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ABSTRACT 

The system energy yield (Esys) is a performance indicator used by the installer 

to predict the energy output generated by a photovoltaic (PV) system. From the Esys 

estimation, the return of investment (ROI) for the installation can be approximated. 

The Esys equation consists of several elements, in which one of them is the PV inverter 

efficiency. The peak or maximum efficiency (ηmax) value from the inverter data sheet 

is usually used, but this practice is inaccurate because the PV inverters rarely operate 

at the peak power. Alternatively, the weighted efficiency is more preferable as it 

essentially considers the power conversion characteristics of the inverter when 

subjected to varying solar irradiance. Currently, the European weighted efficiency 

(ηEURO) is the most recognized and widely accepted. This is because, historically, 

European countries (particularly Germany) used to be the largest exporter and 

consumer of PV inverters throughout the world.  Since ηEURO is developed based on a 

specific European irradiance profile, it is suspected that its value may not be suitable 

for inverters installed in different climatic conditions, particularly the equatorial 

region. Thus, the first objective of this work is carried out to prove this hypothesis. A 

one-year dataset from a weather station located at Universiti Teknikal Malaysia 

Melaka is collected with adherence to the IEC 61724 Standard. This irradiance profile 

is injected into a PV array simulator (PVAS) and tested on four PV inverters with 

different sizes and technologies. It is found that the recalculated ηEURO does not 

conform to the value stated in the respective inverter’s datasheet, thus confirming the 

above hypothesis. This finding inspires the formulation of a new weighted efficiency 

formula for the equatorial climate (ηEQUA). Three methods have been utilized, namely 

the IEC 61683 Standard, Response Surface Methodology (RSM) and Equatorial 

Irradiance-Duration Curve. The outcomes revealed that the last approach is the most 

practical solution to formulate ηEQUA. The newly developed formula is validated by the 

measured data from the field. It is demonstrated that the prediction of Esys using ηEQUA 

closely matched the Esys of a real 3 kW PV system, with only 0.16% difference between 

the two. It is envisaged that the usage of ηEQUA instead of ηmax (or ηEURO) will results in 

more accurate Esys and ROI predictions for PV system installed in the equatorial 

region.   



vii 

ABSTRAK 

Hasil tenaga sistem (Esys) adalah petunjuk prestasi yang digunakan oleh 

pemasang untuk meramal keluaran tenaga yang dihasilkan oleh sistem fotovoltaik 

(PV). Daripada anggaran Esys, pulangan pelaburan (ROI) untuk pemasangan dapat 

dianggarkan. Persamaan Esys terdiri daripada beberapa elemen yang berbeza, di mana 

satu daripadanya adalah kecekapan penyongsang PV. Nilai puncak atau kecekapan 

maksimum (ηmax) dari lembaran data penyongsang biasanya digunakan, tetapi amalan 

ini adalah tidak tepat kerana penyongsang-penyongsang PV jarang sekali beroperasi 

pada kuasa puncak. Sebagai alternatif, kecekapan berwajaran adalah lebih sesuai 

kerana pada dasarnya ia mengambil kira ciri penukaran kuasa penyongsang apabila 

mengalami sinaran matahari yang berubah-ubah. Pada masa kini, kecekapan 

berwajaran Eropah (ηEURO) adalah yang paling dikenali dan diterima secara meluas. 

Ini kerana, menurut sejarah, negara-negara Eropah (terutamanya Jerman) pernah 

menjadi pengeksport penyongsang PV terbesar di seluruh dunia. Oleh kerana ηEURO 

dibangunkan berdasarkan profil sinaran matahari yang spesifik di Eropah, adalah 

dicurigai yang nilainya mungkin tidak sesuai untuk digunakan dalam keadaan iklim 

yang berbeza, terutamanya kawasan khatulistiwa. Oleh itu, objektif pertama 

penyelidikan ini dijalankan adalah untuk membuktikan hipotesis ini. Data profil 

sinaran matahari selama setahun dari stesen cuaca yang terletak di Universiti Teknikal 

