussion 87 

5.8 Conclusion 93 

CHAPTER 6 CONCLUSION 95 

6.1 Introduction 95 

6.2 Research Summary 95 

6.3 Recommendation for Future Research 97 

REFERENCES 99 

LIST OF PUBLICATIONS 115 
 



xi 

 

LIST OF TABLES 

TABLE NO. TITLE PAGE 

Table 1.1: Examples of commonly used PDE 2 

Table 6.1: Influence of pertinent parameters on temperature profile 97 

Table 6.2: Influence of pertinent parameters on velocity profile 97 



xii 

 

LIST OF FIGURES 

FIGURE NO. TITLE PAGE 

Figure 1.1: Shear stress versus shear rate of Newtonian fluids 3 

Figure 1.2: Viscosity versus shear rate of non-Newtonian fluids 4 

Figure 3.1: Schematic diagram of the microchannel 32 

Figure 3.2: Energy transport in and out at the control volume 38 

Figure 3.3: Comparison of velocity profile with Saqib et. al. (2019) 57 

Figure 3.4: Temperature profiles for different values of   59 

Figure 3.5: Velocity profiles for different values of   59 

Figure 3.6: Temperature profiles for different values of Pr  60 

Figure 3.7: Velocity profiles for different values of Pr  60 

Figure 3.8: Temperature profiles for different values of R  61 

Figure 3.9: Velocity profiles for different values of R  61 

Figure 3.10: Velocity profiles for different values of o  62 

Figure 3.11: Velocity profiles for different values of Gr  63 

Figure 4.1: Comparison of velocity profile with Sheikh et. al. (2020) 73 

Figure 4.2: Temperature profiles for different values of   74 

Figure 4.3: Velocity profiles for different values of   74 

Figure 4.4: Temperature profile for different values of Pr  75 

Figure 4.5: Velocity profile for different values of Pr  75 

Figure 4.6: Temperature profile for different values of R  76 

Figure 4.7: Velocity profile for different values of R  76 

Figure 4.8: Velocity profile for different values of o  77 

Figure 4.9: Velocity profile for different values of Gr  77 

Figure 4.10: Velocity profile for different values of   78 

Figure 5.1: Comparison of velocity profile with Khan et. al. (2018) 87 

../../../../Downloads/Full%20thesis%202.doc#_Toc106796320


xiii 

Figure 5.2: Temperature profiles for different values of   88 

Figure 5.3: Velocity profiles for different values of   89 

Figure 5.4: Temperature profile for different values of Pr  89 

Figure 5.5: Velocity profile for different values of Pr  90 

Figure 5.6: Temperature profile for different values of R  91 

Figure 5.7: Velocity profile for different values of R  91 

Figure 5.8: Velocity profile for different values of o  92 

Figure 5.9: Velocity profile for different values of Gr  92 

Figure 5.10: Velocity profile for different values of   93 

 

 



xiv 

LIST OF ABBREVIATIONS 

MHD - Magnetohydrodynamic 

ODE - Ordinary Differential Equations 

PDE - Partial Differential Equations 

   

 



xv 

LIST OF SYMBOLS 

A  - Acceleration of plate 

pC   - Specific heat at constant pressure 

d   - Distance between two plates 

(..)tD
  - Time fractional derivative of order    

e  - Internal energy 

g   - Gravitational acceleration 

Gr   - Grashof number 

( )H t   - Heaviside function 

i  - Cartesian unit vector in x−  axis direction 

j  - Cartesian unit vector in y −  axis direction 

k  - Cartesian unit vector in z−  axis direction 

k   - Thermal conductivity 

1k   - Mean absorption coefficient 

 - Laplace transform 

p   - Pressure 

dp   - Dynamic pressure 

hp   - Hydrostatic pressure 

yp  - Yield stress 

Pr   - Prandtl number 

q   - Laplace transform parameter 

rq   - Radiative heat flux 

"q   - Heat conduction per unit area 

R   - Radiation parameter 

t   - Time 

T   - Temperature 

wT   - Wall temperature 

oT  - Ambient temperature 

u   - Velocity in x−  axis direction 

U  - Amplitude of the plate oscillations 



xvi 

v   - Dimensionless velocity  

2V  - Magnitude of velocity 

x   - Dimensional coordinate axis along the plate 

y   - Dimensional coordinate axis normal to the plate 

 

