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ABSTRACT 

Modernization and urbanization have adversely affected water quality and 

harmed the sustainability of water sources. Bisphenol A (BPA) has been identified as 

an endocrine-disrupting compound that, when exposed to the human body, can 

interfere with the hormone system and cause severe health effects and 

disorders. Titanium dioxide (TiO2), a prevalently used semiconductor in 

photocatalytic degradation fields, has wide bandgap energy and a low specific surface 

area. These properties can lead to a decline in photocatalytic degradation performance. 

The template synthesis approach can be used to produce hollow nanofibers 

photocatalysts with a large surface area, a narrow bandgap, and excellent degradation 

capability. This process, however, yields powder-form photocatalysts that require 

post-recovery treatment before being recycled in a photocatalytic slurry system. In this 

study, TiO2 hollow nanofibers (THNFs) were developed at various calcination 

temperatures. THNFs produced at 600 °C (THNF600) produced nanofibers with the 

best hollow morphology, with a bandgap of 3.0 eV, with a specific surface area of 

81.2776 m2/g, and mixed-phase of 24.2 % anatase and 75.8 % rutile. As a result of the 

large surface area and excellent optical properties, the THNFs exhibited the highest 

BPA degradation of 71.48%. This result was also significantly better than that of 

Degussa P25, a commercial TiO2, with BPA degrades at only 38.62%. Using 

THNF600, the optimum photocatalysts dosage, pH, and initial BPA concentration 

were determined to be 0.75 g/L, pH 4.1, and 10 ppm, respectively. Then, the powder-

form THNF600 was assembled into a free-standing form using chemical treatment and 

vacuum filtration technique. Free-standing THNFs containing 0.75 g of THNF600 

(FS75-THNFs) exhibited good adherence and connectivity between the nanofibers. 

After five cycles of reaction, the THNF600 experienced an average of 14.38% catalyst 

loss. The recyclability of FS75-THNFs outperformed the THNF600 which gave 5% 

average catalyst loss from its original weight while maintaining excellent degradation 

performance. In conclusion, this study recommends the potential application of free-

standing TiO2 hollow nanofibers as the high potential novel photocatalysts for the 

treatment of BPA in wastewater. 

  



vii 

ABSTRAK 

 Pemodenan dan pembandaran telah memberi kesan yang buruk ke atas kualiti 

air dan merosakkan kelangsungan bekalan air. Bisphenol A (BPA) telah dikesan 

sebagai sebatian pengganggu endokrin yang boleh mengganggu sistem hormon dan 

memberi kesan buruk terhadap kesihatan badan manusia. Titanium dioksida (TiO2), 

semikonduktor yang digunakan secara meluas di dalam bidang penguraian 

fotobermangkin, mempunyai jurang jalur tenaga yang luas dan luas permukaan yang 

rendah. Sifat-sifat ini boleh menyebabkan penurunan dalam prestasi penguraian 

fotobermangkin. Teknik sintesis bertemplat boleh digunakan untuk menghasilkan 

fotomangkin gentian nano geronggang yang mempunyai luas permukaan yang besar, 

jurang jalur tenaga yang kecil, dan kemampuan penguraian yang cemerlang. 

Walaubagaimanapun, proses ini menghasilkan fotomangkin berbentuk serbuk yang 

memerlukan rawatan pasca-pemulihan sebelum dikitar semula di dalam sistem 

fotobermangkin buburan. Dalam kajian ini, penghasilan gentian nano geronggang 

titanium dioksida (THNFs) dilakukan pada suhu pengkalsinan yang berbeza. THNFs 

yang dihasilkan pada suhu 600 °C (THNF600) menghasilkan gentian nano dengan 

morfologi geronggang yang terbaik, dengan jurang jalur tenaga sebanyak 3.0 eV, luas 

permukaan 81.2776 m2/g, dan campuran fasa sebanyak 24.2 % anatase dan 75.8 % 

rutil. Disebabkan oleh luas permukaan yang besar dan ciri optikal yang baik, dengan 

THNFs tersebut menunjukkan penguraian BPA yang tertinggi sebanyak 71.48%. 

