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ABSTRACT

Millimeter wave (mmWave) bands offer greater bandwidth for the 5th Generation (5G) 
communication system in order to achieve higher data rates. Understanding the mmWave 
channel is a fundamental requirement to develop the future 5G systems. Therefore, extensive 
field measurements with respect to the behavior in realistic channels must be carried out to 
characterize these bands. To date, little knowledge is established on the foliage attenuation of 
mmWave bands in tropical environment. Existing measurements have been carried out mostly in 
the temperate region where the vegetation has different physical characteristics compared to 
those in tropical region. Thus, this research aims to measure and characterise the foliage 
attenuation in urban tropical environment. The site for real time data collection is located within 
Universiti Teknologi Malaysia Kuala Lumpur campus where vegetation geometries are observed 
as a single tree or a row of trees within small cell radius up to 200 m. Both the deployed direct 
Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) links operate at millimeter frequencies 
particularly at 6, 10, 18, 20, 28 and 38 GHz. The measurement system is arranged based on 
typical narrowband setup under full foliage environment. The received signal strength (RSS) is 
collected throughout the experiment in foliated environment and compared to the free space 
measurement. A signal generator is configured to transmit pure continuous wave through a 
steerable directional horn antenna. The RSS values are captured on a portable spectrum 
analyzer. In general, the measurement results show that the most significant foliage attenuation 
is caused by the NLOS link through the trunk followed by the branches and tree-top. Average 
foliage attenuation observed to be highest at 38 GHz between 18.1 dB to 30.6 dB and lowest at 6 
GHz between 11.3 dB to 22.9 dB for NLOS slant paths obstructed by a single tree. Meanwhile a 
single tree obstruction at horizontal path induces foliage attenuation of 44.28 dB at 20 GHz by 
Eugenia tree, whereas the lowest attenuation of 22.35 dB at 6 GHz is attributed by weeping 
bottlebrush tree. On the other hand, the highest foliage attenuation induced by a line of trees 
occurs to be 49.86 dB at 28 GHz. Other important factors such as measurement geometry and 
vegetation density are observed. For instance, the foliage attenuation is higher at denser foliage 
and larger foliage depth. In general, the existing empirical models underestimate the tropical 
foliage measurements. The inaccuracies of these models could be due to the fact that the size, 
types and density of trees in tropical region is different from temperate region. It is found that 
the overall trend shows that foliage attenuation is more severe at higher mmWave frequencies at 
least by 21 dB as compared to the lower ones.
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ABSTRAK

Gelombang milimeter frekuensi (mmWave) menawarkan jalur lebar yang lebih besar 
untuk sistem komunikasi Generasi ke-5 (5G) untuk mencapai kadar data yang lebih tinggi. 
Memahami saluran mmWave merupakan keperluan asas untuk membangunkan sistem-sistem 
5G masa depan. Oleh itu, ukuran lapangan yang menyeluruh berkenaan dengan tingkah laku 
dalam saluran persekitaran realistik perlu dilakukan untuk mencirikan jalur gelombang ini. 
Setakat ini, sedikit pengetahuan pada rosotan perambatan mmWave oleh dedaunan di rantau 
tropika telah diketahui. Kebanyakkan ukuran sedia ada telah dijalankan di rantau sederhana. 
Tapak pengumpulan data terletak di dalam kampus Universiti Teknologi Malaysia Kuala 
Lumpur di mana geometri tumbuh-tumbuhan dikenal pasti sebagai pokok tunggal atau deretan 
pokok dalam radius sel kecil sehingga 200 m. Kedua-dua garis nampak (LOS) dan bukan garis 
nampak (NLOS) beroperasi pada frekuensi milimeter terutamanya pada 6, 10, 18, 20, 28 dan 38 
GHz. Sistem pengukuran adalah berdasarkan persediaan jalur sempit lazim di dalam 
persekitaran dedaun penuh. Kekuatan isyarat yang diterima (RSS) dikumpul sepanjang 
eksperimen dalam persekitaran dedaun penuh dan ruang bebas. Penjana isyarat dikonfigurasikan 
untuk menghantar gelombang tulen berterusan melalui antena corong berarah boleh-kendali. 