 

Greek Letters 

 

   - Fractional parameter 

  - Casson fluid parameter 

T  - Volumetric coefficient of thermal expansion 

o   - Dimensionless Casson fluid parameter 

   - Vector operator Del 

  - Dimensionless acceleration of plate 

   - Dynamic viscosity 

B   - Plastic dynamic viscosity 

   - Shear stress 

   - Product of deformation rate with itself 

c   - Critical value of product 

   - Fluid density 

b   - Body force 

  - Dimensionless temperature 

   - Kinematic viscosity 

   - Dimensionless coordinate axis normal to the plate 

   - Phase angle 

   - Stefan-Boltzmann constant 

   - Frequency of oscillation 

 

 

 

 

 

 

 



xvii 

LIST OF APPENDICES 

APPENDIX TITLE PAGE 

Appendix A Mathcad Coding for Temperature Profiles 111 

Appendix B Mathcad Coding for Velocity Profiles 113 

 

 

 

 



1 

CHAPTER 1  

 

 

INTRODUCTION 

1.1 Introduction 

In this chapter, research background, problem statement, research objectives, 

scope of study as well as the significance of study is presented. The research 

background briefly describes the study of fractional derivative which is the Caputo 

fractional derivative operator. The discussion is focused on the convective flow of 

Casson fluid in a microchannel with the presence of thermal radiation. The problem 

statement provides some questions on the mathematical modelling, analytical 

solutions using Laplace transform method and the effects of pertinent parameters. 

The research objectives have fulfilled the problem statement together with scope and 

significance of the study. 

1.2 Research Background 

Generally, the motion in the nature such as fluid flow, heat transfer, wave of 

sound and others can be mathematically described by using the partial differential 

equation (PDE). Stated by Strauss (2007), PDE is an equation that consist of more 

than one independent variable such as ,x  ,y  and .z  For example, Farlow (1993) 

declared that the temperature ( ),T x t   is dependent on two variables which are x  

(location) and t  (time). Moreover, Renardy and Rogers (2004) have mentioned that 

partial differential equation (PDE) is more advanced as compared to ordinary 

differential equations or theory of functions of a single complex variable.  

PDE is widely use in various area such as engineering, physics, and 

stochastic problems, since natural phenomena including velocity and acceleration are 
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normally described in derivatives (Farlow, 1993). Besides, PDEs are often used by 

scientist and engineers to explore a wide range of physical phenomenon including 

fluid dynamics, electricity, magnetic fields, and thermal transfer (Farlow, 1993). The 

Maxwell’s equations, the Navier-Stokes equations and Newton’s equations of motion 

are some examples of physicist’s natural law that is stated in terms of PDE. There are 

a few PDE that are well-known and commonly used without being notice. Some of 

the PDE are as shown in Table 1.1. 

Table 1.1: Examples of commonly used PDE 

t xxu u=   Heat equation in one dimension 

t xx yyu u u= +   Heat equation in two dimensions 

2

1 1
0rr ru u u

r r
+ + =   Laplace’s equation in polar coordinates 

t xx yy zzu u u u= + +   Wave equation in three dimensions 

According to Causon and Mingham (2010), PDE can be existed in several 

dimensions depending to the number of independent spatial variables it contains as 

represented on the Table 1.1. However, the most common dimensions that PDE ever 

use is in 2D and 3D. They also stated that second order linear PDE are classified into 

3 generic types which are elliptic, parabolic and hyperbolic. The importance of PDE 

can be seen to describe the conservation laws in fluid dynamic since the flow 

variables rely on other independent variables. The partial derivative of a 

multivariable function is its derivative with respect to one of the variables while the 

rest are held constant. The symbol of partial derivative is represented as .  

