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 This study is conducted to analyse the free vibration of rectangular plates, 

circular plates and conical shells of anti-symmetric angle-ply laminated composite 

using classical theory, first order shear deformation theory and third order shear 

deformation theory of constant and variable thickness. The variations of thickness 

used are in the form of linear, exponential and sinusoidal. Free vibration of conical 

shells with constant thickness is investigated under classical theory. An extended 

study has been done by using developed shell theories where shear deformation is 

included. Free vibration of circular plates of variable thickness is analysed under first 

order shear deformation theory. Using the same theory, the free vibration analysis of 

conical shells for variable thickness is conducted. Third order shear deformation 

theory is adopted to the study of free vibration of rectangular plates for variable 

thickness. In this study, stress resultants and strain-displacement relations are 

substituted into the governing equation of structures. The solution is assumed to be 

separable in the form of displacement and rotational functions to obtain ordinary 

differential. The displacement and rotational functions are approximated using spline 

method. The obtained equations together with equations of boundary conditions are 

reduced to eigenvalue problem. The solutions of the eigenvalue problems are the 

frequencies of the plates and shells. The effects of boundary conditions, aspect ratio, 

side-to-thickness ratio, ply angle, number of layers, circumferential node number, 

variable thickness, cone angle, length ratio and radii ratio on the vibration of 

structures are investigated. The results show that the frequencies are higher for 

clamped-clamped boundary conditions than simply-supported and clamped-free 

boundary conditions. Also, it is found that the geometric parameters affect the 

vibration of structures.    

ABSTRACT 



vi 

 

 

 

 

 

Kajian ini dijalankan untuk menganalisa getaran bebas bagi plat segi empat 

tepat, plat bulat dan juga cangkerang kon dengan komposit lapisan sudut anti-simetri 

menggunakan teori klasik, teori deformasi ricih peringkat pertama dan teori 

deformasi ricih peringkat ketiga dengan ketebalan malar dan boleh ubah. 

Kepelbagaian ketebalan yang digunakan adalah dalam bentuk linear, eksponen dan 

sinusoidal. Getaran bebas bagi cangkerang kon dengan ketebalan malar dikaji 

menggunakan teori klasik. Kajian lanjutan telah dilakukan menggunakan teori klasik 

yang mengambilkira deformasi ricih. Getaran bebas bagi plat bulat dengan ketebalan 

boleh ubah dianalisis menggunakan teori deformasi ricih peringkat pertama. Teori 

yang sama digunakan untuk menganalisa getaran bebas bagi cangkerang kon dengan 

ketebalan boleh ubah. Teori deformasi ricih peringkat ketiga digunakan untuk 

mengkaji getaran bebas bagi plat segi empat tepat dengan ketebalan boleh ubah. 

Dalam kajian ini, hubungan hasil tegasan dan anjakan-ketegangan dimasukkan ke 

dalam persamaan penakluk struktur. Penyelesaian diandaikan bolehpisah dalam 

bentuk fungsi anjakan dan putaran untuk mendapatkan persamaan terbitan biasa. 

Fungsi anjakan dan putaran dianggarkan menggunakan kaedah spline. Persamaan 

yang diperoleh dengan persamaan syarat sempadan diturunkan menjadi masalah nilai 

eigen. Penyelesaian kepada masalah nilai eigen adalah frekuensi untuk plat dan 

cangkerang. Kesan-kesan syarat sempadan, nisbah aspek, nisbah sisi–ketebalan, 

sudut lapisan, bilangan lapisan, bilangan nod lilitan, ketebalan boleh ubah, sudut kon, 

nisbah panjang dan nisbah jejari terhadap getaran struktur dikaji. Hasil kajian 

menunjukkan frekuensi lebih tinggi untuk syarat sempadan yang diapit-apit 

berbanding syarat sempadan yang disokong-mudah dan bebas-apit. Kajian juga 

mendapati parameter-parameter geometri mempengaruhi getaran struktur.   

ABSTRAK 
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 CHAPTER 1

 

 

 

INTRODUCTION 

1.1 Background of the Study 

Thin plate and shell structures function as a structural support where the 

thickness is much smaller than the other dimensions that makes an important 

contribution to the development of several branches of engineering such as civil, 

mechanical, marine and aeronautical engineering (Ugural, 2010). The generally high 

strength-to-weight ratio of the shell form combined with its inherent stiffness has 

formed the basis of applications of shell structures. Plate and shell structures also 

have the efficiency of load-carrying behaviour and high degree of reserved strength 

and structural integrity which is among the properties needed for structural frame in 

engineering industries (Ventsel, 2001). Example of plates and shells structures can be 

seen in wings and rocket fins in aerospace engineering, automotive body panels and 

disk wheels in mechanical engineering, off-shore platforms in ocean, large-span 

roofs, water tanks, turbine disks, aircrafts, missiles, submarines and more.  

