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Software-Defined Network (SDN) is a modern approach in networking 
technologies that enables dynamic and programmatically efficient network 
configuration for improved performance and network monitoring. Similar to the 
traditional networks, the SDN system is susceptible to conflicts in flows within the 
network. Flow conflict in SDN occurs in response to adjustment of certain features of 
flows such as priority, match field, and action. While efforts have been made to address 
these challenges, the current flow of conflict solutions in SDN has several limitations. 
First, the control layer does not show nor collect the conflict flows that are affected in 
the OpenFlow switch. Second, the flow entry detection and classification process are 
relatively time-consuming. Third, there are no studies on detection methods to avoid 
flow conflicts using artificial intelligence methods such as Machine Learning (ML) as 
a solution to flow conflict in SDN. This thesis aims to eliminate flows conflict in SDN 
by using ML algorithms to detect and classify all flow conflicts in the OpenFlow 
switch. This thesis aims to develop the flow construction model in the SDN controller, 
detect the conflict flow using ML algorithm, and classify all the conflict types in the 
flow table using a classification algorithm. In this work, simulation works were 
conducted in Mininet software using two types of topologies. Decision trees (DT), 
support vector machine (SVM), hybrid DT- SVM, and extreme fast decision trees 
(EFDT) ML algorithms were used to detect the conflicts. The main contribution of this 
thesis is the development of a flow construction model with conflict rules in the 
OpenFlow table that enhanced the SDN process. By using accurate and effective ML 
algorithms designed and implemented in the controller layer, flow conflicts are 
detected and classified to reduce the adverse effects of conflict in the SDN. The 
performance of the proposed algorithms was evaluated for their efficiency and 
effectiveness across a variety of evaluation metrics. The EFDT algorithm produced the 
best results with a performance accuracy above 90% and 95% in detection and 
classification respectively for all sizes of flows between 1,000 and 100,000. The 
proposed algorithms for detection and classification show performance improvements 
over two different algorithms used as benchmarks.      
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Rangkaian Takrif Perisian (SDN) adalah pendekatan moden dalam teknologi 
rangkaian yang membolehkan konfigurasi rangkaian yang dinamik dan cekap secara 
terprogram untuk prestasi dan pemantauan rangkaian yang lebih baik. Sama seperti 
rangkaian tradisional, sistem SDN terdedah kepada konflik aliran dalam rangkaian. 
Konflik aliran dalam SDN berlaku sebagai tindak balas kepada pelarasan ciri-ciri 
aliran tertentu seperti keutamaan, medan padanan dan tindakan. Walaupun usaha telah 
dibuat untuk menangani cabaran ini, penyelesaian konflik aliran semasa dalam SDN 
mempunyai beberapa batasan. Pertama, lapisan kawalan tidak menunjukkan atau 
mengumpulkan aliran konflik yang terjejas dalam suis OpenFlow. Kedua, pengesanan 
kemasukan aliran dan proses pengelasan agak memakan masa. Ketiga, tiada kajian 
berkaitan kaedah pengesanan untuk mengelakkan konflik aliran menggunakan kaedah 
kecerdasan buatan seperti Pembelajaran Mesin (ML) sebagai penyelesaian kepada 
konflik aliran di SDN. Tesis ini bertujuan untuk menghapuskan konflik aliran dalam 
SDN menggunakan algoritma ML untuk mengesan dan mengelaskan semua konflik 
aliran dalam suis OpenFlow. Matlamat tesis ini ialah membangunkan model 
pembinaan aliran dalam pengawal SDN, mengesan konflik aliran menggunakan 
algoritma ML dan mengelaskan semua jenis konflik yang berlaku dalam jadual aliran 
menggunakan algoritma pengelasan. Selanjutnya, simulasi telah dijalankan 
menggunakan perisian Mininet dua jenis topologi. Algoritma pepohon keputusan 
(DT), mesin vektor sokongan (SVM), hibrid DT- SVM dan pepohon keputusan pantas 
ekstrim (EFDT) ML digunakan untuk mengesan konflik. Sumbangan utama tesis ini 
adalah pembangunan model pembinaan aliran dengan peraturan konflik dalam jadual 
OpenFlow yang meningkatkan proses SDN. Dengan menggunakan algoritma ML 
yang tepat dan berkesan yang direka dan dilaksanakan dalam lapisan pengawal, 
konflik aliran dikesan dan dikelaskan untuk mengurangkan kesan buruk konflik di 
SDN. Prestasi algoritma yang dicadangkan telah dinilai untuk kecekapan dan 
keberkesanannya dalam pelbagai metrik penilaian. Algoritma EFDT memperoleh hasil 
terbaik dengan prestasi ketepatan melebihi 90% dan 95% masing-masing dalam 
pengesanan dan klasifikasi untuk semua saiz aliran antara 1,000 and 100,000. 
Algoritma yang dicadangkan untuk pengesanan dan klasifikasi menunjukkan 
peningkatan hasil apabila dibandingkan dengan dua algoritma yang berbeza yang 
digunakan sebagai penanda aras. 
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CHAPTER 1  
 