Malaysia Melaka telah dikumpul dengan mematuhi Piawai IEC 61724. Profil sinaran 

matahari ini digunakan dalam simulator susunan PV (PVAS) dan diuji pada empat 

penyongsang PV dengan saiz dan teknologi yang berbeza. Adalah didapati yang ηEURO 

yang dikira semula tidak sama seperti mana yang dinyatakan dalam lembaran data 

setiap penyongsang, lantas mengesahkan hipotesis di atas. Penemuan ini memberikan 

inspirasi bagi perumusan kecekapan berwajaran baru untuk iklim khatulistiwa (ηEQUA). 

Tiga kaedah telah digunakan, iaitu Piawai IEC61683, Metodologi Permukaan Tindak-

Balas (RSM) dan Keluk Sinaran Matahari-Tempoh Khatulistiwa. Hasilnya 

menunjukkan bahawa pendekatan terakhir memberikan penyelesaian yang paling 

praktikal untuk merumuskan ηEQUA. Rumus yang baru dibangunkan ini telah disahkan 

dengan data yang diambil dari lapangan. Ianya telah menunjukkan bahawa ramalan 

Esys menggunakan ηEQUA memberikan jawapan yang hampir sama dengan Esys bagi 

sebuah sistem PV 3 kW yang sebenar, dengan perbezaan hanya 0.16% di antara kedua-

duanya. Adalah dijangkakan yang penggunaan ηEQUA dan bukannya ηmax (atau ηEURO) 

akan menghasilkan pengiraan Esys dan ramalan ROI yang lebih tepat untuk sistem PV 

yang dipasang di kawasan khatulistiwa. 
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Overview 

Since the first electric power plant was built by Thomas Edison in 1882, fossil 

fuels such as coal, natural gas and oil has become the preferred choice to drive the 

prime movers [1, 2]. This is due to the fact that fossil fuels are the most cost effective, 

easy to transport and most importantly is its ability to generate huge amount of 

electricity at just one particular location. However, their use contaminates the 

environment and it is now identified to be the main culprits for greenhouse effect—as 

a result of the large amount of carbon dioxide that they release [3]. As suggested by 

Figure 1.1, the conventional electricity generation by fossil fuels is the main 

contributory factor for global warming experienced throughout the world [4].  

With regard to these concerns, the renewable energy (RE) sources are 

envisaged to be important players in the future energy mix. RE is defined as the energy 

that will not be depleted when used, can be replenished and effectively, does lesser 

harm to the environment. They are harnessed naturally from the environment such as 

solar, wind, tides, waves, biomass and geothermal heat [5]. Among these RE sources, 

the solar photovoltaic (PV) can be considered as the most viable option. It is easier to 

install and does not have moving mechanical parts. In comparison to wind, the sunlight 

is most likely to be available more often. As long as there is sunlight, the PV energy 

will always be available for harvesting.  

This PV energy is especially attractive for countries located near the equator 

where the longer and consistent sunlight is available. For example, it is normal for 

Malaysia—a country which is located 3o from the equator, to receive eight to twelve 

hours of sunlight for every single day of the year [6]. In comparison, the temperate 

regions, such as the Scandinavia countries receives less than 3 hours of sunlight in the 
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winter season. Realising the enormous potential that the country possesses, the 

government of Malaysia proactively emulate the RE techno-business model of 

advanced countries such as Germany and Spain in trying to develop its own solar PV 

industry.  Figure 1.2 presents the RE development plan (which includes PV) by the 

Sustainable Energy Development Authority of Malaysia (SEDA)—a regulatory body 

that oversees the development of RE in the country. Thus far, several attractive 

schemes to jump start the industry are introduced: the feed-in-tariff (FiT), Net 

Metering (NEM) and large scale solar (LSS) generation in order to meet the national 

renewable energy policy of achieving 20% RE capacity mix by 2025 [7]. The FiT 

program for instance, provides opportunities for consumers to install grid-connected 

solar PV (GCPV) of various capacities on their own rooftops. By law, the generated 

power is contracted for 21 years to be sold to the local electricity distribution company 

at an attractive price [8].  