Researchers are always curious on the usage of fluid dynamics due to its 

development in sciences and the utilization of it’s as a critical tool in numerous 

industrial and technological applications for centuries. Fluid dynamics has evolved 

from a well-developed research field to a widely practical topic with a greater scope. 

Fluids can be categorized in two main classes which are known as Newtonian 

fluids and non-Newtonian fluids. A Newtonian fluid is one in which the stress versus 

strain rate curve shows a linear trend and passes through origin. Viscosity is the 
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result of having a constant proportionality. Hence Newtonian fluid is said to be the 

simplest mathematical model of fluid. Historically, Isaac Newton was the founder to 

the fluid hence it is named after him who first used the differential equation to 

hypothesize the interaction between shear stress and shear rate. This fluid has a linear 

relationship which obey the Newton’s law of viscosity, 

 ,s

du

dy
 =   (1.1) 

where the s  denoted the shear stress in the fluid, the shear viscosity of the fluid, ,  

is a scalar constant of proportionality and u  is the velocity in the direction of y −  

axis. There are a few examples of Newtonian fluids such as water and oil. These are 

the examples over the range of shear stress and shear rate that people experience in 

daily life. Whereas benzene, glycerine and alcohol are examples of Newtonian fluids 

that are commonly found in scientific lab. Stated by Khan et. al. (2014) many 

researchers have been including shear stress as the boundary related to fluid 

mechanics. 

 
Figure 1.1: Shear stress versus shear rate of Newtonian fluids  

Figure 1.1 is retrieved from George and Qureshi, 2013. Based on Figure 1, it 

shows the plot of shear stress versus shear rate shows Newtonian offer a linear 

increase in stress as shear rates increase. Meanwhile the viscosity of the fluid is 

represented by the slope. Hence, it means that their viscosity will remains constant 
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all the time as no matter how quick the Newtonian fluids are pressured to flow 

through such a pipe or channel. 

Meanwhile, non-Newtonian is a vice versa of Newtonian fluid. Non-

Newtonian fluid does not obey the Newton’s Law hence the shear stress is not 

necessarily proportional to the shear rate. Referring to Figure 1.2 (UKEssays, 2018), 

the viscosity of non-Newtonian fluid is depending on shear rate either the shear will 

be thickening or thinning. Shear thinning fluid is known as pseudoplastic fluid 

whereas shear thickening fluid is recognized as dilatant fluid. The contrary of non-

Newtonian fluid is the fluid shows either a non-linear relation relationship between 

shear stress and shear rate, as well as yield stress or a viscosity that is time or 

deformation dependent. If the viscosity of the fluid increase, the shear rate increases 

hence the fluid is called as shear thickening. A mixture of a corn starch and water is 

the examples of shear thickening fluids whereas the example of shear thinning fluids 

is wall paint. 

 
Figure 1.2: Viscosity versus shear rate of non-Newtonian fluids 

Moreover, many researchers agreed that the governing equation for non-

Newtonian fluid is much non-linear and complicated compared to Newtonian fluid. 

The statement is acknowledged by Khalid et. al. (2015) where the governing 
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equations of non-Newtonian fluids manipulate highly non-linear differential 

equations that are normally difficult to solve. Non-Newtonian fluid are commonly 

used in industry such as in printing. As non-Newtonian fluid is more viscous 

compared to Newtonian fluid, it can enhance the sharpness and the quality of the 

printing. The shear thinning contributes to the properties of the printing ink. 

Therefore, to thicken the viscosity of the ink, this is where non-Newtonian will help 

as a thickening agent. Other than in printing industry, Hussanan et. al. (2013) also 

mentions that non-Newtonian fluids are used in cosmetics, pharmaceutical and food 

industries. Also supported by Khalid et. al. (2015) applications of non-Newtonian 

fluids are broad including in geophysics and petroleum industries.  