Nilai RSS dirakam pada penganalisa spektrum mudah alih. Secara umum, keputusan 
pengukuran menunjukkan rosotan perambatan oleh dedaunan yang ketara disebabkan oleh 
pautan NLOS melalui batang pokok diikuti oleh dahan-dahan dan puncak pokok. Rosotan 
purata disebabkan oleh semua 3 pautan diperhatikan adalah tertinggi pada 38 GHz antara 18.1 
dB kepada 30.6 dB dan terendah pada 6 GHz antara 11.3 dB kepada 22.9 dB untuk pautan 
NLOS yang serong yang dihalang oleh sebatang pokok. Sementara pautan secara mendatar yang 
dihalang oleh sebatang pokok menyebabkan rosotan dedaun 44.28 dB pada 20 GHz oleh pokok 
Eugenia. Manakala, rosotan purata terendah iaitu 22.35 dB pada 6 GHz disebabkan oleh pokok 
Weeping bottlebrush. Sebaliknya, rosotan tertinggi disebabkan oleh barisan pokok ialah 49.86 
dB pada 28 GHz. Faktor penting yang lain seperti geometri pengukuran dan kepadatan tumbuh- 
tumbuhan dikenalpasti. Sebagai contoh, rosotan dedaun adalah lebih tinggi disebabkan oleh 
dedaun yang lebih padat pada kedalaman dedaunan yang lebih besar. Secara umum, model 
empirik sedia ada adalah di bawah anggaran pengukuran dedaunan tropikal. Ketidaktepatan 
model ini mungkin disebabkan oleh saiz, jenis dan kepadatan pokok di rantau tropika yang 
berbeza dari rantau sederhana. Didapati bahawa rosotan perambatan oleh dedaunan pada 
frekuensi gelombang milimeter lebih tinggi adalah ketara sekurang-kurangnya sebanyak 21 dB 
berbanding dengan gelombang milimeter yang lebih rendah.
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CHAPTER 1

INTRODUCTION

1.1 Brief Introduction

Smart phone usage has been growing exponentially ever since it was 
introduced. By 2020, mobile and wireless traffic volume is expected to increase 
thousand-fold over 2010 figures [1]. There would be billions of devices when the 
network is ready for 5G deployment due to many new applications beyond personal 
communications [2]. The rise in the number of users and devices and the demand 
for higher data rates suggest a serious challenge to the current mobile communication 
systems.

Today’s cellular system and wireless devices operating frequency spectrum is 
typically from 700MHz to 6GHz with channel bandwidth of 5 to 100 MHz. The current 
allocated frequency bands below 6 GHz are almost fully utilized [3]. To overcome 
the bandwidth congestion, great amount of underutilized spectrum between 3 GHz to 
300GHz with wavelength of 1-100 mm better known as millimeter wave (mmWave) 
spectrum has the capability to be exploited for future 5G mobile communication 
system [4, 5]. The massive amount of channel bandwidth and potential multi-Gigabit 
per-second (Gbps) data rates in the mmWave band present a new opportunity for future 
broadband mobile communication systems [6]. These bands were previously ruled out 
due to the propagation impairments such high path loss, rain attenuation, penetration 
loss, atmospheric absorption, foliage attenuation etc.

The channel bandwidth of mmWave channel is much larger than the microwave 
frequency i.e. 500MHz per channel or more as compared to today’s microwave 
bandwidth of 5-20MHz [7]. The small wavelength enables large amount of antennas 
to be placed in the transceiver, encouraging the use of multi-input and multi-output 
(MIMO) technique to improve the spectral efficiency and simultaneously provide
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coverage enhancement [8]. Interest in mmWave research is driven by the desire to 
accommodate the 5G system with solid foundation: to support massive capacity and 
connectivity, to accommodate the Quality of Service (QoS) requirement and efficiently 
make use of available spectrum [1].

One of the critical impairments in outdoor non-line-of-sight (NLOS) mmWave 
propagation is foliage attenuation. Foliage attenuation is the excess loss cause by 
foliage and vegetation obstruction along the propagation paths. The involved physical 
process in the propagation of the radio wave through vegetation is complex due to 
foliage structure which is composed of randomly oriented trunks, branches, twigs 
and leaves [9]. Absorption, scattering, diffraction and depolarization can cause the 
propagating signal to deviate from its path [10]. The foliage attenuation in tropical 
region could differ from the ones in temperate region. Tropical vegetation has broad 
leaves whereas leaves of vegetation in temperate region are generally needle-like 
and the vegetation is evergreen all year round in tropical environment unlike in the 
temperate region. Moreover, foliage effect is more pronounced with contribution 
of environmental factors such as wind, rain precipitation and humidity. In order to 
understand the nature of trees in which the radio wave is travelling into, it is critical to 
study the impact of foliage effect in mmWave propagation.

1.2 Problem Statement

Despite the potential of mmWave, there are a number of challenges in realizing 
the vision of mobile networks in these bands. MmWave signals exhibit reduced 
diffraction and a more specular propagation than their microwave counterparts, 
and hence they are much more exposed to blockages [7, 11]. An outdoor urban 
environment objects such as foliage [12, 13], high-rise buildings[4, 14, 15], vehicular 
traffic and pedestrian [16, 17] are large relative to the wavelength and this causes 
pronounced propagation effect when a given link is obstructed.

Large scale path loss prediction has been the fundamental technique used 
in cellular planning and design since the advent of cellular industry. The existing 
prediction models may not be sufficiently accurate to characterize the path loss on 
cellular systems in tropical region. Early propagation measurements and models 
have only recently become available when underutilized mmWave frequency spectrum 
is being explored [6, 18]. It is necessary to have empirical results that reflect the
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true behavior of the radio channel (i.e., the propagation channel characteristic due to 
foliage). Recent studies suggest that mmWave propagation has wider coverage when 
highly directional steerable antennas are used at the base station and mobile device 
compared to omnidirectional antennas used in present-day microwave counterparts[7, 
19]. One of the critical impairments in mmWave communication is the propagation 
loss through foliage. Due to the small wavelength, the mmWave signal tends to be 
prone to the blockage due to foliage, which requires a larger margin in the link budget 
for the system design [4, 6, 7].