 

Figure 1.1 Global greenhouse gas emissions by economic sectors [4] 
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Figure 1.2 Renewable energy development plan in Malaysia [7] 

 

The main concern for PV system owners is to recoup their investment in the 

shortest time possible. Currently, the projected payback period of GCPV system in 

Malaysia (with FiT) is typically to be between five to seven years. This is an attractive 

return of investment (ROI) for a system with a contractual obligation of 21 years [9]. 

One of the most important elements to predict the ROI is the system energy yield (Esys) 

[10-12]. The computation of Esys involves a number of variables, including the PV 

inverter efficiency value. Typically, the system designer (or installer) uses the peak 

efficiency (ηmax) number stamped on the nameplate of the inverter as the input value 

to the Esys equation. The ηmax refers to highest efficiency that can achieved by the 

inverter—normally it is obtained when the inverter operates at the nominal (or rated) 

power. However, in most cases, inverter does not operate at this level because the 

environmental condition, particularly the irradiance is normally well below the 

standard test condition (STC). As a result, the input power fed into the inverter is lower 

than its rated power, which means that the power electronics components inside the 

inverter are forced to operate inefficiently. Thus, if ηmax is used to compute the Esys, 

the energy yield will be overrated.  This will lead to incorrect ROI estimation.  
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A more acceptable value to be used is the weighted efficiency.  The weighted 

efficiency of a PV inverter refers to the efficiency that takes into account the 

performance of the inverter when subjected to the variations in the irradiance. 

Currently there are two weighted inverter efficiency which are widely used throughout 

the PV industry: the European weighted (ηEURO) and the California Energy 

Commission (CEC) (ηCEC) efficiencies. According to [13], ηEURO efficiency is the 

benchmark value for countries with medium irradiance profile whereas ηCEC is the 

standard to be used for countries with high irradiance profile. This is partly due the 

fact that the derivation of the former originates from the middle region of Germany, 

while the latter is based on the irradiance profile of Sacramento, a city located in the 

west coast of USA. 

Besides the two aforementioned weighted efficiencies, there are several 

attempts to formulate weighted efficiency based on local climate conditions. Examples 

of such efforts are the Izmir weighted efficiency for Turkish weather; the Kanpur and 

Chennai weighted efficiencies for Indian climate. However, these three newly 

developed indices are not well accepted by the PV community. Based on the literature 

review performed, the main reasons are: 1) they do not comply with the international 

standards during the metrological data collection; 2) the formulation of the weighted 

efficiency indices does not follow the standardized procedures. Moreover, the Izmir 

weighted efficiency is redundant because the climate condition at which the 

measurements are made are similar to the ηCEC.  

It is interesting to note that thus far, there is no work undertaken to study the 

performance of PV inverter when subjected to equatorial climate. There are many 

countries that can be included under this profile: Southeast Asia, Central Africa, South 

America and parts of Oceania. The equatorial region is unique because it is 

characterised by hot and humid condition all year round. It is expected the inverter will 

perform differently compared to its installation in other climatic regions. Therefore, it 

is necessary to revisit the weighted efficiency to ensure that the system yield can be 

correctly estimated.  
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1.2 Problem Statement 

From literature, it is confirmed that there is no research have been carried out 

to formulate the weighted efficiency of PV inverter for the equatorial region. Clearly, 

there is a research gap here and an opportunity to address this specific issue. Since the 

installation of the inverter is typically based on the maximum efficiency, the estimated 

system yield is higher than the actual. This overrated performance is misleading as it 

will results in inaccurate estimation of ROI. Thus, there is a need to reformulate the 

weighted efficiency in order to match the equatorial climate conditions. 