The most common type of non-Newtonian fluid used by researchers is 

Casson fluid (Arthur et. al. (2015) and Oke et. al. (2020)). Basically, Casson fluid is 

a fluid that behaved as a shear thinning liquid. The characteristics of Casson fluid 

are, firstly, at zero rate of shear, it is simulated to have an infinite viscosity. 

Secondly, a yield stress below which there is no flow. Lastly, it has a zero viscosity 

at an infinite rate of shear. If lesser shear stress compared to yield stress is applied to 

the fluid, Casson fluid will behaves like a solid. While on the other hand, Casson 

fluid will be moving when greater shear stress compared to the yield stress is applied. 

There are several examples of Casson fluid that can be seen in real-life such as 

ketchup, honey, and even human blood. 

Casson fluids are extensively studies theoretically employing classical or 

ordinary PDE. However, it is widely acknowledged that fractional PDE’s are more 

efficient for accurately illustrating physical phenomena. Dalir and Bashour (2010) 

mentioned that heat transfer, biology, physics, chemistry, quantum mechanics, 

viscoelastic material, rheology, fluid flow, diffusive transport, probability, electrical 

networks and electromagnetic theory are among the fields where time fractional 

model has grabbed a growing focus. 

Based on Khalil et. al. (2014), fractional derivative has been existed a long 

time ago, and even as old as calculus. Fractional derivative has erupted after a 

conversation between L’Hospital and Leibniz take place. Since then, definition for 
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fractional derivative has been tried to put by many researchers and most of them used 

an integral form to express fractional derivative. Fractional calculus is a division of 

mathematics that extend the concept of classical integral and derivatives of integer 

order to non-integer order integral and derivatives. The application of fractional 

derivatives has provided more general and accurate models of a system compared to 

the traditional calculus. Ray et. al. (2014) has mentioned the vast range of fields on 

the usage of fractional derivatives in science as well as engineering fields. In 

example for accurate modelling of systems that require correct damping modelling, 

the fractional derivative models are used. Furthermore, fractional order PDEs control 

most physical processes in electricity, quantum physics and other models within their 

scope of validity. Consequently, to solve fractional order PDEs are important for 

researchers to know all the traditional and the develop methods. 

The most popular and frequently used of fractional derivative operators are 

Riemann-Liouville fractional derivative as well as Caputo fractional derivative. The 

Riemann-Liouville and Caputo fractional operators have been extensively employed 

in a variety discipline of science and technology (Metzler and Klafter, 2000). 

However, the development of fractional derivatives has brought it to a various 

definition according to its type. Each fractional derivative operator has development 

in its features such as the kernel features, singularity, locality, and the benefits of the 

implementation. Riemann-Liouville fractional derivative is said to have an unusual 

initial condition. In addition, the derivative of a constant is not zero. Therefore, the 

existence of Caputo fractional derivative operator solves the problem of this unusual 

initial condition that has no physical meaning and is difficult to compute.  

According to Luchko and Gorenflo (1999), Caputo was the first to realise that 

the Laplace transform could be used to create a fractional derivative operator from 

the convolution product: the convolution of the function’s classical derivative with 

the power Law kernel, which is given by 
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where the Laplace transform of equation (1.2) is as follows 

 ( ) ( ) ( ) ( ), , ,0 .D f y t q q f y q f y 

 = −   (1.3) 

From equation (1.2), ( ).tD
 represents the Caputo fractional derivative,   

depicts the fractional order, q  is the Laplace transform variable, ( ),f y q  illustrate 

the Laplace transform of function ( ),f y t  and the usual initial conditions is 

represented by ( ),0 .f y   Kernel of Caputo fractional derivative is singular. The 

result acquired from equation (1.2), shows that the power law kernel’s singularity 

vanishes. With the existence of Caputo fractional derivative operator, the flaws of the 

Riemann-Liouville fractional derivative were fixe. It was competently implemented 

in a variety of fields of science and technology. As mentioned by Haque et. al. 

(2018), application of Caputo fractional derivative can be seen as such in glass 

blowing, biometric foods and metallic plate cooling. 

Many researchers have demonstrated the importance and effectiveness of 

fractional derivatives in engineering applications through their research and studies. 