The application of laminated composite shell extends the characteristics of 

shells since it provides higher strength-to-weight ratios, better corrosion resistance, 

longer fatigue life and also one can design the directional properties. A composite 

material is a mixture of two or more materials with properties superior to the 

materials of which it is made. The materials work together to give the composite 
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unique properties (Gibson, 1994). The biggest advantage of modern composite 

materials is that they are light as well as strong. By choosing an appropriate 

combination of two or more materials, a new material can be made that exactly meets 

the requirements of a particular application. Composites also provide design 

flexibility because many of them can be moulded into complex shapes. Some 

common composite materials include concrete, fiberglass, mud bricks, and natural 

composites such as rock and wood. For example, wood is an example of a composite 

because cellulose fibers are held together by a substance called lignin. These fibers 

can be found in cotton and thread, but it’s the bonding power of lignin in wood that 

makes it much tougher (Staab, 1999). 

Lamina is described as a thin sheet or plate of material. Laminae are stacked 

together to form a laminate with the required thickness and stiffness (Ye, 2003). 

Laminated structure gives the better properties to the whole structure since it 

provides the advantage of combining appropriate constituent layers. The lamination 

of structure can be seen in Figure 1.1. 

 

Figure 1.1 Lamination of structure 

 

Laminate

Layers
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Laminates can be divided into three types which are angle-ply, cross-ply and 

unidirectional. For unidirectional laminate, each ply of laminae is oriented in the 

same direction. Other than that, a laminate is called cross-ply laminate if all the plies 

used to fabricate the laminate are only 0  and 90  whereas angle-ply laminate has 

plies oriented at   and   between 0  and 90  (Reddy, 2007). In this research, 

anti-symmetric laminates are considered. A laminate is called symmetric when the 

material, angle and thickness of the layers are the same above and below the mid-

plane. For anti-symmetric laminate, the material and thickness of the plies are the 

same above and below the mid-plane but the ply orientation at the same distance 

above and below the mid-plane are negative of each other. Figure 1.2 shows the 

example of cross-ply, angle-ply, symmetry and anti-symmetric laminates. 

 

Figure 1.2 Classification of laminates examples (a) Cross-ply laminate (b) 

Angle-ply laminate (c) Symmetric laminate and (d) Anti-symmetric laminate 

 In order to design buildings (and other human-made structures) to be able to 

withstand the forces of earthquakes and windstorms, structural engineers compute 

the natural frequency of buildings. Natural frequency is the frequency at which a 

system tends to oscillate in the absence of any driving or damping force. When an 

object vibrates at a frequency equivalents to its natural frequency, its vibration 
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amplitude increases significantly which could lead to irreparable damage. Engineers 

conduct research and field studies to learn how various structural designs and 

materials perform under anticipated hazardous conditions, so they can design the 

safest structures possible. That is why the study of vibration of structures such plates 

and shells have gain much interest for many researchers.  

1.2 Problem Statement 

Designer always aim at achieving economy by minimizing costs without 

neglecting the constraints of functional and aesthetic requirements for any structure 

whether it could be a building, pressure vessel or an aerospace structure. When 

suitably designed even thin plates and shells can support large loads and therefore 

they are always use in structures where light weight is essential. Composite, which is 

a new form of structure that resists the loads more efficiently than when the structure 

is designed in a conventional form is developed with the available material. Also, the 

structures should be designed by considering the factors such as circumferential node 

number, number of layers, length ratio, cone angle, materials and ply angle in order 

to obtain optimal design of structures in engineering industries. The vibration 

analysis of these structures is conducted where natural frequencies are obtained. 

Knowing more about vibration of structures helps us to control damage and take 

preventive measures from damages to occur. 

1.3 Objectives 

The main objective of this research is to study the free vibration of anti-

symmetric angle-ply laminated composite plate and shell structures. This involves 

the transformation of governing equations to a system of homogeneous simultaneous 



5 

algebraic equations which eventually becomes eigenvalue problem. The eigenvalue 

problem is solved to obtain frequencies. The details on the objectives are: 

1. To obtain the frequencies for various fixed parameters of anti-symmetric angle-

ply laminated composite conical shell for constant thickness based on classical 

theory. 

2. To determine the frequencies for various fixed parameters of anti-symmetric 

angle-ply laminated composite circular plate and conical shell with variable 

thickness based on first order shear deformation theory. 

3. To generate the frequencies for various fixed parameters of free vibration of 

anti-symmetric angle-ply laminated composite rectangular plate with variable 

thickness based on third order shear deformation theory. 