 

INTRODUCTION 

1.1 Introduction 

Software-defined networking (SDN) is a network management technique that 

has enhanced the performance of the network by making its structure and configuration 

more dynamically and programmatically efficient (Bera et al., 2017; Cui et al., 2018; 

Pisharody et al., 2017). The application of this approach has led to several benefits, 

such as addressing changing business requirements by allowing administrators and 

network engineers to make these changes via a centralized control console (Cui et al., 

2016)��6'1¶V� LPSOHPentation on a network allows it to become more flexible and 

agile by combining a multitude of network technologies specifically designed for such 

D� SXUSRVH�� 6'1¶V�PDLQ� VWUXFWXUH� LQYROYHV� VHSDUDWLQJ� WKH� QHWZRUN� FRQWURO� IURP� WKH�

forwarding planes, which would be the same as separating the brain from the muscle 

(Karakus & Durresi, 2017)��7KLV�VHSDUDWLRQ�ZRXOG�WKHRUHWLFDOO\�HQDEOH�WKH�QHWZRUN¶V�

control plane (or brain) to be programmable on its own and thus provide network 

engineers with direct control over the underlying network infrastructure(Hong & Wey, 

2017a). SDN also has other underlying benefits, such as being manageable, dynamic, 

adaptable, and, more importantly, cost-effective, which make it the ideal solution for 

the ever-JURZLQJ� QDWXUH� RI� WKH� LQWHUQHW� DQG� LWV� DSSOLFDWLRQ¶V� KLJK-bandwidth 

requirements (Ray & Kumar, 2021; Xia et al., 2015). 

SDN has many new standards and OpenFlow (OF) is one of them. One of 

OpenFlow's key elements in the framework of SDN is the controller, which allows all 

application development via an Application Programming Interfaces (API) with a 

northbound connection. SDN is highly determined by the controller's actions, and its 

performance is directly proportional to the SDN's efficiency. The OpenFlow switch 

consists of several flow tables that are connected to the controller using the OpenFlow 

protocol. This protocol is used to communicate between switches and the controller 
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while employing flow tables as an abstraction. The flow tables aim to ensure that 

packets are correctly allocated, sorted, and distributed in adherence to the flow entries 

(Hao et al., 2017; Tok & Demirci, 2021; Tran & Danciu, 2019b). A flow table is 

composed of multiple flow entries, which include: Match fields that are used to match 

the flow entries; Priority, used to match the flow's priority address; Counters, to be 

modified to correspond with the packets; Instructions, to modify the action taken or to 

deal with the flow; Timeouts, complete or remaining time before the session expires 

and the implicit value of the data selected by the controller is referred to as a 

cookie(Maldonado-Lopez et al., 2015). 

 

1.2 Flow Conflict  

Both traditional networks and SDNs are affected by several types of conflict 

that negatively impacts network performance (Kim & Kang, 2020; Pisharody et al., 

2017). These conflicts can be classified according to their rules and effects into two 

main types: Intelligible Conflicts (redundancy, shadowing, overlapping) and 

Interpretative Conflicts (generalization, correlation, imbrication). Since packet 

counters and timeout values are not important for managing flow conflicts, 

consideration given to limitation in flow entries is in relation to priority, match fields, 

and action fields in the remainder of this study. SDN conflicts occur depending on the 

impact and adjustment of certain features, such as priority and action. Depending on 

the changes in the flow rule policy or flow entry, conflict forms appear in the controller 

and flow table. Priority and actions are the key components for developing the rule 

and flow entry in SDN. It is also well known that priority and action are some of the 

major differences between the traditional network and the SDN in terms of features. 
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1.3 Problem Statement 

Flow conflict manifests in different forms, such as the case of designing the 

SDN. Since flow rules can check further than only layer-3 and layer-4 prefixes, they 

are fundamentally more complicated than traditional network matching rules as there 

are more variables involved. Many stream attributes can be dynamically modified 

because cross-layer communication is reinforced in SDN by flow rules that allow set-

field actions. Furthermore, as wildcard entries are permitted, a partial conflict of flow 

policies may arise, thereby increasing the difficulty of resolving conflicting flow rules. 