From previous research conducted by Song and Jiang (1998), they empirically 

confirmed that the fractional Jeffrey model is suitable for illustrating the behaviour 

of Sesbania gel with xanthan gum. In 2007, Jumarie has investigate PDE using 

fractional derivative and solve using modified Riemann-Liouville derivative. 

Recently, Abro et. al. (2019) analyses fractional derivate approach to solve PDE 

problem. Then, Abro and Aguilar (2019) also have discussed on fractional derivative 

approach to solve Walter’s-B fluid. The fractional Voigt model is demonstrated by 

Meral et. al. (2010) in simulating the wave response of soft tissue, such as phantoms. 

Meanwhile heat transmission in biological tissues can be consistently evaluated 
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using fractional wave models, according to Jiang and Qi (2012). According to Chen 

et. al. (2013), the data produced from fractional derivative models had a significantly 

better agreement with experimental data as compared to the classical model. 

For fractional differential equations, a broad class of initial value problems is 

solved by applying the Laplace transform technique. A French mathematician, Pierre 

Simon de Laplace has introduced the Laplace transform. It is widely used since its 

main purpose is to solve differential equations easier as it provides a structured 

alternative approach. Moreover, Kexue and Jigen (2011) has investigate the 

rationality of solving fractional differential equations by using Laplace transform 

approach. The Laplace transform is very efficient in solving linear ODEs that usually 

occurs in the study of electronic circuits and control systems. While the Laplace 

inverse is used to transfer any variable domain back to its basic domain in a 

fractional differential equation.  

The application of fluid problem in micro devices is currently in attention by 

many researchers due to its importance in real-life problems. Due to its deep 

mathematical significance and wide variety of applications in biological research, 

industries, and engineering, convection heat transfer of fluid flow in a microchannel 

are of immense interest in fluid dynamics. The analysis of microchannel flow 

problems to investigate trends and properties of embedded flow parameters in 

microchannel flows has mathematical impact. Khan et. al. (2018) agrees that many 

researchers has gain interest to study on the fluid flow in microchannel since its 

practical uses include in space technology, engineering, and material processing 

operations as well as in high power density processors in supercomputers and many 

other devices. In engineering context, microfluidics is flows of fluid and gases in 

single or multiple phases through microdevices fabricated by Micro Electro 

Mechanical Systems (MEMS) technology (Tabeling, 2001). Stated by Gad-el-Hak 

(1999), MEMS devices that involves fluid flows are such as microducts, 

micropumps, microturbines and microvalves.  

Heat convection is the transport of heat from one spot to another. It can either 

be free, force or even mixed convection. According to Ullah et. al. (2017), non-
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Newtonian fluids have poor thermophysical properties by nature and are incapable of 

transferring the desired quantity of heat in a heat transport system. In heat transport 

systems, the convection heat transmission has become a tricky problem for engineers 

and industrialist. Therefore, there was a sense of urgency in dealing with this issue. 

Changes in boundary conditions, flow geometry or by enhancing the thermal 

conductivity of the flowing fluid can all improve heat transfer in a convective flow of 

fluid. Thermal radiation is widely use in the application of industries. It is the 

emission of electromagnetic waves from any type of matter that has temperature 

greater than absolute zero. In other words, when there is a thermal motion of 

particles present in matter, the thermal radiation is produced. In addition, whenever 

there is particle motion also, it will activate charge-acceleration or dipole oscillation 

which will eventually results in an electromagnetic radiation. As an example, electric 

heater emits an infrared radiation which will help a person to feel a radiated heat of 

the fire even the surrounding air is very cold. Obeying the Kirchhoff’s radiation law, 

objects that are good emitters are also nominated as good absorbers, such as a black 

surface which is an excellent emitter, hence it will absorb excellently. In contrast 

with black surface, silver surface is a poor emitter and poor absorber.  