4. To approximate displacement functions and rotational functions using spline 

method. 

1.4 Scope of the Study 

This study is focused on the free vibration analysis of plate and shell 

structures of circular plates, rectangular plates and conical shells. The governing 

differential equation are based on classical theory, first order shear deformation 

theory and third order shear deformation theory. Constant and variable thickness in 

which the variable thickness is in the form of linear, exponential and sinusoidal 

variation in thickness are considered. The displacement functions and rotational 

functions are approximated using spline method. Clamped-clamped, clamped-free, 

and simply-supported boundary conditions are used to analyse the problems in this 

study. The study is conducted for two- and four-layered structures using materials S-

Glass Epoxy (SGE), High Strength Graphite Epoxy (HSG), Kevler-49 epoxy (KGE) 

and AS4/3501-6 Graphite/epoxy (AGE). 
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1.5 Significance of the Study 

Plate and shell structures are thin, light, can span over large areas and have 

the advantage to carry applied loads effectively by means of their curvature. The 

study of vibration of plates and shells is important to determine the natural 

frequencies of the structures in order to avoid the destructive effect of weather and 

resonance with adjacent rotating or oscillating equipment. The efficiency of the 

structure can be increased if the structures are designed with the knowledge of the 

material properties. Laminated composite structures oriented at different angles 

added flexibility to the engineers to tailor the stiffness and strength of the laminate to 

match the structural requirements. Composite materials have very high ratios of in-

plane Young’s moduli to transverse shear moduli (Reddy, 1979). Hence, the 

inclusion of shear deformation may give better results since the kinematics of the 

shells are more accurately represented. The spline approximation is chosen as the 

solution method due to its fast convergence and better accuracy for lower-order 

approximation as compared to a global higher order approximation (Bickley, 1968). 

The vibration analysis of shells included all these conditions are implemented to find 

the natural frequencies of the structures in which benefits the engineers to design 

better construction in terms of strength and stability and to avoid any defects. 

1.6 Thesis Outline 

The study on the vibration of anti-symmetric angle-ply laminated composite 

plates and shells for classical theory, first order shear deformation theory and third 

order shear deformation theory is presented in this thesis. Seven chapters are 

included where introduction, literature review, problems and discussion as well as 

conclusion from this study are explained thoroughly in every chapter. Chapter 1 

gives an overview on the study of thin plates and shells which includes the 

background of the study, problem statement, objectives of the study, scope of the 

study, significance of the study and outline of the thesis. In Chapter 2, review of 
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previous work done by different researchers on vibration of plates and shells for 

classical theory, first order shear deformation theory and higher order theory are 

presented.  

The free vibration of anti-symmetric angle-ply laminated composite conical 

shell using classical theory for constant thickness under C-C and S-S boundary 

conditions is investigated in Chapter 3. Two- and four-layered shells with 

combination of materials S-Glass Epoxy (SGE) and High Strength Graphite Epoxy 

(HSG) are considered. Convergence and comparison studies are carried out to 

validate the effectiveness of present method Parametric studies on the effect of 

number of layers, ply angle, circumferential node number, cone angle, length ratio 

and boundary conditions on the vibration of laminated conical shells are discussed.  

Chapter 4 covers the free vibration of anti-symmetric angle-ply laminated 

composite circular plate for variable thickness based on the improved version of 

classical theory with the inclusion of transverse shear deformation which is the first 

order shear deformation theory. Two materials which are Kevler-49 epoxy (KGE) 

and AS4/3501-6 Graphite/epoxy (AGE) are used. The shells are constrained with C-

C and C-F boundary conditions. The parametric studies are performed to illustrate 

the effects of radii ratio, number of layers, ply angle and boundary conditions on the 

frequency of circular plates. 

Chapter 5 explains the free vibration of anti-symmetric angle-ply laminated 

composite conical shell based on first order shear deformation theory with variable 

thickness under C-C and S-S boundary conditions. Two- and four-layered shells 

composed of two types of material; KGE and AGE materials are used. The influence 

of length ratio, boundary conditions, cone angle, number of layers and ply angle on 

the vibration of conical shell is explored.  

Free vibration for third order shear deformation theory of anti-symmetric 

angle-ply laminated composite rectangular plate with variable thickness under S-S 
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boundary conditions is presented in Chapter 6. KGE and AGE materials are 

considered in the study. The influence of different parameters such as aspect ratio, 

side-to-thickness ratio, number of layers, and ply angle on the frequency of 

rectangular plate are demonstrated. The results obtained from previous chapters are 

concluded in Chapter 7. The last section of Chapter 7 suggests the future studies that 

can be conducted for vibration of plates and shells. 
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