Keputusan ini juga lebih baik dari pencapaian Degussa P25, sejenis TiO2 komersial 

yang menunjukkan penguraian BPA hanya 38.62%. Menggunakan gentian THNF600, 

dos fotomangkin, nilai pH, dan kepekatan awal BPA yang optima telah ditentukan 

masing-masing pada 0.75 g/L, pH 4.1 dan 10 ppm. Kemudian, THNF600 berbentuk 

serbuk dihimpunkan dalam bentuk mandiri menggunakan rawatan kimia dan 

penurasan vakum. THNFs mandiri yang mempunyai 0.75 g THNF600 (FS75-THNFs) 

menunjukkan perekatan dan penyambungan yang baik antara gentian-gentian nano. 

Selepas lima kitaran tindak balas, THNF600 mengalami purata kehilangan 

fotomangkin sebanyak 14.38%. Kebolehkitaran semula FS75-THNFs menandingi 

THNF600 dengan purata kehilangan fotomangkin sebanyak 5% dan mengekalkan 

pencapaian penguraian yang cemerlang. Kesimpulannya, gentian nano geronggang 

TiO2 mandiri mempunyai potensi yang tinggi sebagai fotomangkin baharu bagi 

rawatan BPA dalam air sisa. 
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CHAPTER 1 

 

 

INTRODUCTION 

1.1 Background of Study 

A clean water supply has become vital in our daily lives since water is required 

for drinking, cooking, cleaning, and other daily activities. Water should be clean and 

devoid of hazardous chemicals that might cause future health concerns in the short or 

long term. However, increased industrialization, rising population, and climate change 

have made it difficult to provide sufficient clean and safe water sources. According to 

Liao et al. (2021), by 2050, the global water demand will increase by 20-30% due to 

increasing industrial and domestic water use. In Malaysia, modernization and 

urbanization have caused water pollution and have an adverse effect on the 

sustainability of water sources. The Department of Environment (DOE) has classified 

most of Malaysia’s river water quality is in Water Quality Index Class II and Class III 

(Afroz and Rahman, 2017). This classification implies that these water sources need 

to undergo some conventional and extensive treatment before it is safe to be 

consumed. Wastewater can be defined as contaminated and used water from 

residential, domestic, commercial, industrial, and agricultural activities. Wastewater 

contains microorganisms, nutrients, metals, and emerging contaminants. One of the 

compounds that is identified as the emerging contaminant and ubiquitously found in 

wastewater is Bisphenol A (BPA). 

BPA is mainly used as an intermediate in polycarbonate plastics and epoxy 

resins production. BPA is used in many sectors, including producing CDs and DVDs, 

electrical equipment, vehicles, construction glazing, sports safety equipment, medical 

devices, dinnerware, baby bottles, and food storage containers. Meanwhile, epoxy 

resins are utilized in the internal coating to prevent food and beverages from directly 

contacting metals (Huang et al., 2012). Despite its usage as a primary material in many 

manufacturing industries, BPA is an endocrine-disrupting compound (EDC) that, at 
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certain doses, can interfere with the hormone system. If exposed to the human body, it 

can induce severe health effects and disorders. As a result, it is critical to remove BPA 

from wastewater before being used. Photocatalytic degradation technology has been 

introduced to remove the hazardous compounds in wastewater. Via photocatalytic 

process, BPA can be degraded into less harmful species such as carbon dioxide and 

water under the presence of light. This technology offers great advantages such as a 

wide range of organic pollutants that can be mineralized, minimum use of chemicals, 

and not involving sludge production and disposal at the end of the process (Molinari 

et al., 2017). Metal oxides such as titanium dioxide (TiO2) is suitable to be used as 

photocatalyst because of their strong oxidizing abilities for the decomposition of 

organic pollutants, high hydrophilicity, chemical stability, long durability, nontoxicity, 

low cost, and transparency to visible light (Nakata and Fujishima, 2012). The 

commercial TiO2 (Degussa P25) is commonly used as a photocatalyst. However, 

Degussa P25 is known for its low reported specific surface area (50 m2/g) and wide 

bandgap energy (3.2 eV) (Uddin et al., 2020). Therefore, morphology control of TiO2 

photocatalysts is necessary to produce a photocatalytic material with superior specific 

surface area and narrow bandgap energy. 