In the present research, the application of Caputo fractional derivative for 

Casson fluid is studied. The geometry of this research is a vertical microchannel. The 

result from this study can be used to improve industrial thermal conductivity 

activities. Furthermore, the application of Caputo fractional derivative itself is 

recognized in solving the accurate description of physical phenomena. The 

involution product of fractional derivative and power-law function has successfully 

made up a Caputo fractional derivative operator. Hence, the issue of an unusual 

initial condition with no physical meaning that had been difficult to compute was 

resolved. Bearing in mind the importance of fractional derivatives, very few studies 

have been reported on non-Newtonian fluid flowing in microchannel with fractional 

derivative approach. Khan et. al. (2017) discussed on the application of Caputo-

Fabrizio fractional derivative to the convective flow of Casson fluid in a 

microchannel. Whereas the application of Caputo-Fabrizio and Atangana-Balenau 

fractional derivative to a rotational second grade fluid is discussed by Abro et. al. 

(2020). To fill in the research gap, this study also adds physical parameter which is 
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thermal radiation to enhance the knowledge on thermal radiation effect on convective 

flow of Casson fluid with the application of Caputo fractional derivative. 

1.3 Problem Statement 

Non-Newtonian fluid is a type of fluid that is important for researchers and 

engineers. Furthermore, non-Newtonian fluid currently have gained much attention 

by them due to its potential in industrial and technological processes, where it can 

help testing on automotive heat industries as well as heat changers situation. Non-

Newtonian fluids such as Casson fluid is normally used by researchers to describe 

the blood flow due to its characteristics. Previous researchers have discussed that 

fluid behave differently in micro and macro scale. Bearing in mind, that most of 

arteries in human body are in micro scale. So, studying the behaviour of fluid flow in 

microchannel should be given an attention.  In addition, limited research has been 

noticed on usage of fractional derivative on unsteady fluid flow problem in 

microchannel. Furthermore, since most of real-life plate is not in static mode, 

oscillating movement of the plate is appropriate to consider. This situation will 

become more realize if heat transfer in an oscillating microchannel is studied 

together with the influence of thermal radiation.  Thus, to fill this research gap, 

present study on solving equation of Casson fluid flow in an oscillating microchannel 

with thermal radiation approached by Caputo fractional derivative. Therefore, to 

understand the fluid field in this study the following questions are explored: 

1. How to model mathematically the Caputo fractional Casson fluid flow over a 

static, an accelerating and an oscillating vertical microchannels? 

2. How do the fractional mathematical models behave in the problem involving 

thermal radiation?  

3. How does the Laplace transform technique be applied to obtain the analytical 

solutions of the governing equations? 
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4. How can approximation solutions of fractional mathematical model solutions 

be obtained in different geometries? 

5. How does the pertinent parameter such as fractional parameter, and radiation 

parameter affect the velocity and temperature profiles? 

 

1.4 Objectives 

The purpose of this research is to analyse the convection flow of Casson fluid 

over a static, an accelerating and an oscillating vertical microchannels. Laplace 

transform method is applied to acquire the exact solutions. Then to validate the 

solution, graphical illustrations from published results are used in comparing with the 

graphical outcomes of the obtained solutions. Specifically, the objectives of this 

study are: 

1. To formulate the Caputo fractional derivative governing equations for the 

concerned fluid problem. 

2. To solve the governing equations by using the Laplace transform technique to 

obtain the exact solution for the velocity and temperature profiles. 

3. To acquire the approximation solutions by applying Zakian explicit formula 

approach. 

4. To analyse the effect of fractional parameter applied to the fluid flow 

problem with thermal radiation effect. 

5. To investigate the behaviour of the velocity and temperature profiles for 

various important physical flow parameters. 
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1.5 Scope of Research 

This research applying Caputo fractional derivative approach on the 

governing equation of unsteady flow problem. The non-Newtonian fluid which is 

Casson fluid is considered to flow through a vertical microchannel. Three proposed 

problems are highlighted in this research. The first problem is emphasis on the 

Casson fluid flowing through a static microchannel with the presence of thermal 

radiation. Caputo fractional derivative operator is used to fractionalize the governing 

equations of momentum as well as energy equations. Next, the second problem is 

focusing on an accelerated microchannel for the Casson fluid to be flowing. Whereas 

the third problem is intensified on the geometry of the fluid where the Casson fluid 

flowing in an oscillating microchannel. All the proposed problems are based on the 

assumptions and limitations as follow:  

1.  The Casson type fluid model as well as energy and momentum equations are 

fractionalized using Caputo fractional derivative operator. 