Flow rules in SDN, unlike traditional networks, might have the same priority and 

match on several packet headers, leading to indirect dependence (Pisharody et al., 

2017). The changes in the flow rule policy or flow entry led to varying forms of conflict 

appearing in the controller and flow table. Priority and actions are the key components 

in developing the rules and flow entries in SDN. Traditional networks have been 

documented to have important features, such as priority and action, which set them 

apart from SDNs. In the first mechanism, packets are matched with flow entries 

according to the priority of the flow entries. Since the flow entries are similar to each 

other, a packet can match more than one flow entry: resulting in the flow entry conflict 

(Cui et al., 2018; Lin & Sun, 2018). In previous research (Danciu & Tran, 2020), it 

was discovered that there are special kinds of anomalies that generate a hidden 

conflicts which appears primarily due to side effects of the application activities that 

are beyond the class in conflict with the SDN structures. Therefore, in order to prevent 

network paralysis, SDN modules must be properly implemented, especially among 

varied devices and applications such as the network devices, SDN controllers, and 

applications (Kim & Kang, 2020). Policies of the SDN network should be dynamically 

modified at a fast rate. The identification of these conflicts is an arduous and 

complicated operation, because of the high number of switches and heterogeneous 

policies in a common SDN network (Aryan et al., 2017; Danciu & Tran, 2020). In line 

with these issues, the problem statement of this work is formulated as follows: 

i. Previous algorithms and detection methods used for avoiding flow conflict 

have not used artificial intelligence approaches like Machine Learning 

(ML) as a solution for flow conflict resolution in SDN. The use of ML 
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algorithms can considerably improve the efficiency and accuracy of 

conflict flow detection in the OpenFlow table. To identify conflicting flows 

in SDN, the ML algorithm is fitted with relevant features of a pre-processed 

labeled dataset. However, most of the previous research studies on conflict 

detection did not collect and save the flow conflicts created in OpenFlow 

switches (Danciu & Tran, 2020; Lin & Sun, 2018; Maldonado-Lopez et al., 

2015; Pisharody, 2017). Furthermore, previous research studies on the 

detection of conflict in SDN have implemented and designed algorithms for 

use with a maximum number of 10000 flows (Cui et al., 2018; Tran & 

Danciu, 2019b). 

ii. Both traditional and SDNs are affected by several types of conflict that can 

negatively affect network performance. Thus, it is important to define and 

classify the types of conflict that occur in the network to resolve and avoid 

these conflicts. Most of the research studies conducted on flow detection 

have not identified the effects of conflict in SDN as they have often avoided 

the classification of the conflict types that can occur in the OpenFlow table 

(Cui et al., 2018; Danciu & Tran, 2020; Wang et al., 2016b). The few other 

works that have attempted to classify the types of conflicts have done 

without a comprehensive classification of all conflict types. The most 

recent study on conflict detection in SDN classifies the types of conflict 

into four classes of redundancy, shadowing, correlation, and generalization 

(Aryan et al., 2017; Lu et al., 2019). 

iii. Besides, the numbers and types of algorithms and detection methods used 

for avoiding flow conflict takes a long time (over 9 ms for 10000 flows and 

over 42 ms for 100000 flows) to apply their instructions in the flow table 

(Lo et al., 2015; Metter et al., 2017; Pisharody et al., 2017). The lengthy 

time taken by the algorithms to apply their instructions can slow down the 

speed at which the controller adds or modifies the flow entries in the flow 

table which in turn affects the performance and security of the SDN. 

Therefore, a solution is required to enhance the accuracy of conflict detection 

while remaining relatively efficient in terms of time. 
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1.4 Research Objectives 

This study aims to propose an algorithm for eliminating flow conflict in SDN. 

The proposed algorithms will detect and classify all flows in the OpenFlow switch to 

reduce the conflict between them. The specific objectives of this research are: 

i. To develop a flow construction model for the SDN controller.  

ii. To propose a machine learning algorithm for detecting and identifying the 

conflict flows in terms of accuracy, precision, recall, F1 measure (weight 

average of Precision and Recall) and running time1.   

iii. To implement a conflict classification algorithm for reducing the flow 

conflict in the SDN. 