To date, there is insufficient knowledge of foliage attenuation for mmWave 
propagation in outdoor urban tropical environments [3, 6, 9]. Previous, measurements 
have been carried out mostly in the temperate region. Existing literature has focused 
primarily on the 28 and 38 GHz Local Multipoint Distribution Service (LMDS). Field 
measurements on tropical foliage attenuation have been carried out in the emerging 
of WiFi technology, wireless sensor network (WSN) and broadband fixed wireless 
access but the frequency investigated is limited to the range 2.4 and 5.8 GHz [20, 
21, 22]. Therefore, measurements and analyses to characterize the foliage attenuation 
are essential to allow realistic modeling of mmWave channel characteristic before an 
efficient 5G mobile communication system can be realized.

1.3 Objectives of Research

The objectives of the research are as follows:

1) To conduct received signal strength (RSS) measurement in free space and 
tropical foliated channels at mmWave frequencies in three different measurement 
scenarios; single tree at slant path, single tree at horizontal path and a line of trees.

2) To analyze the foliage attenuation over various mmWave frequencies and 
foliage depths at different type of trees.

3) To formulate the Path loss exponent of measured attenuation as a function 
of vegetation depth.
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1.4 Scope of Research

Feasibility study is conducted on both the fundamental theory of radiowave 
propagation and the foliage effect on the narrowband link performance. The site for 
data collection is located within UTM Kuala Lumpur campus and vicinity areas since 
it represents an urban outdoor tropical environment where vegetation geometries can 
be observed as: (1) single tree and (2) a row of trees within small cell radius up to 
200 m. Both the deployed Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) links 
operate at mmWave frequencies particularly at 6, 10, 18, 20, 28 and 38 GHz. 28 
and 38 GHz are chosen as they are considered as potential frequencies for future 5G 
mobile systems. While the rest of frequencies are chosen as reference based on other 
foliage studies found in the literature [19, 23, 24, 25, 26]. Investigation of foliage 
attenuation is performed on 7 species of common tropical trees in urban area. There are 
Angsana, Golden Penda, Ficus, Eugenia Brush Cherry, Red Palm, Weeping bottlebrush 

and Eugenia Oleina.

The measurement system is arranged based on typical narrowband setup on 
full leaf vegetation. The narrowband measurement enables thorough study of foliage 
effects on radio propagation through, around and underneath the vegetation medium. 
The NLOS links comprise of 3 different scenarios namely a single tree obstruction at 
slant path, a single tree obstruction at horizontal path and a line of trees obstruction. 
All scenarios are observed at the aforementioned 6 mmWave operating frequencies.

The received signal strength (RSS) is collected throughout the experiment in 
dry foliated environment only. Neither wind effect nor precipitation is observed in 
this research. The narrowband channel model development is beyond the scope of this 
thesis. Also, wideband parameter such as RMS delay spread will not be covered in this 
study due to equipment constrain. The empirical results are validated by comparison 
with existing empirical models and simulated using MATLAB.

1.5 Contributions of the Thesis

This study has collected RSS measurements results from the 6, 10, 18, 20, 28 
and 38 GHz narrowband channel in free space and foliated environment. Directional 
horn antennas have been used for both slant and horizontal paths on 7 species of 
common tropical trees.
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Empricial results show that for slant path geometry measurement, the trunk of 
the trees attenuates the signal more than the branches and treetop links due to scattering 
from the lower region of the canopy and the diffraction loss caused by major fresnel 
zone blockage. The relationship between attenuation and foliage depth appears to 
be nonlinear where the attenuation rate is initially higher at small foliage depth and 
become smaller at larger foliage depths. The empirical foliage attenuation rates can be 
used to estimate the total path loss through foliage in a common urban area in future 
mmWave ray-tracing algorithms and upper-layer system design.

1.6 Organization of Thesis

The thesis consists of five chapters, each describing particular area of the 
research.

Chapter 1 briefly introduces the millimeter wave cellular system followed by 
the problem statement, objectives and scope of the research as well as the contributions 
of the thesis.

Literature Review is detailed in Chapter 2. The essential theory of propagation 
in wireless communication is reviewed in order to understand the inevitable path loss 
due to foliage. Previous studies and developed models are also presented.

Chapter 3 describes the research methodology including the outdoor setups 
used for the RSS measurement. Tree species are identified physically. The simulation 
software MATLAB is utilized in order to analyze and clearly visualize the overall data.

Chapter 4 explains the results and analyses of the measured data. Evaluation 
and foliage attenuation relationship to the mmWave frequencies, tree types and foliage 
depth are presented in this chapter. Path loss exponent or average path loss over the 
separation distance is discussed as well.

Finally, this thesis is concluded in Chapter 5. Key findings and 
recommendations for future research works are described.
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