The emerging discovery of hollow nanostructures has motivated us to 

synthesize TiO2 hollow nanofibers (THNFs) for BPA photodegradation via template 

synthesis technique. According to Chu et al. (2012), hollow nanofibers have a very 

extensive surface area  favorable for surface-related applications like photocatalytic 

reactions. Other than that, the tubular shape of hollow nanofibers provides optimum 

physicochemical properties for electron transportation. A study reported that the 

surface area of hollow nanofibers is about twice larger than that of conventional 

nanofibers (Wang et al., 2016b). In this study, the morphology and optical properties 

of the synthesized photocatalysts were controlled by investigating the effect of varying 

calcination temperatures from 400 to 600 °C. Apart from the morphology, the 

recyclability of the photocatalysts is also essential in determining the overall 

performance of the photocatalysts.  
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Powder-formed photocatalysts are often used in a photocatalytic slurry system, 

which bears the risk of experiencing catalyst loss at the end of the reaction. On the 

other hand, photocatalysts that are immobilized into a membrane or a substrate suffer 

from the hindered active surface area. Hence, we explored the potential of assembling 

the synthesized THNFs into a free-standing structure (FS-THNFs) film via facile 

chemical treatment and vacuum filtration. The FS-THNFs are firmly adhered and have 

enhanced recyclability properties while maintaining the high photodegradation 

performance throughout repeated reaction cycles.  

1.2 Problem Statement 

The presence of endocrine disruptors in wastewater has become a concern 

because of the health effects that they cause. One of the identified endocrine disruptors 

is Bisphenol A (BPA), which is used as the monomer in numerous manufacturing 

industries such as food containers, plastic bottles, food can sealants, and electronic 

equipment. Previous studies reported that the entrance of BPA into the human body 

could cause reproductive problems, cardiovascular diseases, and cancerous tumors. 

Due to the high resistance of organic pollutants, existing conventional 

treatments to clean-up water often fail to treat these contaminants, resulting in high 

concentrations discharged in the treated effluents. For instance, filtration, adsorption, 

and chemical oxidation do not destroy the pollutants but produce suspended particles 

or sludge that require post-treatment disposal. The pollutants can adsorb onto the 

surface of suspended solids that were not completely removed in the conventional 

water treatment. Photocatalytic degradation has been gaining attention for its ability to 

oxidize a wide range of organic compounds employing semiconductor photocatalysts. 

The commercially available TiO2 photocatalyst, Degussa P25, is advantageous due to 

its efficient photoactivity, low cost, high stability, and non-toxicity.  
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However, since the main fraction of Degussa P25 is anatase, it has a large 

bandgap, which is 3.2 eV. Photocatalysts with a larger bandgap require higher energy 

to be activated to initiate photodegradation of pollutants. Besides the large bandgap, 

Degussa P25 also has a low surface area of only ~50 m2/g, limiting the available UV 

irradiation sites. This inhibits the production of hydroxyl radicals to attack the organic 

pollutants molecules. 

Hollow nanostructured TiO2 with high surface area, low bandgap energy, and 

superior photocatalytic performance can be synthesized via template synthesis, which 

involves a calcination process at high temperature. As a result, the synthesized 

photocatalysts are often present in powder form and used in the slurry photocatalytic 

systems. Despite providing increased exposure to UV light, the remaining pitfall of 

this system is the low recyclability of photocatalysts, which are often trapped in the 

effluent. The catalysts loss issue causes reduced photocatalytic performance, besides 

increasing the operational cost of the process, especially in a larger scale set-up. The 

development of an immobilized photocatalytic membrane has been studied for the past 

few years to eliminate the separation and post-recovery process of small-sized 

catalysts. However, the immobilized photocatalysts were found to reduce efficiency 

because of the smaller contact area with the pollutants. 