 

 

1.5 Scope of Research 

SDN is a network architecture where network traffic may be operated and 

managed dynamically based on user requirements and demands. This research focuses 

on flow conflict elimination between the data and control planes in SDN. To achieve 

the research objectives, it is necessary to outline its scope and limitations.  

i. The effectiveness of the proposed method is verified through the network 

topologies referenced by GitHub and some previous studies conducted on 

flow conflicts in SDN. Mininet software with Ryu controller is used to 

implement and apply conflict rules within the topologies. 

ii. The performance is measured based on the flow conflict classification and 

detection. Conflict is reduced and eliminated by using ML algorithms. 

 

1 accuracy, precision, recall, F1 measure and running time are metrics used to evaluate performance of algorithm in ML (this is 
detailed in section 2.12.2). 
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iii. The OpenFlow protocol that is used in this study is OpenFlow 1.3, whereas 

experimental simulations is carried out in the Mininet simulation 

environment 

iv. The evaluation metrics used to evaluate the performance of the proposed 

approach are accuracy, precision, recall, F1 measure, running time, and 

flow setup rate (throughput). 

1.6 Research Contributions 

This research contributes to the elimination of flow conflicts in SDN. It 

enhances the SDN by providing a flow construction model with conflict rules 

implemented in the OpenFlow table. An effective algorithm is designed and 

implemented to detect and classify flow conflicts in a bid to reduce the adverse effects 

of conflict in SDN. The main contributions are summarized as follows: 

i. Provide an approach of flow construction model in SDN controller with 

conflicting flows implemented in the OpenFlow table for different types of 

topologies of varying flow sizes ranging from 1,000 to 100,000 flows. 

ii. This study produces implementations of ML algorithms to distinguish and 

identify the different types of flows in open flow switches within the flow 

table. 

iii. Implement the flow rules using ML in an algorithm in the control plane that 

is used to identify conflict types that appear in the flow. 
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1.7 Significance of Research 

The significance of this research is shown in the comprehensive practical 

solution it profers as it eliminates and reduces flow conflicts in the OpenFlow table for 

small and large flows. The benefits of the solution implemented and developed in this 

research are: 

i. Data from the flow construction model can be collected with flow entries 

information. 

ii. The anomaly detection techniques used to detect conflicting flows in this 

study can be produced with the high performance of SDN and measured 

using accuracy, precision, recall, F1 measure, and running time for varying 

flow sizes. 

iii. The implemented and developed Extremely Fast Decision Tree (EFDT) 

algorithm classifies and distinguishes between seven types of flow conflicts 

in SDN. 

iv. The detection and classification algorithms show a significant improvement 

in the running time of the detection and classification of conflicting flows 

compared to other available solutions. 

1.8 Thesis Outline 

The outline and organization of this thesis is as follows. Chapter 1 presents the 

problem statement as well as the aims and specific objectives of this thesis. Chapter 2 

presents a literature review of studies and research on flow conflicts as well as the 

previous approaches that have been presented in the relevant literature to resolve the 

problem in SDN. The chapter begins with a short overview of SDN concepts and 

architectures followed by  flow conflict detection mechanisms and solutions in forward 

and control planes. The existing studies related to ML used for detection and 

classification in SDN are reviewed and discussed. The chapter concludes with the 
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definition of the metrics used to evaluate and test the performance of the implemented 

methods. 

Chapter 3 provides the methodology of this research. The chapter starts by 

showing how conflict rules are generated and implemented in the OpenFlow switch. 

The experimental setup and development of the modules in the Ryu controller are then 

explained. All steps and processes used to develop the respective detection and 

classification algorithms are shown.  

Chapter 4 presents the proposed algorithm used to collect and save flow 

conflicts in the OpenFlow switch. This chapter begins with a block diagram and a 

pseudo algorithm code. The results of the stream flows of all sizes are presented in this 

chapter, including graphs of flow data for Transmission Control Protocol (TCP) and 

User Datagram Protocol (UDP). 

Chapter 5 presents the proposed detection and classification algorithms. The 

first section discusses the four algorithms used for detection, followed by block 

diagrams and the results of each of the four algorithms. The results are presented using 

six metrics, namely accuracy, recall, precision, F1 score measure, Receiver Operating 

Characteristic (ROC) curve, and running time. The detection performance of 

algorithms is further validated by comparison with other existing detection techniques. 

Chapter 6 presents a discussion and explanation of the classification algorithm 

followed by a discussion of the results. The results are discussed relative to six metrics, 

namely accuracy, recall, precision, F1 score measure, Receiver Operating 

Characteristic (ROC) curve, and running time. The classification performance of 

algorithms is further validated by comparison with other existing classification 

techniques. 

Finally, Chapter 7 shows the main achievements of the proposed algorithms in 

this study and highlights open areas of future work.
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