2. The thermal radiation variables are considered and solve using Taylor series 

where the higher order terms are neglected. 

3. The Laplace transform method is used to generate analytical solutions for 

each of the suggested problems. 

4. The vertical microchannel has a ramped wall temperature and non-

homogenous boundary conditions. 

5. The inverse Laplace transform is numerically obtained by employing Zakian 

explicit formula approach. 

6. The approximation solutions are generated, and the results are for velocity 

and temperature profiles are plotted using Mathcad software. 
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1.6 Significance of Research 

The significance of this research is listed as follows: 

1. Enhance more knowledge on formulation of Caputo fractional derivatives. 

2. The result of this study will improvise the knowledge of fractional derivatives 

in equation of motion over a static, an accelerating and an oscillating 

microchannels. 

3. The result will help in understanding the thermal radiation behaviour in fluid 

flow applications. 
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1.7 Research Operational Framework 
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Boundary 
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Initial 
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1.8 Thesis Outline 

There are six chapters in all organized in this thesis. The research background 

is described in Chapter 1, which includes the general introduction, problem 

statements, research objectives, scope of research, research methodology, and 

significance of the current research. Then, in Chapter 2 contains a thorough survey of 

the literature on the issues raised in the study objectives. Chapter 3 discussed the first 

problem to be solved regarding the unsteady free convection flow of Casson fluid 

generated by a static microchannel with the presence of thermal radiation.  The 

momentum equation as well as energy equation are all deduced in detail within this 

chapter. The governing equations of the specified problems are formulated in terms 

of linear partial differential equations associated to momentum and energy 

transformations together with specified initial and boundary conditions. The 

dimensional governing equations, as well as the initial and boundary conditions, are 

simplified using dimensionless variables. Applying the time-fractional Caputo 

fractional derivative, the dimensionless equations are converted into time-fractional 

notation. Exact solutions of the time-fractional governing equations are obtained via 

Laplace transform technique. As limiting cases, the general solutions discovered in 

this chapter are found to reduce to several well-known solutions in the literature. 

Finally, graphs depict the effect of significant flow parameters on velocity and 

temperature equations.  

Chapter 4 is studied by taking into consideration the flow of Casson fluid 

passing through an accelerated microchannel with thermal radiation. The velocity 

and temperature expressions are generated. To construct the system dimensionless, 

certain adequate dimensionless variables are embedded into the governing 

expressions and initial and boundary conditions to abolish units and reduce the 

number of variables. Similar process as in Chapter 3 is implemented to solve the 

governing equations in this chapter by transformed into a time-fractional equations 

using Caputo fractional derivative operator definition. Graphs are used to assess the 

graphical outcomes for various embedded flow parameters. The acquired solutions 

are compared to those already published in the literature. Moreover, the result for the 

addition of thermal radiation to the problem, is explained graphically. 
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Chapter 5 investigates the unsteady free convection flow of Casson fluid over 

an oscillating microchannel based on the Caputo time-fractional fractional derivative 

with the presence of thermal radiation effect.  This chapter starts with the 

mathematical formulation of the problem to simulate the Casson fluid’s governing 

equation in an oscillating movement of microchannel system. The governing 

equations are subjected to appropriate initial and boundary conditions which are then 

transformed into dimensionless partial differential equations using suitable 

dimensionless variables. Then, the equations are solved using the Laplace transform 

technique. The acquired solutions are reduced to the existing solutions in the 

literature. The velocity and temperature results are graphically shown and analysed. 

The overview of this research, as well as ideas for further research, are 

offered in Chapter 6. At the end of this thesis, the references are listed. 
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