Therefore, this study aims to overcome the challenges mentioned above via the 

development of free-standing TiO2 hollow nanofibers, as illustrated in Figure 1.1. The 

THNFs with the best performance from varied calcination temperatures are assembled 

into a free-standing form via chemical treatment followed by vacuum filtration. In this 

step, determining the minimum amount of THNFs is essential to optimize the 

processing cost while maintaining the photocatalytic ability, ensuring the excellent 

recyclability of the photocatalysts and eliminating the inconvenient catalyst recovery 

steps in the existing system. Although many scientific journal papers are published 

each year and significant progress has been made in recent years, there is still a lack 

of comprehensive research studies that aim to close the gap on the mechanistic insights 

of the formation of THNFs using template synthesis technique and the application of 

free-standing THNFs for the photocatalytic oxidation of BPA. 
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Figure 1.1 Comparison between hollow nanofibers and free-standing hollow 

nanofibers 

1.3 Objective of Study 

1. To determine the effect of calcination temperature on the formation of THNFs, 

the physicochemical properties, and photocatalytic performance 

2. To examine the photocatalytic performance of THNFs on BPA as a function 

of THNFs dosage, pH of BPA solution, and initial concentration of BPA 

solution in comparison to Degussa P25 TiO2 

3. To synthesize free-standing THNFs with a minimum amount of catalysts and 

evaluate the recyclability compared to the suspended THNFs throughout 

repeated cycles of photocatalytic degradation of BPA under the optimum 

operating parameters  



6 

1.4 Scope of Study 

To achieve those objectives mentioned in the previous sections, the scopes of 

this study is outlined as follows: 

1. Synthesizing THNFs via template synthesis using electrospun PAN nanofiber 

as the template and calcining at different temperatures (400, 500, and 600 °C) 

with constant duration and heating rate (4h, 2 °C/min) 

2. Characterizing the morphology and evaluating the photocatalytic properties 

of the resultant TiO2/PAN-NF and THNFs using field emission scanning 

electron microscopy (FESEM), energy dispersive x-ray (EDX), Fourier-

transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), 

X-ray diffraction (XRD), nitrogen adsorption-desorption and UV-Vis 

spectrophotometer. The photocatalytic degradation for 10 ppm of BPA was 

conducted under UV light and the BPA concentration was measured using 

high-performance liquid chromatography (HPLC). 

3. Measuring the photocatalytic performance of THNF600 in degradation of 

BPA by varying the THNFs dosage (0.25, 0.50, 0.75, and 1.0 g/L). The pH 

and initial BPA concentration were constant at pH 7.4 and 10 ppm 

respectively. 

4. Measuring the photocatalytic performance of THNF600 in degradation of 

BPA with different initial pH of the solution (4.1, 7.4, and 11.3). The dosage 

of TiO2 and initial BPA concentration were kept constant at 0.50 g/L and 10 

ppm, respectively. 

5. Measuring the photocatalytic performance of THNF600 in degradation of 

BPA with a different initial concentration of BPA (10, 20, 30, 40, and 50 

ppm). The dosage of TiO2 and pH were kept constant at 0.50 g/L and pH 7.4, 

respectively.  
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6. Experimenting with BPA photodegradation using THNF600 and FS-THNFs 

throughout five cycles under optimum operating parameters. The 

recyclability of THNF was evaluated by repeating the degradation of BPA 

under optimum conditions (THNF dosage = 0.75 g/L, pH = 4.1, BPA 

concentration = 10 ppm). 

1.4 Significance of Study 

Titanium dioxide is a suitable candidate as the photocatalyst material because 

of its high hydrophilicity, chemical stability, long durability, nontoxicity, low cost, and 

transparency to UV light. The utilization of TiO2 in the form of hollow nanofibers 

enhances photocatalyst performance due to extensive specific surface areas, larger 

accessible active sites, and higher aspect ratios. Due to the calcination process that 

results in powdered form catalyst, the TiO2 hollow nanofibers photocatalysts need to 

undergo a difficult catalyst recovery process to be reused in the next degradation 

cycles. The integration of synthesized THNFs into a free-standing form is 

advantageous because it eliminates the post-recovery process of small-sized catalysts 

and reduces the operating time and cost. Thus, the application of free-standing THNFs 

will lead to efficient filtration and photocatalytic degradation of organic pollutant.
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