1.3 Research Objectives 

Based on the problem statements mentioned, the specific research objectives 

of this work are stated below:  

(a) To ascertain whether the European weighted efficiency (ηEURO) is suitable 

when PV inverter is installed in equatorial climate. This is done by using the 

equatorial irradiance data with the ηEURO formula.  

(b) To formulate the Equatorial weighted efficiency (ηEQUA) equation based on IEC 

61683 Standard, Response Surface Methodology (RSM) and Equatorial 

Irradiance-Duration Curve approach. 

(c) To validate ηEQUA based on real data from a PV system in equatorial climate.  
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1.4 Research Scopes 

To ensure completeness of the work within the given time frame and resources, 

the scopes of the research are defined as follows: 

(a) The one-year equatorial irradiance data are gathered from a single PV 

monitoring station, i.e., the weather station at Universiti Teknikal Malaysia 

Melaka (UTeM). 

(b) The proposed efficiency formula only involves with weighted conversion 

efficiency equation. It does not include Maximum Power Point Tracking 

(MPPT) efficiency equation. 

(c) The measurement data is based on IEC 61724 (1998) Standard which is an 

international standard and guidelines, data exchange and analysis of PV system 

performance monitoring. 

(d) The outcome of the research is based on the experimental work and analysis 

performed on four different inverters of different sizes and topologies. 

 

1.5 Importance of the Work 

Inaccurate usage of inverter efficiency will lead to inaccurate energy yield 

(Esys) reading and inaccurate Esys reading leads to inaccurate return of investment (ROI) 

projection. Hence this will cause for less real profit for the PV system installer. Thus, 

confidence level towards the PV system provider among the related parties such as 

bank which provide loans for the PV installation as well as the customers whom are 

investing their savings will be affected. Besides, it is a normal practice in Europe that 

when comparing two different brands of inverters with similar specifications, the one 

with one percent less in its efficiency value should be ten percent cheaper in price [14]. 
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This actually shows the staggering impact that can be influenced by the incorrect 

interpretation of a PV inverter efficiency value. Therefore, it is an utmost importance 

and relevance for this research to be carried out in order to amend the incorrect 

implementation of PV inverter efficiency value.   

1.6 Organization of Thesis 

This thesis comprises of 5 chapters, chapter 1 is covered and the remaining 

chapters are organized as follows: 

Chapter 2: This chapter starts with relevant background on system energy yield (Esys) 

equation and its related element especially PV inverter efficiency. It then overviews 

the different types of PV inverter efficiencies which relates to different types of PV 

inverter topologies available and stress on the need for weighted efficiency to be 

associated with PV inverter instead of the use of the maximum efficiency that is 

normally applicable for normal inverter. This chapter also looks on the related 

international standards and guidelines to produce weighted efficiency and reviews the 

previous works for localization of weighted efficiency to draws out the gap for this 

research work to be carried out. 

Chapter 3: This chapter focuses on the step by step research methodology performed 

and description on the tools and equipment involved. It starts with the profiling of one-

year equatorial irradiance from a dedicated weather station. The gathered profile is to 

be used as input for PV array simulator to test four PV inverters with different 

topologies. This chapter then explain on the procedures taken to recalculate weighted 

European efficiency in equatorial climate. The results are then used to expose the 

mismatch of weighted European efficiency formula when applied in equatorial 

climatic region.  

Chapter 4: This chapter continues by describing the process taken to produce 

weighted equatorial efficiency once it is proven that weighted European efficiency is 

incompatible to be applied in the equatorial region. Three methods are proposed i.e., 
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as suggested by IEC 61683 Standard, Response Surface Methodology (RSM) and 

Equatorial Irradiance-Duration Curve approach. This chapter then compares the 

viability of three approaches to produce weighted equatorial efficiency equation. The 

equation from the selected method is then used to be validated with the performance 

of a real working PV system. 

Chapter 5: This chapter summarizes the work that has been carried out in this thesis. 

It also draws the general conclusion and highlights the main contributions. Finally, it 

recommends the possible action that can be implemented to increase the accuracy of 

the findings.   
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